1
|
Kast RE. Potential Benefits of Adding Alendronate, Celecoxib, Itraconazole, Ramelteon, and Simvastatin to Endometrial Cancer Treatment: The EC5 Regimen. Curr Issues Mol Biol 2025; 47:153. [PMID: 40136407 PMCID: PMC11941490 DOI: 10.3390/cimb47030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Metastatic endometrial cancer continues to be a common cause of death as of 2024, even after maximal use of all currently available standard treatments. To address this problem of metastatic cancer generally in 2025, the drug repurposing movement within oncology identifies medicines in common general medical use that have clinical or preclinical experimental data indicating that they interfere with or inhibit a specific growth driving element identified in a given cancer. The drug repurposing movement within oncology also uses data from large scale in vitro screens of thousands of drugs, looking for simple empirical growth inhibition in a given cancer type. This paper outlines the data showing that five drugs from general medical practice meet these evidence criteria for inhibition of endometrial cancer growth, the EC5 regimen. The EC5 regimen uses the osteoporosis treatment drug, alendronate; the analgesic drug, celecoxib; the antifungal drug, itraconazole; the sleep aid, ramelteon; and the cholesterol lowering drug, simvastatin. Side effects seen with these drugs are usually minimal and easily tolerated by patients.
Collapse
|
2
|
Revesz IA, Joyce P, Ebert LM, Prestidge CA. Effective γδ T-cell clinical therapies: current limitations and future perspectives for cancer immunotherapy. Clin Transl Immunology 2024; 13:e1492. [PMID: 38375329 PMCID: PMC10875631 DOI: 10.1002/cti2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
γδ T cells are a unique subset of T lymphocytes, exhibiting features of both innate and adaptive immune cells and are involved with cancer immunosurveillance. They present an attractive alternative to conventional T cell-based immunotherapy due, in large part, to their lack of major histocompatibility (MHC) restriction and ability to secrete high levels of cytokines with well-known anti-tumour functions. To date, clinical trials using γδ T cell-based immunotherapy for a range of haematological and solid cancers have yielded limited success compared with in vitro studies. This inability to translate the efficacy of γδ T-cell therapies from preclinical to clinical trials is attributed to a combination of several factors, e.g. γδ T-cell agonists that are commonly used to stimulate populations of these cells have limited cellular uptake yet rely on intracellular mechanisms; administered γδ T cells display low levels of tumour-infiltration; and there is a gap in the understanding of γδ T-cell inhibitory receptors. This review explores the discrepancy between γδ T-cell clinical and preclinical performance and offers viable avenues to overcome these obstacles. Using more direct γδ T-cell agonists, encapsulating these agonists into lipid nanocarriers to improve their pharmacokinetic and pharmacodynamic profiles and the use of combination therapies to overcome checkpoint inhibition and T-cell exhaustion are ways to bridge the gap between preclinical and clinical success. Given the ability to overcome these limitations, the development of a more targeted γδ T-cell agonist-checkpoint blockade combination therapy has the potential for success in clinical trials which has to date remained elusive.
