1
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
2
|
Yu CY, Dong L, Li YF, Wei WB. Vitamin D and myopia: a review. Int Ophthalmol 2024; 44:95. [PMID: 38368573 DOI: 10.1007/s10792-024-03009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/29/2023] [Indexed: 02/19/2024]
Abstract
Myopia is a worldwide public health problem of vision disorder caused by multiple factors, which has posed a huge socioeconomic burden, raising concerns about sight-threatening ocular complications. Vitamin D, as a kind of fat-soluble vitamin, related to time-spent-outdoors, has been considered by extensive studies to have potential relationship with myopia. We reviewed studies published in a decade which estimated the association of blood vitamin D status with myopia and summarized the universality and individuality of all research articles. Several research articles suggested the known environmental risk factors of myopia, including age, gender, ethnicity, education level, parental and school conditions, time-spent-outdoors, and sunlight exposure, and recent epidemiological studies demonstrate that increased vitamin D levels, by virtue of the extended outdoor time, may be an important modifiable factor and a protective effect that delay the progression of myopia in children and adolescents rather than in adults. The genetic studies have been conducted to get access to the evidence of gene polymorphism for explaining the association of serum vitamin D status and myopia, but the precise genetic interpretation of vitamin D and myopia remains unclear so far; on the other hand, the possible mechanisms are various like copolymerization mechanism, calcium homeostasis and imbalance of ciliary muscle function regulation, but nearly all of the investigators are inclined to remain skeptical. This article reviews the age-related epidemiological proofs, existent genetics correlations, possible underlying biological mechanisms and further values for the protective association between vitamin D and myopia, providing the possibility of prevention or postponement for myopia.
Collapse
Affiliation(s)
- Chu-Yao Yu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Yi-Fan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China.
| |
Collapse
|
3
|
Sutedja EK, Arianto TR, Lesmana R, Suwarsa O, Setiabudiawan B. The Chemoprotective Role of Vitamin D in Skin Cancer: A Systematic Review. Cancer Manag Res 2022; 14:3551-3565. [PMID: 36583029 PMCID: PMC9793722 DOI: 10.2147/cmar.s389591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Research in mice showed that vitamin D receptor deficiency was correlated with an increased rate of non-melanoma skin cancer. Therapeutic supplemental vitamin D has also been reported to reduce cell growth in both melanoma and non-melanoma skin cancer. This paper aims to describe the existing research studies that discuss the potential and role of vitamin D in the management of skin cancer. Methods Articles were searched from three databases (PubMed, ScienceDirect, Scopus) and manual search. 18 articles were included. These were further divided into in vivo and in vitro studies. The literature search was based on the following Patients, Intervention, Control, and Outcome (PICO) criteria: Patients with any types of skin cancer; Vitamin D and their derivates as the intervention; placebo or standard regimen as control, and survival rate or response rate as primary outcome. Results From the three databases, we obtained 802 studies. Prior to screening of the literature obtained, several studies were excluded. In the eligibility assessment, seven studies were excluded due to their outcomes being not eligible for analysis, and two studies were excluded due to inaccessible full texts. The remaining 18 studies were included. Five studies had a clinical research design (randomized controlled trial or interventional study), which use vitamin D3 as vitamin D derivatives and the results showed that the administration of vitamin D3 reduces the proliferation of skin cancer cells. Similar results were also reported in studies with pre-clinical research designs, either in vivo or in vitro, where six were in vivo studies and nine studies were in vitro studies. Conclusion Our literature review revealed that that vitamin D derivatives, such as 1,25(OH)2D3 or 20(OH)D3 can effectively reduce the proliferation of skin cancer cells by contributing in the inhibition of cell growth and development, highlighting vitamin D's role as good prognostic factor.
Collapse
Affiliation(s)
- Eva Krishna Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Padjadjaran – Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia,Correspondence: Eva Krishna Sutedja, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jl. Pasteur No. 38, Bandung, West Java, 40161, Indonesia, Tel +62222032426 ext. 3449, Fax +62222032426, Email
| | - Tiara Rachmaputeri Arianto
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Padjadjaran – Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Ronny Lesmana
- Department of Physiology, Faculty of Medicine Universitas Padjadjaran – Dr. Hasan Sadikin Hospital Bandung, Bandung, West Java, Indonesia
| | - Oki Suwarsa
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Padjadjaran – Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Budi Setiabudiawan
- Department of Child Health, Faculty of Medicine Universitas Padjadjaran – Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
4
|
INK4 cyclin-dependent kinase inhibitors as potential prognostic biomarkers and therapeutic targets in hepatocellular carcinoma. Biosci Rep 2022; 42:231524. [PMID: 35771229 PMCID: PMC9284345 DOI: 10.1042/bsr20221082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The INK4 family is an important family of cyclin-dependent kinase inhibitors (CDKIs) and consists of CDKN2A, CDKN2B, CDKN2, and CDKN2D. Abnormal expression of CDKN2A has been reported in hepatocellular carcinoma (HCC) and is associated with the prognosis of patients and infiltration of immune cells. However, there is a lack of systematic research on the roles of the other INK4 family members in the diagnosis, prognosis, and immune regulation of HCC. Using online public databases and clinical samples, we comprehensively analyzed the INK4 family in HCC. All four INK4 proteins were overexpressed in HCC and correlated with advanced cancer stage and poor prognosis. INK4 expression accurately distinguished tumor from normal tissue, particularly CDKN2A and CDKN2C. The INK4 family participated in cell-cycle regulation and the DNA damage repair pathway, which inhibited genotoxic-induced apoptosis in tumorigenesis. INK4 proteins were positively correlated with the infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (CTLA-4, PD1, and PD-L1). CDKN2D had the highest correlation (correlation coefficient >0.3) with all the above-mentioned infiltrating immune cells and immune checkpoints, indicating that it may be useful as an immunotherapy target. The INK4 family was valuable for diagnosis and predicting the prognosis of HCC and participated in the occurrence, progression, and immune regulation of HCC, demonstrating its potential as a diagnostic and prognostic biomarker and therapeutic target in HCC.
Collapse
|
5
|
Shiragannavar VD, Gowda NGS, Santhekadur PK. Discovery of eukaryotic cellular receptor for withaferin A, a multifaceted drug from Withania somnifera plant. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
6
|
Gao F, Li P, Liu YQ, Chen Y. Association study of the serum 25(OH)D concentration and myopia in Chinese children. Medicine (Baltimore) 2021; 100:e26570. [PMID: 34190200 PMCID: PMC8257915 DOI: 10.1097/md.0000000000026570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
To analyze the serum 25 hydroxyvitamin D (25[OH]D) concentration in Chinese children with myopia and explore its correlation with myopia.From July to September in 2019, myopic children were collected from the Myopia Influencing Factors Survey Project. The basic information and vision related behaviors of the subjects were collected by questionnaire. The diopter of the children without dilated pupils was measured by the computerized refractometer. Meanwhile, 5 ml fasting venous blood samples were collected for the determination of serum 25(OH)D concentration.A total of 186 children were included in this study, including 90 males and 96 females, with an average age of 8 ± 3.26 years. The detection rate of serum 25(OH)D deficiency in myopic children was 65.59% (122/186). There was statistical significance in the detection rate of serum 25(OH)D deficiency in children with different myopic degrees (χ2 = 6.635, P = .010). The average serum 25(OH)D concentration in myopic children was 14.86 (10.67-18.96) ng/ml, and the difference of serum 25(OH)D concentration in children with different myopia degrees was statistically significant (Z = 20.23, P < .001). Logistic regression analysis showed that after controlling for gender, parental myopia, after-school class, and outdoor activities, the prevalence of developing moderate and high myopia was 2.051 times (95% confidence interval: 1.272-3.724) higher in the serum 25(OH)D deficiency group than in the serum 25(OH)D sufficiency group. There is a positive correlation between serum 25(OH)D concentration and the equivalent spherical degree of myopic children.The study found that serum 25(OH)D concentration is closely related to the prevalence of myopia in Chinese children. The results further support the conclusion that children with a higher level of serum 25(OH)D have a lower prevalence of moderate to high myopia. The results of this study provide a basis for further research into the relationship between vitamin D and visual development in children and its mechanisms.
