Editorial
Copyright ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Pathophysiol. Sep 10, 2019; 10(2): 11-16
Published online Sep 10, 2019. doi: 10.4291/wjgp.v10.i2.11
Overview of studies of the vitamin D/vitamin D receptor system in the development of non-alcoholic fatty liver disease
Flavia Agata Cimini, Ilaria Barchetta, Simone Carotti, Sergio Morini, Maria Gisella Cavallo
Flavia Agata Cimini, Ilaria Barchetta, Maria Gisella Cavallo, Department of Experimental Medicine, Sapienza University of Rome, Rome I-00161, Italy
Simone Carotti, Sergio Morini, Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico of Rome, Rome I-00128, Italy
ORCID number: Flavia Agata Cimini (0000-0001-7630-7349); Ilaria Barchetta (0000-0003-0530-8568); Simone Carotti (0000-0002-3164-1500); Sergio Morini (0000-0001-6137-2404); Maria Gisella Cavallo (0000-0001-6630-8049).
Author contributions: Morini S and Cavallo MG conceived the study; Cimini FA, Barchetta I and Carotti S drafted the manuscript; all the authors approved the final version of the article.
Conflict-of-interest statement: The authors report no conflicts of interest to declare.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Sergio Morini, MD, Full Professor, Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, Rome I-00128, Italy. s.morini@unicampus.it
Telephone: +39-6-225419170 Fax: +39-6-22541456
Received: May 18, 2019
Peer-review started: May 20, 2019
First decision: August 2, 2019
Revised: August 9, 2019
Accepted: August 21, 2019
Article in press: August 21, 2019
Published online: September 10, 2019

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. NAFLD is known to be associated with obesity, type 2 diabetes, metabolic syndrome and increased cardiovascular events: for these reasons, it is becoming a global public health problem and represents an important challenge in terms of prevention and treatment. The mechanisms behind the pathogenesis of NAFLD are multiple and have not yet been completely unraveled; consequently, at moment there are not effective treatments. In the past few years a large body of evidence has been assembled that attributes an important role in hepatic aberrant fat accumulation, inflammation and fibrosis, to the vitamin D/vitamin D receptor (VD/VDR) axis, showing a strong association between hypovitaminosis D and the diagnosis of NAFLD. However, the data currently available, including clinical trials with VD supplementation, still provides a contrasting picture. The purpose of this editorial is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to VD/VDR. Based on recent data from literature, we focused in particular on the hypothesis that VDR itself, independently from its traditional ligand VD, may have a crucial function in promoting hepatic fat accumulation. This might also offer new possibilities for future innovative therapeutic approaches in the management of NAFLD.

Key Words: Vitamin D, Vitamin D receptor, Non-alcoholic fatty liver disease, Type 2 diabetes

Core tip: In the last years, many evidences attribute to the vitamin D/vitamin D Receptor axis an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purpose of this editorial is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to vitamin D/vitamin D receptor (VD/VDR). We focused in particular on the hypothesis that VDR itself, independently from its traditional ligand VD, may play a crucial function in promoting hepatic fat accumulation, also offering new possibilities for innovative therapeutic approaches in the management of NAFLD.



INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is currently considered the most common chronic liver disease worldwide[1]. Recent epidemiologic studies report that the prevalence of NAFLD is increasing, starting from the currently estimated 25% in the general population[2,3], and rising dramatically in obese individuals[4], in subjects with type 2 diabetes (T2D)[5] and those with metabolic syndrome[6]. NAFLD is becoming a global public health problem[7]: In many countries the number of patients affected by the disease is rapidly growing, so that in the last years the disease has reached epidemic proportions. Moreover, several studies have shown increased cardiovascular events in NAFLD patients and demonstrated that NAFLD is an independent risk factor for cardiovascular mortality[8-10].

VITAMIN D AND NAFLD

In spite of the alarming prevalence and the clinical implications of NAFLD, the mechanisms underlying its development and progression are still not fully understood, and currently there are no effective treatments. Over the years many different pathophysiological theories have been put forward, leading to the most widely accepted hypothesis, “multiple parallel hits”[11]. According to this model the steps conducive to hepatic fat accumulation, inflammation and fibrosis are orchestrated by a delicate interplay of factors[11], and in this context the role of the vitamin D/vitamin D receptor (VD/VDR) axis has become an active area of research. Indeed, apart from its central role in bone and mineral homeostasis, VD is a molecule that exerts various effects on a number of biological systems; active VD in particular has been shown to regulate the immune system and to modulate insulin sensitivity in experimental models of metabolic diseases[12-14].