Collapse
Affiliation(s)
- Isabella A Revesz
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Paul Joyce
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- School of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Clive A Prestidge
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
3
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S, Shi T. The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine 2023; 162:156108. [PMID: 36527892 DOI: 10.1016/j.cyto.2022.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been a promising, emerging treatment for various cancers. Gamma delta (γδ) T cells own a T cell receptor composed of γ- and δ- chain and act as crucial players in the anti-tumor immune effect. Currently, Vγ9Vδ2 T cells, the predominate γδ T cell subset in human peripheral blood, has been shown to exert multiple biological functions. In addition, a growing body of evidence notes that Vγ9Vδ2 T cells interact with tumor cells in many ways, such as TCR-mediated nonpeptidic-phosphorylated phosphoantigens (pAgs) recognization, NKG2D/NKG2D ligand (NKG2DL) pathway, Fas-FasL axis and antibody-dependent cellular cytotoxicity (ADCC) as well as exosome. More importantly, clinical studies with Vγ9Vδ2 T cells in cancers have propelled several clinical applications to investigate their safety and efficacy. Herein, this review summarized the underlying ways and mechanisms of interplay cancer cells and Vγ9Vδ2 T cells, which may help us to generate new strategies for tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China; Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
4
|
Guo N, Zhou Y, Wang T, Lin M, Chen J, Zhang Z, Zhong X, Lu Y, Yang Q, Xu D, Gao J, Han M. Specifically Eliminating Tumor-Associated Macrophages with an Extra- and Intracellular Stepwise-Responsive Nanocarrier for Inhibiting Metastasis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57798-57809. [PMID: 33325679 DOI: 10.1021/acsami.0c19301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastasis is the primary cause of death for most cancer patients, in which tumor-associated macrophages (TAMs) are involved through several mechanisms. While hitherto there is still a lack of study on exclusive elimination of TAMs to inhibit metastasis due to the difficulties in specific targeting of TAMs, we construct an extra- and intracellular stepwise-responsive delivery system p-(aminomethyl)benzoic acid (PAMB)/doxorubicin (DOX) to achieve specific TAM depletion for the first time, thereby preventing tumor metastasis. Once accumulated into the tumor, PAMB/DOX would stepwise responsively (hypoxia and reactive oxygen species (ROS) responsively) disintegrate to expose the TAM-targeting ligand and release DOX sequentially, which depletes TAMs effectively in vivo. Owing to the inhibition of extracellular matrix (ECM) degradation, neovascularization, and tumor invasion contributed by TAM depletion, lung metastasis was successfully inhibited. Furthermore, PAMB/DOX showed efficient inhibition against tumor growth as well as spontaneous metastasis formation when combined with additional chemotherapy, representing a safe and efficient nanoplatform to modulate the adverse tumor microenvironment via TAM elimination.
Collapse
Affiliation(s)
- Ningning Guo
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiantian Wang
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Lin
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhentao Zhang
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xincheng Zhong
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiying Lu
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Yang
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Zocchi MR, Tosetti F, Benelli R, Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel) 2020; 12:1886. [PMID: 32668783 PMCID: PMC7409190 DOI: 10.3390/cancers12071886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| |
Collapse
|
6
|
Sousa S, Clézardin P. Bone-Targeted Therapies in Cancer-Induced Bone Disease. Calcif Tissue Int 2018; 102:227-250. [PMID: 29079995 DOI: 10.1007/s00223-017-0353-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/14/2023]
Abstract
Cancer-induced bone disease is a major source of morbidity and mortality in cancer patients. Thus, effective bone-targeted therapies are essential to improve disease-free, overall survival and quality of life of cancer patients with bone metastases. Depending of the cancer-type, bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone metastasis, it is essential to target not only bone metastatic features in the tumour cells, but also tumour-nurturing bone microenvironment properties. The currently available bone-targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, denosumab). Some agents targeting osteoblasts begin to emerge which target osteoblasts (e.g. romosozumab), activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for the treatment of cancer-induced bone disease, summarizing preclinical and clinical findings obtained with anti-resorptive and bone anabolic therapies.
Collapse
Affiliation(s)
- Sofia Sousa
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France.
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France.