Collapse
Affiliation(s)
- Fan Gao
- Zhoushan Hospital of Zhejiang ProvinceZhoushan, China
| | - Peng Li
- Zhoushan Center for Disease Control and Prevention, ZhoushanChina
| | - Ya-Qian Liu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Chen
- Zhoushan Center for Disease Control and Prevention, ZhoushanChina
| |
Collapse
|
7
|
Unsworth SP, Heisel CJ, Tingle CF, Rajesh N, Kish PE, Kahana A. Retinoic Acid Potentiates Orbital Tissues for Inflammation Through NF-κB and MCP-1. Invest Ophthalmol Vis Sci 2021; 61:17. [PMID: 32663289 PMCID: PMC7425727 DOI: 10.1167/iovs.61.8.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The orbit displays unique vulnerability to inflammatory conditions. The most prevalent of these conditions, thyroid eye disease (TED), occurs in up to 50% of patients with Graves’ disease (GD). Whereas the pathology of both TED and GD is driven by autoantibodies, it is unclear why symptoms manifest specifically in the orbit. Methods We performed retinoic acid treatment on both normal and TED patient–derived orbital fibroblasts (OFs) followed by mRNA and protein isolation, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay, RNA sequencing, and Western blot analyses. Results Both normal and TED patient–derived OFs display robust induction of monocyte chemoattractant protein 1 (MCP-1) upon retinoid treatment; TED OFs secrete significantly more MCP-1 than normal OFs. In addition, pretreatment of OFs with thiophenecarboxamide (TPCA-1) inhibits retinoid-induced MCP-1 induction, suggesting an NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)–dependent mechanism. We also found that treatment with cholecalciferol (vitamin D3) mitigates MCP-1 induction, likely because of competition between retinoic acid receptors (RARs) and vitamin D receptors (VDR) for their common binding partner retinoid nuclear receptors (RXRs). Conclusions Retinoids that naturally accumulate in orbital adipose tissue can act on orbital fibroblasts to induce the expression of inflammation-associated genes. These data suggest a potential role for retinoids in sensitizing the orbit to inflammation.
Collapse
|
8
|
Songyang Y, Song T, Shi Z, Li W, Yang S, Li D. Effect of vitamin D on malignant behavior of non-small cell lung cancer cells. Gene 2020; 768:145309. [PMID: 33197518 DOI: 10.1016/j.gene.2020.145309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the effects of vitamin D on the malignant behavior of A549 and NCI-H1975 tumor cells (proliferation, apoptosis, invasion, metastasis and drug resistance-related proteins) and the activation of the PI3K/AKT/mTOR signaling pathway, in order to evaluate the effect of vitamin D on the therapeutic action of cisplatin. METHOD In vitro cell experiments, CCK-8, flow cytometry, transwell, scratches, MTT and Western blot were used to reveal the effect of vitamin D on non-small cell lung cancer (NSCLC), and the expression of PI3K/AKT/mTOR signaling pathway was also detected. In vivo animal experiments, the nude mice were divided into four groups: control group, vitamin D treatment group, cisplatin treatment group and vitamin D + cisplatin combined treatment group. After tumor formation in vitro, tumor volume changes were calculated and tumor growth curves were drawn, collected tumor tissues for pathological sections. Western blot was used to detect the expression changes of drug-resistance related proteins in tumor tissues. Meanwhile, protein expression changes of PI3K/AKT/mTOR signaling pathway in tumor tissues were detected. RESULT In vitro experiments confirm Vitamin D can inhibit the proliferation, invasion and metastasis of non-small cell lung cancer cells A549 and NCI-H1975, promoting cell apoptosis, up-regulate the sensitivity of chemotherapy drugs. These effects of vitamin D may be correlated with the PI3K/AKT/mTOR signaling pathway. In vivo animal experiments, the changes in tumor volume, tumor inflammatory infiltration range, expression of drug-resistant related proteins and signaling pathway related proteins in mice were as follows: The vitamin D and cisplatin combined treatment group was significantly smaller than the control group. CONCLUSION Vitamin D can inhibit the proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC) cells A549 and NCI-H1975 and promote apoptosis, up-regulate the sensitivity of chemotherapy drugs. The effect of vitamin D on NSCLC cells A549 and NCI-H1975 was correlated with the PI3K/AKT/mTOR signaling pathway. Vitamin D also promotes the therapeutic effect of CDDP.
Collapse
Affiliation(s)
- Yiyan Songyang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianbao Song
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhan Shi
- Human Biology Program, University of Toronto, ON M5S 3J6, Canada
| | - Wen Li
- Renmin Hospital of Wuhan University, Department of Emergency, Wuhan, China
| | - Songyisha Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020; 25:molecules25143219. [PMID: 32679655 PMCID: PMC7397283 DOI: 10.3390/molecules25143219] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D and its active metabolites are important nutrients for human skeletal health. UV irradiation of skin converts 7-dehydrocholesterol into vitamin D3, which metabolized in the liver and kidneys into its active form, 1α,25-dihydroxyvitamin D3. Apart from its classical role in calcium and phosphate regulation, scientists have shown that the vitamin D receptor is expressed in almost all tissues of the body, hence it has numerous biological effects. These includes fetal and adult homeostatic functions in development and differentiation of metabolic, epidermal, endocrine, neurological and immunological systems of the body. Moreover, the expression of vitamin D receptor in the majority of immune cells and the ability of these cells to actively metabolize 25(OH)D3 into its active form 1,25(OH)2D3 reinforces the important role of vitamin D signaling in maintaining a healthy immune system. In addition, several studies have showed that vitamin D has important regulatory roles of mechanisms controlling proliferation, differentiation and growth. The administration of vitamin D analogues or the active metabolite of vitamin D activates apoptotic pathways, has antiproliferative effects and inhibits angiogenesis. This review aims to provide an up-to-date overview on the effects of vitamin D and its receptor (VDR) in regulating inflammation, different cell death modalities and cancer. It also aims to investigate the possible therapeutic benefits of vitamin D and its analogues as anticancer agents.
Collapse
|
10
|
Hu X, Niu L, Ma C, Huang Y, Yang X, Shi Y, Pan C, Liu J, Wang H, Li Q, Geng F, Tang X. Calcitriol decreases live
Porphyromonas gingivalis
internalized into epithelial cells and monocytes by promoting autophagy. J Periodontol 2019; 91:956-966. [DOI: 10.1002/jper.19-0510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xinyue Hu
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
- Department of Pediatric DentistryShenyang Stomatological Hospital Shenyang Liaoning Province China
| | - Li Niu
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Chunliang Ma
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Yuehua Huang
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
- Department of PeriodontologyHangzhou Dental Hospital Hangzhou Zhejiang Province China
| | - Xue Yang
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Yakun Shi
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Chunling Pan
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Jingbo Liu
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Hongyan Wang
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Qian Li
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Fengxue Geng
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| | - Xiaolin Tang
- Department of PeriodontologySchool of StomatologyChina Medical University Shenyang Liaoning Province China
| |
Collapse
|
11
|
NLS-RARα contributes to differentiation block and increased leukemogenic potential in vivo. Cell Signal 2019; 65:109431. [PMID: 31654721 DOI: 10.1016/j.cellsig.2019.109431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
The fusion oncogene, promyelocytic leukemia (PML)-retinoic acid receptor-α (RARα), is crucial for acute promyelocytic leukemia (APL) pathogenesis. Previous studies have reported that PML-RARα is cleaved by neutrophil elastase (NE), an early myeloid-specific serine protease, leading to translocation of the nuclear localization signal (NLS) of the PML protein to the N-terminal of RARα. This study was designed to evaluate the value of NLS-RARα in the early diagnosis of APL. To investigate the potential functional role of NLS-RARα in leukemogenesis, HL-60 and U937 cell lines were transfected with NLS-RARα lentivirus and negative control (LVNC). The results showed that the induced expression of NLS-RARα down-regulated expressions of CD11b, CD11c, and CD14 compared to the LVNC group induced by 1α, 25-dihydroxyvitamin D3(1,25(OH)2D3). This suggested that NLS-RARα overexpression inhibited granulocytic and monocytic differentiation of myeloid leukemia cells. In addition, Wright-Giemsa staining, flow cytometry, respiratory burst assay, and NBT reduction assay all confirmed the importance of NLS-RARα in differentiation. The mechanistic investigations revealed that induced NLS-RARα expression inhibited 1,25(OH)2D3-induced granulocytic differentiation by regulating the cell cycle regulators p19INK4D, p21WAF1/CIP1, cyclinD1, cyclin E1, and pRB. Furthermore, the cleaved protein NLS-RARα enhanced the oncogenicity of U937 cells in NOD/SCID mice. These findings collectively demonstrated that NLS-RARα blocked granulocytic and monocytic differentiation of myeloid leukemia cells by inhibiting the downstream targets of the RARα signal pathway and the cell cycle. This may provide a promising new target and method for diagnosing and treating APL.