Numerous studies have demonstrated that low VD circulating levels are associated with obesity[15], metabolic syndrome[16-19], and T2D[20-22]. Investigations conducted in several adult populations also showed a strong association between hypovitaminosis D and the diagnosis of NAFLD[23-30]. This association was also confirmed in children, in which low VD levels were found to correlate with the histological severity of NAFLD independently from metabolic characteristics[31,32].

Data from animal studies further support the notion that the impairment of VD balance plays a role in the development of NAFLD. Roth and colleagues showed that in obese rats the lack of VD intake allowed the onset and progression of NAFLD, which was evaluated through liver histology demonstrating a higher NAFLD activity score and increased lobular inflammation[33]. Likewise, under experimental conditions, VD has been shown to have an anti-inflammatory effect, accompanied by a significant inhibition of the hepatic expression of pro-fibrotic mediators, such as platelet-derived growth factor and transforming growth factor. The anti-inflammatory effect was also demonstrated by the suppression of the production of collagen, α-smooth muscle actin and tissue inhibitors of metalloproteinase-1 β[34-37]. In addition, in a study conducted on mice with nonalcoholic steatohepatitis (NASH), phototherapy reduced hepatocyte inflammation and fibrosis and improved insulin resistance by increasing the serum active form of VD[38].

On the basis of these evidences and of both experimental and epidemiological data, VD has attracted the interest for a potential therapeutic option during NAFLD. However, up until now results from randomized clinical trials have failed to demonstrate the efficacy of VD supplementation in improving either fatty liver content, or the histological parameters of inflammation and fibrosis, or transaminases in the course of NAFLD and NASH[39-45].

The clinical significance of VD in NAFLD is thus still controversial. A critical examination of the results from trials conducted so far may provide reasonable grounds for conducting further appropriately designed investigations (for example, personalized supplementation regimes in relation to VD levels at baseline and stage of liver damage, higher VD supplementation doses, longer periods of supplementation) before reaching any final conclusions on this topic. However, at present it is not possible to recognize which real benefits can be obtained from restoring optimal VD values in the case of chronic hepatic damage as a result of NAFLD.

ROLE OF VDR

In addition to the question of vitamin D, the role of VDR per se has been investigated in metabolic diseases, focusing in particular on its effect/expression in insulin sensitive tissues and organs, such as adipose tissue and the liver. In 2012, Barchetta et al[46] demonstrated for the first time in humans the expression of VDR in different hepatic cell types and reduced VDR expression in the hepatic cells of patients with NASH. Since that time many studies have shown that in the liver VDR regulates necro-inflammation and fibrosis[47-50]. Moreover, Arai et al[51] recently demonstrated that, in patients with biopsy-proven NAFLD, polymorphisms of the VDR gene are associated with the severity of liver fibrosis.

Interestingly the data showed that not only VD, but also secondary hydrophobic bile acids, such as lithocholic acid, activate VDR in human hepatocytes[52,53]. Bozic et al[50] demonstrated that in animal models, the development of liver steatosis was blunted in the presence of VDR deletion. Notably, data obtained in mice exposed to a high fat diet showed an early induction of hepatic VDR expression in the presence of a fatty liver, followed by a trend towards VDR reduction in the long term, whereupon more severe inflammation and fibrosis occurred[50]. In that same research, an expression analysis of genes related to lipid metabolism in mouse livers indicated that VDR might exert a pro-steatotic activity in the hepatocytes as results of both the activation lipogenic pathways and the inhibition of fat oxidation. Moreover, García-Monzón et al[54] very recently demonstrated that hepatic angiopoietin-like protein 8 (ANGPTL8) expression is increased upon VDR activation. It is known that ANGPTL8 is a key regulator of triglycerides metabolism and that higher circulating ANGPTL8 levels are associated with the presence of NAFLD[55-57]. These data suggest that VDR induction is more prominent in simple steatosis than in advanced liver damage, which is likely to indicate that VDR is induced at the early stages of the disease and does not require liver injury or fibrosis to have become established.