| | - Philippe Clézardin
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France
- European Cancer and Bone Metastasis Laboratory, Department of Bone Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol 2017; 34:78-102. [PMID: 29032891 PMCID: PMC5774666 DOI: 10.1016/j.smim.2017.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ana Olivera
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
8
|
Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate-Functionalized Imaging Agents, Anti-Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Adv Healthc Mater 2017; 6. [PMID: 28207199 DOI: 10.1002/adhm.201601119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Bone metastases result from the invasion of primary tumors to bone. Current treatment modalities include local treatments such as surgery and radiotherapy, while systemic treatments include chemotherapy and (palliative) treatment of skeletal metastases. Nevertheless, once bone metastases have been established they remain incurable leading to morbidity and mortality. Bisphosphonates are a well-established class of drugs, which are increasingly applied in the treatment of bone cancers owing to their effective inhibition of tumor cells and suppression of bone metastases. The increased understanding of the mechanism of action of bisphosphonates on bone and tumor cells has prompted the development of novel bisphosphonate-functionalized imaging and therapeutic agents. This review provides an update on the preclinical efficacy of bisphosphonate-functionalized fluorophore, anti-tumor agents and nanocarriers for the treatment of bone metastases. After an overview of the general characteristics of bisphosphonates and their mechanisms of action, an outline is provided on the various conjugation strategies that have become available to functionalize imaging agents, anti-tumor agents and nanocarriers with bisphosphonates. Finally, the efficacy of these bisphosphonate-modified agents and carriers in preclinical studies is evaluated by reviewing their potential to target tumors and inhibit tumor growth in clinically relevant animal models for the treatment of bone cancer.
Collapse
Affiliation(s)
- Robin A. Nadar
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Nicola Margiotta
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via E. Orabona 4 70125 Bari Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC); National Research Council (CNR); Via Granarolo 64 48018 Faenza Italy
| | | | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Medical Center; Geert Grooteplein Zuid 10 6525 AG Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
9
|
Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Stern ST, Barenholz Y, Gabizon A. Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer. J Drug Target 2016; 24:878-889. [PMID: 27187807 DOI: 10.1080/1061186x.2016.1191081] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We developed a pegylated liposome formulation of a dissociable salt of a nitrogen-containing bisphosphonate, alendronate (Ald), coencapsulated with the anthracycline, doxorubicin (Dox), a commonly used chemotherapeutic agent. Liposome-encapsulated ammonium Ald generates a gradient driving Dox into liposomes, forming a salt that holds both drugs in the liposome water phase. The resulting formulation (PLAD) allows for a high-loading efficiency of Dox, comparable to that of clinically approved pegylated liposomal doxorubicin sulfate (PLD) and is very stable in plasma stability assays. Cytotoxicity tests indicate greater potency for PLAD compared to PLD. This appears to be related to a synergistic effect of the coencapsulated Ald and Dox. PLAD and PLD differed in in vitro monocyte-induced IL-1β release (greater for PLAD) and complement activation (greater for PLD). A molar ratio Ald/Dox of ∼1:1 seems to provide an optimal compromise between loading efficiency of Dox, circulation time and in vivo toxicity of PLAD. In mice, the circulation half-life and tumor uptake of PLAD were comparable to PLD. In the M109R and 4T1 tumor models in immunocompetent mice, PLAD was superior to PLD in the growth inhibition of subcutaneous tumor implants. This new formulation appears to be a promising tool to exploit the antitumor effects of aminobisphosphonates in synergy with chemotherapy.
Collapse
Affiliation(s)
| | - Yasmine Amitay
- a Shaare Zedek Medical Center , Jerusalem , Israel.,b School of Medicine, Hebrew University , Jerusalem , Israel
| | - Jenny Gorin
- a Shaare Zedek Medical Center , Jerusalem , Israel
| | - Dina Tzemach
- a Shaare Zedek Medical Center , Jerusalem , Israel
| | - Lidia Mak
- a Shaare Zedek Medical Center , Jerusalem , Israel
| | - Stephan T Stern
- c Frederick National Laboratory for Cancer Research, NCL , Frederick , MD , USA
| | | | - Alberto Gabizon
- a Shaare Zedek Medical Center , Jerusalem , Israel.,b School of Medicine, Hebrew University , Jerusalem , Israel
| |
Collapse
|
10
|
Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, Zhang J, Wang Y, Dong L, Wang C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014; 35:10046-57. [PMID: 25245263 DOI: 10.1016/j.biomaterials.2014.09.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
Tumour-associated macrophages (TAMs) are a set of macrophages residing in the tumour microenvironment. They play essential roles in mediating tumour angiogenesis, metastasis and immune evasion. Delivery of therapeutic agents to eliminate TAMs can be a promising strategy for cancer immunotherapy but an efficient vehicle to target these cells is still in pressing need. In this study, we developed a bisphosphonate-glucomannan conjugate that could efficiently target and specifically eliminate TAMs in the tumour microenvironment. We employed the polysaccharide from Bletilla striata (BSP), a glucomannan affinitive for macrophages that express abundant mannose receptors, to conjugate alendronate (ALN), a bisphosphonate compound with in vitro macrophage-inhibiting activities. In both in vitro and in vivo tests, the prepared ALN-BSP conjugate could preferentially accumulate in macrophages and induced them into apoptosis. In the subcutaneous S180 tumour-bearing mice model, the treatment using ALN-BSP effectively eliminated TAMs, remarkably inhibited angiogenesis, recovered local immune surveillance, and eventually suppressed tumour progression, without eliciting any unwanted effect such as systematic immune response. Interestingly, ALN alone failed to exhibit any anti-TAM activity in vivo, probably because this compound was susceptible to the mildly acidic tumour microenvironment. Taken together, these results demonstrate the potential of ALN-BSP as a safe and efficient tool targeted at direct depletion of TAMs for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiudan Zhan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lixin Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Haixia Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
11
|
|
12
|
Shmeeda H, Amitay Y, Tzemach D, Gorin J, Gabizon A. Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity. J Control Release 2013; 167:265-75. [PMID: 23419948 DOI: 10.1016/j.jconrel.2013.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/06/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Zoledronic acid (Zol) is a potent inhibitor of farnesyl-pyrophosphate synthase with broad clinical use in the treatment of osteoporosis, and bone metastases. We have previously shown that encapsulation of Zol in liposomes targeted to the folate receptor (FR) greatly enhances its in vitro cytotoxicity. To examine whether targeted liposomal delivery of Zol could be a useful therapeutic approach, we investigated here the in vivo pharmacology of i.v. administered liposomal Zol (L-Zol) in murine models. METHODS Zol was passively entrapped in the water phase of liposomes containing a small fraction of either dipalmitoyl-phosphatidylglycerol (DPPG) or a polyethylene-glycol (PEG)-conjugated phospholipid with or without insertion of a folate lipophilic conjugate. Radiolabeled formulations were used for pharmacokinetic (PK) and biodistribution studies. Toxicity was evaluated by clinical, hematological, biochemical, and histopathological parameters. Therapeutic studies comparing free Zol, nontargeted and folate targeted L-Zol were performed in FR-expressing human tumor models. RESULTS Encapsulation of Zol in liposomes resulted in major PK changes including sustained high plasma levels and very slow clearance. DPPG-L-Zol was cleared faster than PEG-L-Zol. Grafting of folate lipophilic conjugates on liposomes further accelerated the clearance of Zol. L-Zol caused a major shift in drug tissue distribution when compared to free Zol, with a major increase (20 to 100-fold) in liver and spleen, a substantial increase (7 to 10-fold) in tumor, and a modest increase (2-fold) in bone. Liposomal formulations proved to be highly toxic, up to 50-fold more than free Zol. PEG-L-Zol was more toxic than DPPG-L-Zol. Toxicity was non-cumulative and appears to involve macrophage/monocyte activation and release of cytokines. Co-injection of L-Zol with a large dose of blank liposomes, or injection of a very low Zol-to-phospholipid ratio liposome formulation reduced toxicity by 2-4-fold suggesting that diluting macrophage exposure below a threshold Zol concentration is important to overcome toxicity. L-Zol failed to significantly enhance the therapeutic activity of Zol vis-à-vis free ZOL and doxorubicin. Folate-targeted L-Zol was marginally better than other treatment modalities in the KB tumor model but toxic deaths greatly affected the outcome. CONCLUSIONS Liposome delivery of Zol causes a major change in tissue drug distribution and an increase in tumor Zol levels. However, the severe in vivo toxicity of L-Zol seriously limits its dose and its utility for in vivo tumor cell targeting. This strategy is under evaluation using liposomes carrying less toxic bisphosphonates.