Collapse
|
12
|
Baseline Serum Vitamin A and D Levels Determine Benefit of Oral Vitamin A&D Supplements to Humoral Immune Responses Following Pediatric Influenza Vaccination. Viruses 2019; 11:v11100907. [PMID: 31575021 PMCID: PMC6832482 DOI: 10.3390/v11100907] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Maximizing vaccine efficacy is critical, but previous research has failed to provide a one-size-fits-all solution. Although vitamin A and vitamin D supplementation studies have been designed to improve vaccine efficacy, experimental results have been inconclusive. Information is urgently needed to explain study discrepancies and to provide guidance for the future use of vitamin supplements at the time of vaccination. We conducted a randomized, blinded, placebo-controlled study of influenza virus vaccination and vitamin supplementation among 2 to 8 (inclusive) year old children over three seasons, including 2015–2016 (n = 9), 2016–2017 (n = 44), and 2017–2018 (n = 26). Baseline measurements of vitamins A and D were obtained from all participants. Measurements were of serum retinol, retinol-binding protein (RBP, a surrogate for retinol), and 25-hydroxyvitamin D (25(OH)D). Participants were stratified into two groups based on high and low incoming levels of RBP. Children received two doses of the seasonal influenza virus vaccine on days 0 and 28, either with an oral vitamin supplement (termed A&D; 20,000 IU retinyl palmitate and 2000 IU cholecalciferol) or a matched placebo. Hemagglutination inhibition (HAI) antibody responses were evaluated toward all four components of the influenza virus vaccines on days 0, 28, and 56. Our primary data were from season 2016–2017, as enrollment was highest in this season and all children exhibited homogeneous and negative HAI responses toward the Phuket vaccine at study entry. Responses among children who entered the study with insufficient or deficient levels of RBP and 25(OH)D benefited from the A&D supplement (p < 0.001 for the day 28 Phuket response), whereas responses among children with replete levels of RBP and 25(OH)D at baseline were unaffected or weakened (p = 0.02 for the day 28 Phuket response). High baseline RBP levels associated with high HAI titers, particularly for children in the placebo group (baseline RBP correlated positively with Phuket HAI titers on day 28, r = 0.6, p = 0.003). In contrast, high baseline 25(OH)D levels associated with weak HAI titers, particularly for children in the A&D group (baseline 25(OH)D correlated negatively with Phuket HAI titers on day 28, r = −0.5, p = 0.02). Overall, our study demonstrates that vitamin A&D supplementation can improve immune responses to vaccines when children are vitamin A and D-insufficient at baseline. Results provide guidance for the appropriate use of vitamins A and D in future clinical vaccine studies.
Collapse
|
13
|
Suares A, Tapia C, González-Pardo V. VDR agonists down regulate PI3K/Akt/mTOR axis and trigger autophagy in Kaposi's sarcoma cells. Heliyon 2019; 5:e02367. [PMID: 31497671 PMCID: PMC6722267 DOI: 10.1016/j.heliyon.2019.e02367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor (KSHV/vGPCR) is a key molecule in the pathogenesis of Kaposi's sarcoma. We have previously shown that 1α,25(OH)2D3 or its less-calcemic analog TX 527 inhibits the proliferation of endothelial cells expressing vGPCR, NF-κB activity and induces apoptosis in a VDR dependent manner. In this work, we further explored whether 1α,25(OH)2D3 or TX 527 regulates PI3K/Akt/mTOR axis and induces autophagy as part of its antineoplastic mechanism of action. Proliferation assays indicated that vGPCR cell number decreased in presence of LY294002 (PI3K/Akt inhibitor) likewise 1α,25(OH)2D3 or TX 527 (10 nM, 48 h). Also, Akt phosphorylation was found decreased in dose (0.1-100 nM) and time response studies (12-72 h) after both compounds treatments. In addition, decreased phosphorylated Akt was significantly observed in the nucleus. Moreover, regulation of Akt phosphorylation was NF-κB and VDR dependent. TNFAIP3/A20, an ubiquitin-editing enzyme, a direct NF-κB target gene and a negative regulator of Beclin-1, was down-regulated whereas Beclin-1 was up-regulated after 10 nM of 1α,25(OH)2D3 or TX 527 treatment. Decrement in Akt phosphorylation was accompanied by a reduced mTOR phosphorylation and an increase in the autophagy marker LC3-II. Since increment in autophagosomes not always indicates increment in autophagy activity, we used Chloroquine (CQ, 1 μM), an inhibitor of autophagy flow, to confirm autophagy after both VDR agonists treatment. In conclusion, VDR agonists, 1α,25(OH)2D3 or TX 527, inhibited PI3K/Akt/mTOR axis and induced autophagy in endothelial cells expressing vGPCR by a VDR-dependent mechanism.
Collapse
Affiliation(s)
- Alejandra Suares
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Argentina
- IFIBYNE – Instituto de Fisiología, Biología Molecular y Neurociencias (UBA-CONICET), Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cinthya Tapia
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Argentina
| |
Collapse
|
14
|
Penkert RR, Rowe HM, Surman SL, Sealy RE, Rosch J, Hurwitz JL. Influences of Vitamin A on Vaccine Immunogenicity and Efficacy. Front Immunol 2019; 10:1576. [PMID: 31379816 PMCID: PMC6651517 DOI: 10.3389/fimmu.2019.01576] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Vitamin A deficiencies and insufficiencies are widespread in developing countries, and may be gaining prevalence in industrialized nations. To combat vitamin A deficiency (VAD), the World Health Organization (WHO) recommends high-dose vitamin A supplementation (VAS) in children 6-59 months of age in locations where VAD is endemic. This practice has significantly reduced all-cause death and diarrhea-related mortalities in children, and may have in some cases improved immune responses toward pediatric vaccines. However, VAS studies have yielded conflicting results, perhaps due to influences of baseline vitamin A levels on VAS efficacy, and due to cross-regulation between vitamin A and related nuclear hormones. Here we provide a brief review of previous pre-clinical and clinical data, showing how VAD and VAS affect immune responses, vaccines, and infectious diseases. We additionally present new results from a VAD mouse model. We found that when VAS was administered to VAD mice at the time of vaccination with a pneumococcal vaccine (Prevnar-13), pneumococcus (T4)-specific antibodies were significantly improved. Preliminary data further showed that after challenge with Streptococcus pneumoniae, all mice that had received VAS at the time of vaccination survived. This was a significant improvement compared to vaccination without VAS. Data encourage renewed attention to vitamin A levels, both in developed and developing countries, to assist interpretation of data from vaccine research and to improve the success of vaccine programs.
Collapse
Affiliation(s)
- Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hannah M. Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Han SB, Jang J, Yang HK, Hwang JM, Park SK. Prevalence and risk factors of myopia in adult Korean population: Korea national health and nutrition examination survey 2013-2014 (KNHANES VI). PLoS One 2019; 14:e0211204. [PMID: 30677087 PMCID: PMC6345425 DOI: 10.1371/journal.pone.0211204] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To evaluate the prevalence and risk factors of myopia in adult Korean population. METHODS Population-based cross-sectional data of 3,398 subjects aged 19 to 49 years was obtained using the Korea National Health and Nutrition Examination Survey 2013-2014 (KNHANES VI). Data, including refractive errors and potential risk factors were analyzed. The prevalence and risk factors of myopia, low myopia, and high myopia-defined as a spherical equivalent (SEQ) ≤ -0.5 diopters (D), -6.0 D < SEQ <-0.5 D, and SEQ ≤ -6.0 D, respectively-were evaluated. RESULTS The prevalence of myopia and high myopia were 70.6 (standard error (SE), ±1.1)% and 8.0 (SE, ±0.6)%, respectively. In multivariable analysis, younger age, higher education (≥12 years), parental myopia, lower serum 25-hydroxyvitamin D (25(OH)D) concentration (<9 ng/mL), longer time spent on near work (≥3 hours/day), and higher white blood cell (WBC) count (5-8.9 x 103) were associated with increased prevalence of both myopia and high myopia. Serum 25(OH)D concentration of ≥ 9 ng/ml was significantly associated with decreased prevalence of high myopia in participants with near work of ≥3 hours/day, although the effect was not significant in myopia and low myopia. CONCLUSIONS The prevalence of myopia and high myopia in Korean adults was substantially high, which increased with decreasing age. In addition to parental myopia, the serum 25(OH)D concentration, near work and inflammation reflected by WBC counts may be associated with myopia.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University Graduate School of Medicine, Chuncheon, Korea
| | - Jieun Jang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Kyung Yang
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Min Hwang
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (J-MH); (SKP)
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (J-MH); (SKP)
| |
Collapse
|
16
|
Hutabarat M, Wibowo N, Obermayer-Pietsch B, Huppertz B. Impact of vitamin D and vitamin D receptor on the trophoblast survival capacity in preeclampsia. PLoS One 2018; 13:e0206725. [PMID: 30408071 PMCID: PMC6226106 DOI: 10.1371/journal.pone.0206725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Preeclampsia and intra-uterine growth restriction (IUGR) are major health problems during pregnancy affecting both mother and child. Defective placental development and failure of trophoblast differentiation during pregnancy are important aspects in the pathogenesis of both syndromes. Recent studies have shown that autophagy is involved in the trophoblast survival capacity. As vitamin D has a central role in many cellular processes, we studied the relation of vitamin D and autophagy in those processes of preeclampsia and IUGR. METHODS Serum and placental samples from four groups of cases; normal term, IUGR, early-onset and late-onset preeclampsia, were analyzed for 25(OH)D vitamin D, sFLT1, PGF, LGALS13 in serum and vitamin D receptor (VDR), MAP1LC3B and BECN1 in placental tissues. RESULTS There was a significant difference in the sFLT1/PGF ratio in preeclamptic cases compared to controls and IUGR. There was a significant difference between these groups in the MAP1LC3B/BECN1 ratio as marker of the trophoblast survival capacity with a significantly reduced ratio in villous trophoblast of early-onset preeclampsia. Maternal vitamin D deficiency was found in all pathological pregnancies combined with significantly reduced staining levels of placental VDR in IUGR. Finally, there was a strong and significant negative correlation between the survival capacity (MAP1LC3B/BECN1) and both maternal vitamin D and placental VDR in the preeclampsia groups. CONCLUSION Vitamin D and intracellular VDR are strongly related to the trophoblast survival capacity in preeclampsia.
