Review
Copyright ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Anesthesiol. Jul 27, 2018; 7(2): 10-19
Published online Jul 27, 2018. doi: 10.5313/wja.v7.i2.10
Targeting tumor necrosis factor in the brain relieves neuropathic pain
Tracey A Ignatowski, Robert N Spengler
Tracey A Ignatowski, Department of Pathology and Anatomical Sciences and Program for Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States
Tracey A Ignatowski, Robert N Spengler, NanoAxis, LLC, Clarence, NY 14031, United States
Author contributions: Ignatowski TA initiated the literature review; Ignatowski TA and Spengler RN equally contributed to the writing and revision of the manuscript.
Conflict-of-interest statement: Tracey A Ignatowski and Robert N Spengler have served as unpaid expert witnesses for the Institute of Neurological Recovery (INR), a medical practice that utilizes perispinal etanercept and trains physicians in its use as a therapeutic modality. Tracey Ignatowski and Robert Spengler’s professional activities include their work as Co-Directors of Neuroscience at NanoAxis, LLC, a company formed to foster the commercial development of products and applications in the field of nanomedicine that include novel methods of inhibiting TNF. This article represents the authors’ own work in which NanoAxis, LLC was not involved.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Tracey A Ignatowski, PhD, Assistant Professor, Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, United States. tai1@buffalo.edu
Telephone: +1-716-8293102 Fax: +1-716-8292725
Received: March 27, 2018
Peer-review started: April 12, 2018
First decision: May 3, 2018
Revised: May 28, 2018
Accepted: June 2, 2018
Article in press: June 2, 2018
Published online: July 27, 2018
Abstract

Neuropathic pain is a chronic syndrome caused by direct damage to or disease of the somatosensory nervous system. The lack of safe, adequate and sustained pain relief offered by present analgesic treatments is most alarming. While many treatment options are available to manage chronic pain, such as antidepressants, non-steroidal anti-inflammatory agents, opioids, and anticonvulsants, chronic neuropathic pain remains largely unmanaged. Compounding the dilemma of ineffective chronic pain treatments is the need to provide relief from suffering and yet not contribute to the scourge of drug abuse. A recent epidemic of addiction and accidental drug prescription overdoses parallel the increased use of opioid treatment, even though opioids are rarely an effective treatment of relieving chronic pain. To make matters worse, opioids may contribute to exacerbating pain, and side-effects such as cognitive impairment, nausea, constipation, development of tolerance, as well as their potential for addiction and overdose deaths exist. Clearly, there is an urgent need for alternative, non-opiate treatment of chronic pain. Innovative discoveries of pertinent brain mechanisms and functions are key to developing effective, safe treatments. Pioneering work has revealed the essential effects of the pleiotropic mediator tumor necrosis factor (TNF) on brain functioning. These studies establish that TNF inhibits norepinephrine release from hippocampal neurons, and show that excess TNF production within the hippocampus occurs during neuropathic pain, which mobilizes additional mechanisms that further inhibit norepinephrine release. Significantly, it has been verified that elevated levels of TNF in the brain are actually required for neuropathic pain development. Since TNF decreases norepinephrine release in the brain, enhanced TNF levels would prevent engagement of the norepinephrine descending inhibitory neuronal pain pathways. Increased levels of TNF in the brain are therefore critical to the development of neuropathic pain. Therefore, strategies that decrease this enhanced TNF expression in the brain will have superior analgesic efficacy. We propose this novel approach of targeting the pathologically high levels of brain TNF as an effective strategy in the treatment of the devastating syndrome of chronic pain.

Keywords: Neuropathic pain, Tumor necrosis factor, Brain, Norepinephrine, Analgesia

Core tip: Chronic pain is a widespread health problem. Current treatments, including opioids or non-steroidal anti-inflammatory drugs are inadequate as they lack sufficient efficacy, produce numerous side effects and hold the potential for addiction. Preclinical studies show that elevated brain tumor necrosis factor (TNF) levels during chronic pain are a novel target for producing analgesia. TNF can be practically targeted by non-invasive delivery of anti-TNF biologics directly to the ventricles of the brain via a peripheral perispinal injection. Herein we discuss decreasing TNF activity in the brain as a treatment to provide a superior analgesic strategy. Animal study results indicate potential benefit for patients with treatment-resistant pain.