Collapse
Affiliation(s)
- Hilary Shmeeda
- Oncology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
13
|
Perez-Campos E, Perez JA, Mayoral LPC, Velasco IG, Cruz PH, Olivera PG. Why not change classical treatments for glioblastoma in elderly patients? World J Exp Med 2013; 3:50. [DOI: 10.5493/wjem.v3.i4.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
|
14
|
Peer D. Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev 2012; 64:1738-48. [PMID: 22820531 DOI: 10.1016/j.addr.2012.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 01/12/2023]
Abstract
Lipid-based nanoparticles (LNPs) such as liposomes, micelles, and hybrid systems (e.g. lipid-polymer) are prominent delivery vehicles that already made an impact on the lives of millions around the globe. A common denominator of all these LNP-based platforms is to deliver drugs into specific tissues or cells in a pathological setting with minimal adverse effects on bystander cells. All these platforms must be compatible to the physiological environment and prevent undesirable interactions with the immune system. Avoiding immune stimulation or suppression is an important consideration when developing new strategies in drug and gene delivery, whereas in adjuvants for vaccine therapies, immune activation is desired. Therefore, profound understanding of how LNPs elicit immune responses is essential for the optimization of these systems for various biomedical applications. Herein, I describe general concepts of the immune system and the interaction of subsets of leukocytes with LNPs. Finally, I detail the different immune toxicities reported and propose ways to manipulate leukocytes' functions using LNPs.
Collapse
|
15
|
Role of gamma-delta T-cells in cancer: another opening door to immunotherapy. Clin Transl Oncol 2012; 14:891-5. [PMID: 23054752 DOI: 10.1007/s12094-012-0935-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/26/2012] [Indexed: 12/28/2022]
Abstract
The gamma-delta (γδ) T-cells are a subset of T-lymphocytes characterized by the presence of a surface antigen recognition complex type 2. Those γδ T-cells represent 2-5 % of peripheral T-cells only, but they are common in organs and mucosae, acting as a first defense system in the entries to the organism. The γδ T-cells take part on immune response by direct cytolysis, development of memory phenotypes, and modulation of immune cells, and they have been implied in autoimmune disorders, immune deficiencies, infections, and tumor diseases. We reported the role of γδ T-cells in oncology, focusing in their potential applications for cancer treatment. Experimental designs and clinical trials in the treatment of solid malignancies are extensively reviewed.
Collapse
|
16
|
Söllner J, Mayer P, Heinzel A, Fechete R, Siehs C, Oberbauer R, Mayer B. Synthetic lethality for linking the mycophenolate mofetil mode of action with molecular disease and drug profiles. MOLECULAR BIOSYSTEMS 2012; 8:3197-207. [DOI: 10.1039/c2mb25256b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Landesman-Milo D, Peer D. Altering the immune response with lipid-based nanoparticles. J Control Release 2011; 161:600-8. [PMID: 22230342 DOI: 10.1016/j.jconrel.2011.12.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/11/2022]
Abstract
Lipid-based nanoparticles (LNPs) hold great promise as delivery vectors in the treatment of cancer, inflammation, and infections and are already used in clinical practice. Numerous strategies based on LNPs are being developed to carry drugs into specific target sites. The common denominator for all of these LNPs-based platforms is to improve the payloads' pharmacokinetics, biodistribution, stability and therapeutic benefit, and to reduce to minimal adverse effects. In addition, the delivery system must be biocompatible and non-toxic and avoid undesirable interactions with the immune system. In order to achieve optimal benefits from these delivery strategies, interactions with the immune system must be thoroughly investigated. This report will center on the interactions of LNPs with different subsets of leukocytes and will detail representative examples of suppression or activation of the immune system by these carriers. By understanding the interactions of LNPs with the innate and the adaptive arms of the immune system it might be possible to attain improved therapeutic benefits and to avoid immune toxicity.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of Nanomedicine, Dept. of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|