Collapse
Affiliation(s)
- Martina Hutabarat
- Postgraduate Department, Doctorate Program Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- * E-mail:
| | - Noroyono Wibowo
- Department of Obstetric and Gynecology, Division of Maternal Fetal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med 2018; 50:1-14. [PMID: 29657326 PMCID: PMC5938036 DOI: 10.1038/s12276-018-0038-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Vitamin D, traditionally known as an essential nutrient, is a precursor of a potent steroid hormone that regulates a broad spectrum of physiological processes. In addition to its classical roles in bone metabolism, epidemiological, preclinical, and cellular research during the last decades, it revealed that vitamin D may play a key role in the prevention and treatment of many extra-skeletal diseases such as cancer. Vitamin D, as a prohormone, undergoes two-step metabolism in liver and kidney to produce a biologically active metabolite, calcitriol, which binds to the vitamin D receptor (VDR) for the regulation of expression of diverse genes. In addition, recent studies have revealed that vitamin D can also be metabolized and activated through a CYP11A1-driven non-canonical metabolic pathway. Numerous anticancer properties of vitamin D have been proposed, with diverse effects on cancer development and progression. However, accumulating data suggest that the metabolism and functions of vitamin D are dysregulated in many types of cancer, conferring resistance to the antitumorigenic effects of vitamin D and thereby contributing to the development and progression of cancer. Thus, understanding dysregulated vitamin D metabolism and function in cancer will be critical for the development of promising new strategies for successful vitamin D-based cancer therapy.
Collapse
Affiliation(s)
- Sang-Min Jeon
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Eun-Ae Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| |
Collapse
|
18
|
Abdel-Mohsen MA, El-Braky AAA, Ghazal AAER, Shamseya MM. Autophagy, apoptosis, vitamin D, and vitamin D receptor in hepatocellular carcinoma associated with hepatitis C virus. Medicine (Baltimore) 2018; 97:e0172. [PMID: 29561429 PMCID: PMC5895342 DOI: 10.1097/md.0000000000010172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aims of this study were to investigate the interplay between autophagy and apoptosis and to investigate the association between both of autophagy and apoptosis and vitamin D and its receptor in hepatitis C virus (HCV) viral infection and its implication in the progression into hepatocellular carcinoma (HCC).A cross-sectional study where serum levels of microtubule-associated protein 1A/1B-light chain 3 (LC3); marker of autophagy, caspase-3; marker of apoptosis, vitamin D3 and vitamin D receptor (VDR) were measured in healthy subjects as well as HCV and HCV-HCC patients using enzyme-linked immunosorbent assay technique.Collectively, the liver profile revealed hepatic dysfunctions in HCV patients with or without HCC. A significant reduction in the serum concentration levels LC3 and caspase-3 were observed referring to the down regulation of autophagy and host-mediated apoptosis in HCV patients with or without HCC. Deficiency of vitamin D and decreased levels of its receptor were observed in HCV and HCV-HCC patients.The perturbation in vitamin D/VDR axis, which modulates both of autophagy and apoptosis in HCV infection, may point out to its involvement and implication in the pathogenesis of HCV infection and the development of HCV-related HCC. Therefore, supplementation with vitamin D may not be the only solution to restore the vital biological functions of vitamin D but VDR-targeted therapy may be of great importance in this respect.
Collapse
Affiliation(s)
| | | | | | - Mohammed Mohammed Shamseya
- Department of Clinical and Experimental Internal Medicine, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. J Transl Med 2017; 97:706-724. [PMID: 28218743 PMCID: PMC5446295 DOI: 10.1038/labinvest.2017.3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.
Collapse
|
20
|
Dasari S, Ali SM, Zheng G, Chen A, Dontaraju VS, Bosland MC, Kajdacsy-Balla A, Munirathinam G. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget 2017; 8:57782-57799. [PMID: 28915711 PMCID: PMC5593683 DOI: 10.18632/oncotarget.17997] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/15/2017] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Syed M Ali
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | | | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| |
Collapse
|
21
|
Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci U S A 2017; 114:E2186-E2194. [PMID: 28242709 PMCID: PMC5358377 DOI: 10.1073/pnas.1615015114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epidemiological evidence suggests that vitamin D can protect women from developing breast cancer (BC). This study reveals that vitamin D and its receptor regulate autophagy in both normal mammary epithelial cells and luminal BCs, and suggests a potential mechanism underlying the link between vitamin D levels and BC risk. In addition, this work suggests that vitamin D receptor ligands could be exploited therapeutically for the treatment of a significant subset of BCs. Women in North America have a one in eight lifetime risk of developing breast cancer (BC), and a significant proportion of these individuals will develop recurrent BC and will eventually succumb to the disease. Metastatic, therapy-resistant BC cells are refractory to cell death induced by multiple stresses. Here, we document that the vitamin D receptor (VDR) acts as a master transcriptional regulator of autophagy. Activation of the VDR by vitamin D induces autophagy and an autophagic transcriptional signature in BC cells that correlates with increased survival in patients; strikingly, this signature is present in the normal mammary gland and is progressively lost in patients with metastatic BC. A number of epidemiological studies have shown that sufficient vitamin D serum levels might be protective against BC. We observed that dietary vitamin D supplementation in mice increases basal levels of autophagy in the normal mammary gland, highlighting the potential of vitamin D as a cancer-preventive agent. These findings point to a role of vitamin D and the VDR in modulating autophagy and cell death in both the normal mammary gland and BC cells.
Collapse
|
22
|
Pan CW, Qian DJ, Saw SM. Time outdoors, blood vitamin D status and myopia: a review. Photochem Photobiol Sci 2017; 16:426-432. [DOI: 10.1039/c6pp00292g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myopia is a major public health concern throughout the world but whether vitamin D played a role in myopia development remains unknown.
Collapse
Affiliation(s)
- Chen-Wei Pan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases
- School of Public Health
- Medical College of Soochow University
- Suzhou
- China
| | - Deng-Juan Qian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases
- School of Public Health
- Medical College of Soochow University
- Suzhou
- China
| | - Seang-Mei Saw
- Singapore Eye Research Institute
- Singapore
- Saw Swee Hock School of Public Health
- National University of Singapore
- Singapore
| |
Collapse
|
23
|
Kwon JW, Choi JA, La TY. Serum 25-hydroxyvitamin D level is associated with myopia in the Korea national health and nutrition examination survey. Medicine (Baltimore) 2016; 95:e5012. [PMID: 27861336 PMCID: PMC5120893 DOI: 10.1097/md.0000000000005012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this article was to assess the associations of serum 25-hydroxyvitamin D [25(OH)D] and daily sun exposure time with myopia in Korean adults.This study is based on the Korea National Health and Nutrition Examination Survey (KNHANES) of Korean adults in 2010-2012; multiple logistic regression analyses were performed to examine the associations of serum 25(OH)D levels and daily sun exposure time with myopia, defined as spherical equivalent ≤-0.5D, after adjustment for age, sex, household income, body mass index (BMI), exercise, intraocular pressure (IOP), and education level. Also, multiple linear regression analyses were performed to examine the relationship between serum 25(OH)D levels with spherical equivalent after adjustment for daily sun exposure time in addition to the confounding factors above.Between the nonmyopic and myopic groups, spherical equivalent, age, IOP, BMI, waist circumference, education level, household income, and area of residence differed significantly (all P < 0.05). Compared with subjects with daily sun exposure time <2 hour, subjects with sun exposure time ≥2 to <5 hour, and those with sun exposure time ≥5 hour had significantly less myopia (P < 0.001). In addition, compared with subjects were categorized into quartiles of serum 25(OH)D, the higher quartiles had gradually lower prevalences of myopia after adjustment for confounding factors (P < 0.001). In multiple linear regression analyses, spherical equivalent was significantly associated with serum 25(OH)D concentration after adjustment for confounding factors (P = 0.002).Low serum 25(OH)D levels and shorter daily sun exposure time may be independently associated with a high prevalence of myopia in Korean adults. These data suggest a direct role for vitamin D in the development of myopia.
Collapse
|
24
|
Goswami R, Kaplan MH. Essential vitamins for an effective T cell response. World J Immunol 2016; 6:39-59. [DOI: 10.5411/wji.v6.i1.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
25
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1179] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF. Autophagy in bone: Self-eating to stay in balance. Ageing Res Rev 2015; 24:206-17. [PMID: 26318060 DOI: 10.1016/j.arr.2015.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022]
Abstract
Autophagy, a major catabolic pathway responsible of the elimination of damaged proteins and organelles, is now recognized as an anti-aging process. In addition to its basal role in cell homeostasis, autophagy is also a stress-responsive mechanism for survival purposes. Here, we review recent literature to highlight the autophagy role in the different bone cell types, i.e., osteoblasts, osteoclasts and osteocytes. We also discuss the effects of autophagy modulators in bone physiology and of bone anabolic compounds in autophagy. Finally, we analyzed studies regarding bone cell autophagy-deficient mouse models to obtain a more general view on how autophagy modulates bone physiology and pathophysiology, particularly during aging.
Collapse
Affiliation(s)
- Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France.
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Olivier Camuzard
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France; Service de Chirurgie Réparatrice et de la main, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France
| |
Collapse
|
27
|
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. PHARMACEUTICAL BIOLOGY 2015; 53:1399-1434. [PMID: 25856702 DOI: 10.3109/13880209.2014.988274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo. OBJECTIVE The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy. METHODS A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar. RESULTS AND CONCLUSION Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agents.
Collapse
|
28
|
Wang Y, Jin W, Jia X, Luo R, Tan Y, Zhu X, Yang X, Wang X, Wang K. Transcriptional repression of CDKN2D by PML/RARα contributes to the altered proliferation and differentiation block of acute promyelocytic leukemia cells. Cell Death Dis 2014; 5:e1431. [PMID: 25275592 PMCID: PMC4649503 DOI: 10.1038/cddis.2014.388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/14/2023]
Abstract
Cell proliferation and differentiation are highly coordinated processes. These two processes are disrupted during leukemogenesis, resulting in differentiation block and uncontrolled proliferation in leukemia. To understand the mechanisms disrupting the coordination between the two processes in acute promyelocytic leukemia (APL), we investigated the regulatory mechanism of the negative cell cycle regulator CDKN2D by the promyelocytic leukemia/retinoic acid receptor α (PML/RARα) fusion protein and the role of CDKN2D in cell differentiation and proliferation. We found that CDKN2D expression in APL cells was significantly lower than that in normal promyelocytes. By chromatin immunoprecipitation and luciferase reporter assays, we showed that PML/RARα directly bound to and inhibited the transactivation of the CDKN2D promoter. Further evidence by the truncated and mutated CDKN2D promoters revealed that the everted repeat 8 (ER8) motif on the promoter was the binding site of PML/RARα. Forced expression of CDKN2D induced G0/G1 phase arrest and partial granulocytic differentiation in APL-derived NB4 cells, suggesting the function of CDKN2D in regulating both cell proliferation and granulocytic differentiation. Furthermore, all-trans retinoic acid (ATRA) significantly induced CDKN2D expression in APL cells and knockdown of CDKN2D expression during ATRA treatment partially blocked the ATRA-induced differentiation and cell cycle arrest. Collectively, our data indicate that CDKN2D repression by PML/RARα disrupts both cell proliferation and differentiation in the pathogenesis of APL, and induced expression of CDKN2D by ATRA alleviates the disruption of both processes to ensure treatment efficiency. This study provides a mechanism for coupling proliferation and differentiation in leukemic cells through the action of CDKN2D.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - W Jin
- 1] State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China [2] Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China [3] Sino-French Research Center for Life Sciences and Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Jia
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - R Luo
- School of Life Sciences/Center for Computational Systems Biology, Fudan University, Shanghai, 200433, China
| | - Y Tan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Zhu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Yang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - X Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - K Wang
- 1] State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China [2] Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China [3] Sino-French Research Center for Life Sciences and Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
29
|
Dreidax D, Bannert S, Henrich KO, Schröder C, Bender S, Oakes CC, Lindner S, Schulte JH, Duffy D, Schwarzl T, Saadati M, Ehemann V, Benner A, Pfister S, Fischer M, Westermann F. p19-INK4d inhibits neuroblastoma cell growth, induces differentiation and is hypermethylated and downregulated in MYCN-amplified neuroblastomas. Hum Mol Genet 2014; 23:6826-37. [PMID: 25104850 DOI: 10.1093/hmg/ddu406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uncontrolled cell cycle entry, resulting from deregulated CDK-RB1-E2F pathway activity, is a crucial determinant of neuroblastoma cell malignancy. Here we identify neuroblastoma-suppressive functions of the p19-INK4d CDK inhibitor and uncover mechanisms of its repression in high-risk neuroblastomas. Reduced p19-INK4d expression was associated with poor event-free and overall survival and neuroblastoma risk factors including amplified MYCN in a set of 478 primary neuroblastomas. High MYCN expression repressed p19-INK4d mRNA and protein levels in different neuroblastoma cell models with conditional MYCN expression. MassARRAY and 450K methylation analyses of 105 primary neuroblastomas uncovered a differentially methylated region within p19-INK4d. Hypermethylation of this region was associated with reduced p19-INK4d expression. In accordance, p19-INK4d expression was activated upon treatment with the demethylating agent, 2'-deoxy-5-azacytidine, in neuroblastoma cell lines. Ectopic p19-INK4d expression decreased viability, clonogenicity and the capacity for anchorage-independent growth of neuroblastoma cells, and shifted the cell cycle towards the G1/0 phase. p19-INK4d also induced neurite-like processes and markers of neuronal differentiation. Moreover, neuroblastoma cell differentiation, induced by all-trans retinoic acid or NGF-NTRK1-signaling, activated p19-INK4d expression. Our findings pinpoint p19-INK4d as a neuroblastoma suppressor and provide evidence for MYCN-mediated repression and for epigenetic silencing of p19-INK4d by DNA hypermethylation in high-risk neuroblastomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - David Duffy
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Ireland
| | - Maral Saadati
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Ehemann
- Department of Pathology, University of Heidelberg, Heidelberg, Germany and
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Matthias Fischer
- Department of Pediatric Oncology and Center for Molecular Medicine Cologne (CMMC), University Children's Hospital, Cologne, Germany
| | | |
Collapse
|
30
|
Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors. Oncogene 2014; 34:2887-96. [PMID: 25043304 DOI: 10.1038/onc.2014.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/08/2014] [Accepted: 06/09/2014] [Indexed: 01/27/2023]
Abstract
While DNA damage response pathways are well characterized in cancer cells, much less is known about their status in normal cells. These pathways protect tumour cells from DNA damage and replication stress and consequently present potential therapeutic targets. Here we characterize the response of human telomerase reverse transcriptase (hTERT)-immortalized normal human urothelial (NHU) and bladder cancer cell lines to agents that disrupt the DNA damage response. Effects of replication and DNA damage response inhibitors on cell cycle progression, checkpoint induction and apoptosis were analysed in hTERT-NHU and bladder cancer cell lines. The primary signalling cascade responding to replication stress in malignant cells (ataxia telangiectasia-mutated (ATM) and Rad3-related-checkpoint kinase 1 (ATR-CHK1)) is not activated in hTERT-NHU cells after treatment with a replication inhibitor and these cells do not depend upon CHK1 for protection from apoptosis during replication stress. Instead, ATM signalling is rapidly activated under these conditions. Intriguingly, an ATM inhibitor suppressed S-phase checkpoint activation after exposure to replication inhibitors and stopped entry of cells into S-phase indicating G1 checkpoint activation. Consistent with this, hTERT-NHU cells treated with the ATM inhibitor showed increased levels of cyclin-dependent kinase inhibitor p19(INK4D), reduced levels of cyclin D1 and CDK4, and reduced phosphorylation of the retinoblastoma protein. In contrast, a bladder cancer cell line cotreated with ATM and replication inhibitors progressed more slowly through S phase and showed a marked increase in apoptosis. Taken together, our findings suggest that ATM and CHK1 signalling cascades have different roles in tumour and normal epithelial cells, confirming these as promising therapeutic targets.
Collapse
|
31
|
Ogara MF, Belluscio LM, de la Fuente V, Berardino BG, Sonzogni SV, Byk L, Marazita M, Cánepa ET. CDK5-mediated phosphorylation of p19INK4d avoids DNA damage-induced neurodegeneration in mouse hippocampus and prevents loss of cognitive functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1309-24. [PMID: 24703879 DOI: 10.1016/j.bbamcr.2014.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023]
Abstract
DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions.
Collapse
Affiliation(s)
- María Florencia Ogara
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Laura M Belluscio
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Silvina V Sonzogni
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Laura Byk
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Mariela Marazita
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Ciudad Universitaria, Pabellón II piso 4, 1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
32
|
p19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation. Biochim Biophys Acta Gen Subj 2014; 1840:2171-83. [PMID: 24667034 DOI: 10.1016/j.bbagen.2014.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND During evolution, organisms with renewable tissues have developed mechanisms to prevent tumorigenesis, including cellular senescence and apoptosis. Cellular senescence is characterized by a permanent cell cycle arrest triggered by both endogenous stress and exogenous stress. The p19INK4d, a member of the family of cyclin-dependent kinase inhibitors (INK4), plays an important role on cell cycle regulation and in the cellular DNA damage response. We hypothesize that p19INK4d is a potential factor involved in the onset and/or maintenance of the senescent state. METHODS Senescence was confirmed by measuring the cell cycle arrest and the senescence-associated β-galactosidase activity. Changes in p19INK4d expression and localization during senescence were determined by Western blot and immunofluorescence assays. Chromatin condensation was measured by microccocal nuclease digestion and histone salt extraction. RESULTS The data presented here show for the first time that p19INK4d expression is up-regulated by different types of senescence. Changes in senescence-associated hallmarks were driven by modulation of p19 expression indicating a direct link between p19INK4d induction and the establishment of cellular senescence. Following a senescence stimulus, p19INK4d translocates to the nucleus and tightly associates with chromatin. Moreover, reduced levels of p19INK4d impair senescence-related global genomic heterochromatinization. Analysis of p19INK4d mRNA and protein levels in tissues from differently aged mice revealed an up-regulation of p19INK4d that correlates with age. CONCLUSION We propose that p19INK4d participates in the cellular mechanisms that trigger senescence by contributing to chromatin compaction. GENERAL SIGNIFICANCE This study provides novel insights into the dynamics process of cellular senescence, a central tumor suppressive mechanism.
Collapse
|
33
|
Larriba MJ, González-Sancho JM, Bonilla F, Muñoz A. Interaction of vitamin D with membrane-based signaling pathways. Front Physiol 2014; 5:60. [PMID: 24600406 PMCID: PMC3927071 DOI: 10.3389/fphys.2014.00060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/30/2014] [Indexed: 12/28/2022] Open
Abstract
Many studies in different biological systems have revealed that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) modulates signaling pathways triggered at the plasma membrane by agents such as Wnt, transforming growth factor (TGF)-β, epidermal growth factor (EGF), and others. In addition, 1α,25(OH)2D3 may affect gene expression by paracrine mechanisms that involve the regulation of cytokine or growth factor secretion by neighboring cells. Moreover, post-transcriptional and post-translational effects of 1α,25(OH)2D3 add to or overlap with its classical modulation of gene transcription rate. Together, these findings show that vitamin D receptor (VDR) cannot be considered only as a nuclear-acting, ligand-modulated transcription factor that binds to and controls the transcription of target genes. Instead, available data support the view that much of the complex biological activity of 1α,25(OH)2D3 resides in its capacity to interact with membrane-based signaling pathways and to modulate the expression and secretion of paracrine factors. Therefore, we propose that future research in the vitamin D field should focus on the interplay between 1α,25(OH)2D3 and agents that act at the plasma membrane, and on the analysis of intercellular communication. Global analyses such as RNA-Seq, transcriptomic arrays, and genome-wide ChIP are expected to dissect the interactions at the gene and molecular levels.
Collapse
Affiliation(s)
- María Jesús Larriba
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| | - Félix Bonilla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda Majadahonda, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
34
|
Gemelli C, Martello A, Montanari M, Zanocco Marani T, Salsi V, Zappavigna V, Parenti S, Vignudelli T, Selmi T, Ferrari S, Grande A. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process. Exp Cell Res 2013; 319:3201-13. [DOI: 10.1016/j.yexcr.2013.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/06/2013] [Accepted: 08/14/2013] [Indexed: 12/20/2022]
|
35
|
Epple LM, Dodd RD, Merz AL, Dechkovskaia AM, Herring M, Winston BA, Lencioni AM, Russell RL, Madsen H, Nega M, Dusto NL, White J, Bigner DD, Nicchitta CV, Serkova NJ, Graner MW. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One 2013; 8:e73267. [PMID: 24039668 PMCID: PMC3748289 DOI: 10.1371/journal.pone.0073267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics.
Collapse
Affiliation(s)
- Laura M. Epple
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rebecca D. Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrea L. Merz
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anjelika M. Dechkovskaia
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew Herring
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Benjamin A. Winston
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Alex M. Lencioni
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rae L. Russell
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Helen Madsen
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Meheret Nega
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Nathaniel L. Dusto
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jason White
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Darell D. Bigner
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher V. Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalie J. Serkova
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Anesthesiology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael W. Graner
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Leyssens C, Verlinden L, Verstuyf A. Antineoplastic effects of 1,25(OH)2D3 and its analogs in breast, prostate and colorectal cancer. Endocr Relat Cancer 2013; 20:R31-47. [PMID: 23319494 DOI: 10.1530/erc-12-0381] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is mostly known for its importance in the maintenance of calcium and phosphate homeostasis. However, next to its classical effects on bone, kidney and intestine, 1,25(OH)2D3 also exerts antineoplastic effects on various types of cancer. The use of 1,25(OH)2D3 itself as treatment against neoplasia is hampered by its calcemic side effects. Therefore, 1,25(OH)2D3-derived analogs were developed that are characterized by lower calcemic side effects and stronger antineoplastic effects. This review mainly focuses on the role of 1,25(OH)2D3 in breast, prostate and colorectal cancer (CRC) and the underlying signaling pathways. 1,25(OH)2D3 and its analogs inhibit proliferation, angiogenesis, migration/invasion and induce differentiation and apoptosis in malignant cell lines. Moreover, prostaglandin synthesis and Wnt/b-catenin signaling are also influenced by 1,25(OH)2D3 and its analogs. Human studies indicate an inverse association between serum 25(OH)D3 values and the incidence of certain cancer types. Given the literature, it appears that the epidemiological link between vitamin D3 and cancer is the strongest for CRC, however more intervention studies and randomized placebo-controlled trials are needed to unravel the beneficial dose of 1,25(OH)2D3 and its analogs to induce antineoplastic effects.
Collapse
Affiliation(s)
- Carlien Leyssens
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, 3000 Leuven, Belgium
| | | | | |
Collapse
|
37
|
Marion-Letellier R, Raman M, Savoye G, Déchelotte P, Ghosh S. Nutrient modulation of autophagy: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2013; 19:205-12. [PMID: 22573543 DOI: 10.1002/ibd.23001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During nutrient deprivation, autophagy provides the constituents required to maintain the metabolism essential for survival. Recently, genome-wide association studies have identified genetic determinants for susceptibility to Crohn's disease (CD) such as ATG16L1 and IRGM that are involved in the autophagy pathway. Both disease-carrying NOD2 mutations and ATG16L1 mutations may result in impairment of autophagy. Impairment in autophagy results in impaired clearance of microbes. Ileal CD is associated with Paneth cell loss of function such as decreased production of α-defensins, which may arise from mutations in NOD2 or autophagy genes. Nutrients are able to modify several cellular pathways and in particular autophagy. We summarize the contribution of a variety of dietary components to activate autophagy. Understanding the crosstalk between nutrients and autophagy in the intestine may provide novel targets that have therapeutics potential in intestinal inflammation. Nutrient activation of autophagy may contribute to restoring the Paneth cell loss of function in ileal CD.
Collapse
|
38
|
Suh YG, Kim JK, Byun JS, Yi HS, Lee YS, Eun HS, Kim SY, Han KH, Lee KS, Duester G, Friedman SL, Jeong WI. CD11b(+) Gr1(+) bone marrow cells ameliorate liver fibrosis by producing interleukin-10 in mice. Hepatology 2012; 56:1902-12. [PMID: 22544759 PMCID: PMC3427419 DOI: 10.1002/hep.25817] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Clinical trials and animal models suggest that infusion of bone marrow cells (BMCs) is effective therapy for liver fibrosis, but the underlying mechanisms are obscure, especially those associated with early effects of BMCs. Here, we analyzed the early impact of BMC infusion and identified the subsets of BMCs showing antifibrotic effects in mice with carbon tetrachloride-induced liver fibrosis. An interaction between BMCs and activated hepatic stellate cells (HSCs) was investigated using an in vitro coculturing system. Within 24 hours, infused BMCs were in close contact with activated HSCs, which was associated with reduced liver fibrosis, enhanced hepatic expression of interleukin (IL)-10, and expanded regulatory T cells but decreased macrophage infiltration in the liver at 24 hours after BMC infusion. In contrast, IL-10-deficient (IL-10(-/-) ) BMCs failed to reproduce these effects in fibrotic livers. Intriguingly, in isolated cells, CD11b(+) Gr1(high) F4/80(-) and CD11b(+) Gr1(+) F4/80(+) BMCs expressed more IL-10 after coculturing with activated HSCs, leading to suppressed expression of collagen and α-smooth muscle actin in HSCs. Moreover, these effects were either enhanced or abrogated, respectively, when BMCs were cocultured with IL-6(-/-) and retinaldehyde dehydrogenase 1(-/-) HSCs. Similar to murine data, human BMCs expressed more IL-10 after coculturing with human HSC lines (LX-2 or hTERT), and serum IL-10 levels were significantly elevated in patients with liver cirrhosis after autologous BMC infusion. CONCLUSION Activated HSCs increase IL-10 expression in BMCs (CD11b(+) Gr1(high) F4/80(-) and CD11b(+) Gr1(+) F4/80(+) cells), which in turn ameliorates liver fibrosis. Our findings could enhance the design of BMC therapy for liver fibrosis.
Collapse
Affiliation(s)
- Yang-Gun Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Seok Byun
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyon-Seung Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young-Sun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyuk Soo Eun
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - So Yeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kwan Sik Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Gregg Duester
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York, USA
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
39
|
Nair-Shalliker V, Fenech M, Forder PM, Clements MS, Armstrong BK. Sunlight and vitamin D affect DNA damage, cell division and cell death in human lymphocytes: a cross-sectional study in South Australia. Mutagenesis 2012; 27:609-14. [DOI: 10.1093/mutage/ges026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Bristol ML, Di X, Beckman MJ, Wilson EN, Henderson SC, Maiti A, Fan Z, Gewirtz DA. Dual functions of autophagy in the response of breast tumor cells to radiation: cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D 3. Autophagy 2012; 8:739-53. [PMID: 22498493 DOI: 10.4161/auto.19313] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D 3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D 3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D 3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D 3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D 3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D 3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy.
Collapse
Affiliation(s)
- Molly L Bristol
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Carlberg C, Molnár F, Mouriño A. Vitamin D receptor ligands: the impact of crystal structures. Expert Opin Ther Pat 2012; 22:417-35. [PMID: 22449247 DOI: 10.1517/13543776.2012.673590] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the past years, the biologically active form of vitamin D(3), 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), has received large appreciation due to the broad physiological impact of the hormone and its nuclear receptor, the transcription factor vitamin D receptor (VDR). Recently, the understanding of VDR actions has progressed greatly, due to VDR crystal structures with various ligands. AREAS COVERED This review will present and discuss new synthetic agonistic and antagonistic 1α,25(OH)(2)D(3) analogs in the context of the recent insights provided by VDR crystal structures. EXPERT OPINION During the last 5 years, a large number of new 1α,25(OH)(2)D(3) analogs, many of which have an interesting functional profile, have been patented. Moreover, for a surprisingly high number of 1α,25(OH)(2)D(3) analogs, the crystal structure data of their complex with the VDR is available. This structural information provides important insight into the functional potential of the VDR ligands and explains their agonistic and antagonistic action. However, so far, only for a few VDR ligands, a rational design, based on crystal structure information, has been applied. The design of future analogs may also take the specificity of co-factor interaction into account, in order to create selective VDR modulators.
Collapse
Affiliation(s)
- Carsten Carlberg
- University of Eastern Finland, School of Medicine, Institute of Biomedicine, Kuopio, Finland.
| | | | | |
Collapse
|
42
|
Abstract
Vitamin D has emerged as a pleiotropic regulator of human physiology, and recent work has revealed that it has several roles in control of human immune system function. Vitamin D was originally characterized for its role in calcium homeostasis, and the active form, 1,25-dihydroxyvitamin D (1,25D), can be produced in the kidney by 1α-hydroxylation of circulating 25-hydroxyvitamin D catalyzed by the enzyme CYP27B1. Renal CYP27B1 expression is regulated by calcium regulatory inputs, and 1,25D produced in the kidney was thought to function largely as an endocrine hormone. However, it is now clear that CYP27B1 is expressed in numerous tissues, and that 1,25D acts at several sites in the body in an intracrine or paracrine manner. In particular, both CYP27B1 and the vitamin D receptor (VDR) are expressed in several cell types in the immune system, where CYP27B1 production is controlled by a number of immune-specific inputs. Recent research has opened several windows on the molecular mechanisms by which 1,25D signaling regulates both innate and adaptive immune responses in humans. Moreover, intervention trials are beginning to provide evidence that vitamin D supplementation can bolster clinical responses to infection. This review will discuss recent developments in our understanding of how immune signaling controls local vitamin D metabolism and how, in turn, the 1,25D-bound VDR modulates immune system function. A particular emphasis will be placed on the interplay between vitamin D signaling and signaling through different classes of pattern recognition receptors in the production of antimicrobial peptides during innate immune responses to microbial infection.
Collapse
Affiliation(s)
- John H White
- Department of Physiology, McGill University, McIntyre Bldg., Rm. 1112, 3655 Drummond St, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
43
|
Nair-Shalliker V, Armstrong BK, Fenech M. Does vitamin D protect against DNA damage? Mutat Res 2012; 733:50-7. [PMID: 22366026 DOI: 10.1016/j.mrfmmm.2012.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/05/2012] [Accepted: 02/13/2012] [Indexed: 01/05/2023]
Abstract
Vitamin D is a secosteroid best known for its role in maintaining bone and muscle health. Adequate levels of vitamin D may also be beneficial in maintaining DNA integrity. This role of vitamin D can be divided into a primary function that prevents damage from DNA and a secondary function that regulates the growth rate of cells. The potential for vitamin D to reduce oxidative damage to DNA in a human has been suggested by clinical trial where vitamin D supplementation reduced 8-hydroxy-2'-deoxyguanosine, a marker of oxidative damage, in colorectal epithelial crypt cells. Studies in animal models and in different cell types have also shown marked reduction in oxidative stress damage and chromosomal aberrations, prevention of telomere shortening and inhibition of telomerase activity following treatment with vitamin D. The secondary function of vitamin D in preventing DNA damage includes regulation of the poly-ADP-ribose polymerase activity in the DNA damage response pathway involved in the detection of DNA lesions. It is also able to regulate the cell cycle to prevent the propagation of damaged DNA, and to regulate apoptosis to promote cell death. Vitamin D may contribute to prevention of human colorectal cancer, though there is little evidence to suggest that prevention of DNA damage mediates this effect, if real. Very limited human data mean that the intake of vitamin D required to minimise DNA damage remains uncertain.
Collapse
Affiliation(s)
- Visalini Nair-Shalliker
- Cancer Epidemiology Research Unit, Cancer Council New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
44
|
Abstract
The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
Collapse
|
45
|
Heikkinen S, Väisänen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 2011; 39:9181-93. [PMID: 21846776 PMCID: PMC3241659 DOI: 10.1093/nar/gkr654] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A global understanding of the actions of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and its vitamin D receptor (VDR) requires a genome-wide analysis of VDR binding sites. In THP-1 human monocytic leukemia cells we identified by ChIP-seq 2340 VDR binding locations, of which 1171 and 520 occurred uniquely with and without 1α,25(OH)2D3 treatment, respectively, while 649 were common. De novo identified direct repeat spaced by 3 nucleotides (DR3)-type response elements (REs) were strongly associated with the ligand-responsiveness of VDR occupation. Only 20% of the VDR peaks diminishing most after ligand treatment have a DR3-type RE, in contrast to 90% for the most growing peaks. Ligand treatment revealed 638 1α,25(OH)2D3 target genes enriched in gene ontology categories associated with immunity and signaling. From the 408 upregulated genes, 72% showed VDR binding within 400 kb of their transcription start sites (TSSs), while this applied only for 43% of the 230 downregulated genes. The VDR loci showed considerable variation in gene regulatory scenarios ranging from a single VDR location near the target gene TSS to very complex clusters of multiple VDR locations and target genes. In conclusion, ligand binding shifts the locations of VDR occupation to DR3-type REs that surround its target genes and occur in a large variety of regulatory constellations.
Collapse
Affiliation(s)
- Sami Heikkinen
- Department of Biosciences, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
46
|
Mutti DO, Cooper ME, Dragan E, Jones-Jordan LA, Bailey MD, Marazita ML, Murray JC, Zadnik K. Vitamin D receptor (VDR) and group-specific component (GC, vitamin D-binding protein) polymorphisms in myopia. Invest Ophthalmol Vis Sci 2011; 52:3818-24. [PMID: 21357399 DOI: 10.1167/iovs.10-6534] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Epidemiologic evidence indicates that time outdoors reduces the risk of myopia, suggesting a possible role for vitamin D. This case-control study was conducted to determine whether single-nucleotide polymorphisms (SNPs) within VDR at 12q13.11 and GC at 4q12-13 are associated with myopia. METHODS The primary analysis was conducted on 81 white adult control subjects between 18 and 50 years of age with a spherical equivalent refractive error between +0.50 and +2.00 D in both eyes and less than 1.50 D of astigmatism. Affected myopic subjects were 289 unrelated white adults at least 18 years of age with at least -0.75 D myopia in both principal meridians of both eyes. RESULTS One SNP within VDR was significantly associated with myopia in the multivariate analysis of the primary sample (rs2853559: odds ratio = 1.99, P = 0.003). In a subsample of less severely myopic white subjects between -0.75 and -4.00 D, three SNPs within VDR were significantly associated in a multivariate model after adjustment for multiple comparisons (rs2239182: odds ratio = 2.17, P = 0.007; rs3819545: odds ratio = 2.34, P = 0.003; rs2853559: odds ratio = 2.14, P = 0.0035), accounting for 12% of model variance over age alone. CONCLUSIONS Polymorphisms within VDR appear to be associated with low to moderate amounts of myopia in white subjects. Future studies should determine whether this finding can be replicated and should explore the biological significance of these variations with respect to myopia.
Collapse
Affiliation(s)
- Donald O Mutti
- College of Optometry, The Ohio State University, Columbus, Ohio 43210-1280, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu S, Sun J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. DISCOVERY MEDICINE 2011; 11:325-335. [PMID: 21524386 PMCID: PMC3285235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Vitamin D is involved in mineral and bone homeostasis, immune responses, anti-inflammation, anti-infection, and cancer prevention. Vitamin D receptor (VDR) is a nuclear receptor that mediates most biological functions of 1,25(OH)(2)D(3) or vitamin D(3), the active form of vitamin D. Recently, vitamin D(3)-induced autophagy has been reported. Autophagy is a lysosome-mediated catabolic pathway classified into three different types: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy contributes to anti-aging, antimicrobial defense, and tumor suppression. The functions of autophagy overlap remarkably with those of vitamin D/VDR signaling. This review focuses on vitamin D(3), VDR, and macroautophagy in inflammation and infection. We place emphasis on the regulatory roles of vitamin D(3) on autophagy at different steps, including induction, nucleation, elongation to maturation, and degradation. We summarize the known molecular mechanisms of vitamin D/VDR signaling on autophagy homeostasis. The potential application of the insights gleaned from these research findings to anti-inflammation and anti-infection is also discussed.
Collapse
Affiliation(s)
- Shaoping Wu
- Department of Medicine, University of Rochester, New York 14642, USA
| | | |
Collapse
|
48
|
Abstract
PURPOSE Longitudinal data suggest that time outdoors may be protective against myopia onset. We evaluated the hypothesis that time outdoors might create differences in circulating levels of vitamin D between myopes and non-myopes. METHODS Subjects provided 200 μl of peripheral blood in addition to survey information about dietary intakes and time spent in indoor or outdoor activity. The 22 subjects ranged in age from 13 to 25 years. Myopes (n = 14) were defined as having at least -0.75 diopter of myopia in each principal meridian and non-myopes (n = 8) had +0.25 diopter or more hyperopia in each principal meridian. Blood level of vitamin D was measured using liquid chromatography/mass spectroscopy. RESULTS Unadjusted blood levels of vitamin D were not significantly different between myopes (13.95 ± 3.75 ng/ml) and non-myopes (16.02 ± 5.11 ng/ml, p = 0.29) nor were the hours spent outdoors (myopes = 12.9 ± 7.8 h; non-myopes = 13.6 ± 5.8 h; p = 0.83). In a multiple regression model, total sugar and folate from food were negatively associated with blood vitamin D, whereas theobromine and calcium were positively associated with blood vitamin D. Myopes had lower levels of blood vitamin D by an average of 3.4 ng/ml compared with non-myopes when adjusted for age and dietary intakes (p = 0.005 for refractive error group, model R = 0.76). Gender, time outdoors, and dietary intake of vitamin D were not significant in this model. CONCLUSIONS The hypothesis that time outdoors might create differences in vitamin D could not be evaluated fully because time outdoors was not significantly related to myopia in this small sample. However, adjusted for differences in the intake of dietary variables, myopes appear to have lower average blood levels of vitamin D than non-myopes. Although consistent with the hypothesis above, replication in a larger sample is needed.
Collapse
Affiliation(s)
- Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio 43210-1280, USA.
| | | |
Collapse
|
49
|
Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem 2010; 285:38751-5. [PMID: 20974859 PMCID: PMC2998156 DOI: 10.1074/jbc.c110.185777] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/22/2010] [Indexed: 12/11/2022] Open
Abstract
Vitamin D has been shown to have immunomodulatory function, but the molecular basis for it has not been well understood. In this study, we found that vitamin D receptor expression was induced in a CD4+ effector T cell lineage, Th17 cells, which required the transcription factors, RORα, RORγt, and STAT3. Treatment of mice with an active ligand of vitamin D receptor (VDR), 1,25-dihydroxyvitamin D(3) (1,25D3), ameliorated experimental autoimmune encephalomyelitis, accompanied with reduced IL-17 and IL-17F expression. In vitro, treatment of CD4+ T cells with the physiological doses of 1,25D3 preferentially inhibited cytokine production by Th17 cells, in a VDR-dependent manner, without affecting the expression of transcription factors or surface molecules. Moreover, at these concentrations, cytokine expression was suppressed only at protein but not at mRNA levels. Stimulation of Th17 cells with 1,25D3, in a concentration-dependent manner, induced the expression of C/EBP homologous protein (CHOP), a molecule involved in endoplasmic reticulum stress and translational inhibition. In addition, overexpression of CHOP in developing Th17 cells suppressed their cytokine production. Our results suggest a novel, post-transcriptional mechanism whereby Th17 cytokines are inhibited by VDR, which may underscore future therapeutic usage of vitamin D in treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Seon Hee Chang
- From the Department of Immunology and Center for Inflammation and Cancer, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77054
| | - Yeonseok Chung
- From the Department of Immunology and Center for Inflammation and Cancer, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77054
| | - Chen Dong
- From the Department of Immunology and Center for Inflammation and Cancer, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77054
| |
Collapse
|
50
|
Brewster CD, Birkenheuer CH, Vogt MB, Quackenbush SL, Rovnak J. The retroviral cyclin of walleye dermal sarcoma virus binds cyclin-dependent kinases 3 and 8. Virology 2010; 409:299-307. [PMID: 21067790 DOI: 10.1016/j.virol.2010.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/13/2010] [Accepted: 10/14/2010] [Indexed: 12/20/2022]
Abstract
Walleye dermal sarcoma virus encodes a retroviral cyclin (rv-cyclin) with a cyclin box fold and transcription activation domain (AD). Co-immune precipitation (co-IP) identified an association of rv-cyclin with cyclin-dependent kinase 8 (cdk8). Cdk8 is dependent upon cyclin C and regulates transcription with the Mediator complex, a co-activator of transcription. Mutation of cyclin residues, required for cdk binding, disrupts rv-cyclin-cdk8 co-IP. Mutation or removal of the AD has no effect on cdk8 interaction. Direct rv-cyclin-cdk8 binding is demonstrated by pulldown of active cdk8 and by GST-rv-cyclin binding to recombinant cdk8. Cdk3 is also activated by cyclin C and phosphorylates retinoblastoma protein to initiate entry into the cell division cycle. Co-IP and pulldowns demonstrate direct rv-cyclin binding to cdk3 as well. The rv-cyclin functions as a structural ortholog of cyclin C in spite of its limited amino acid sequence identity with C cyclins or with any known cyclins.
Collapse
Affiliation(s)
- Connie D Brewster
- Department of Microbiology, Immunology, and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|