The overall data appear to support the hypothesis that, in the course of metabolic diseases, VDR itself, independently from its traditional ligand VD, may have a crucial function in promoting hepatic fat accumulation. Further studies should be oriented in this direction with a view to fully understanding the processes behind hepatic VDR activation and evaluating its role as a new target for innovative therapeutic approaches to the early management of NAFLD.

Footnotes

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country of origin: Italy

Peer-review report classification

Grade A (Excellent): A

Grade B (Very good): 0

Grade C (Good): 0

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Hann HW S-Editor: Yan JP L-Editor: A E-Editor: Li X

References
1.  Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11-20.  [PubMed]  [DOI]
2.  Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S, Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577-1586.  [PubMed]  [DOI]
3.  Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73-84.  [PubMed]  [DOI]
4.  Non-alcoholic Fatty Liver Disease Study Group, Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH, Cortez-Pinto H, Grieco A, Machado MV, Miele L, Targher G. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dig Liver Dis. 2015;47:997-1006.  [PubMed]  [DOI]
5.  Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C, Arcaro G. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30:1212-1218.  [PubMed]  [DOI]
6.  Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2:901-910.  [PubMed]  [DOI]
7.  Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123-133.  [PubMed]  [DOI]
8.  Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol. 2016;65:589-600.  [PubMed]  [DOI]
9.  Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11 Suppl 1:S209-S216.  [PubMed]  [DOI]
10.  Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: A systematic review and meta-analysis. Sci Rep. 2016;6:33386.  [PubMed]  [DOI]
11.  Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 2010;52:1836-1846.  [PubMed]  [DOI]
12.  Zhou QG, Hou FF, Guo ZJ, Liang M, Wang GB, Zhang X. 1,25-Dihydroxyvitamin D improved the free fatty-acid-induced insulin resistance in cultured C2C12 cells. Diabetes Metab Res Rev. 2008;24:459-464.  [PubMed]  [DOI]
13.  Parker L, Levinger I, Mousa A, Howlett K, de Courten B. Plasma 25-Hydroxyvitamin D Is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner. Nutrients. 2016;8:pii: E631.  [PubMed]  [DOI]
14.  Elseweidy MM, Amin RS, Atteia HH, Ali MA. Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats. Biomed Pharmacother. 2017;85:155-159.  [PubMed]  [DOI]
15.  Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370-373.  [PubMed]  [DOI]
16.  Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005;28:1228-1230.  [PubMed]  [DOI]
17.  Barchetta I, De Bernardinis M, Capoccia D, Baroni MG, Fontana M, Fraioli A, Morini S, Leonetti F, Cavallo MG. Hypovitaminosis D is independently associated with metabolic syndrome in obese patients. PLoS One. 2013;8:e68689.  [PubMed]  [DOI]
18.  Goldner WS, Stoner JA, Thompson J, Taylor K, Larson L, Erickson J, McBride C. Prevalence of vitamin D insufficiency and deficiency in morbidly obese patients: A comparison with non-obese controls. Obes Surg. 2008;18:145-150.  [PubMed]  [DOI]
19.  Botella-Carretero JI, Alvarez-Blasco F, Villafruela JJ, Balsa JA, Vázquez C, Escobar-Morreale HF. Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin Nutr. 2007;26:573-580.  [PubMed]  [DOI]
20.  Palomer X, González-Clemente JM, Blanco-Vaca F, Mauricio D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes Metab. 2008;10:185-197.  [PubMed]  [DOI]
21.  Boucher BJ. Vitamin D insufficiency and diabetes risks. Curr Drug Targets. 2011;12:61-87.  [PubMed]  [DOI]
22.  Lucato P, Solmi M, Maggi S, Bertocco A, Bano G, Trevisan C, Manzato E, Sergi G, Schofield P, Kouidrat Y, Veronese N, Stubbs B. Low vitamin D levels increase the risk of type 2 diabetes in older adults: A systematic review and meta-analysis. Maturitas. 2017;100:8-15.  [PubMed]  [DOI]
23.  Targher G, Bertolini L, Scala L, Cigolini M, Zenari L, Falezza G, Arcaro G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17:517-524.  [PubMed]  [DOI]
24.  Barchetta I, Angelico F, Del Ben M, Baroni MG, Pozzilli P, Morini S, Cavallo MG. Strong association between nonalcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011;9:85.  [PubMed]  [DOI]
25.  Jablonski KL, Jovanovich A, Holmen J, Targher G, McFann K, Kendrick J, Chonchol M. Low 25-hydroxyvitamin D level is independently associated with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2013;23:792-798.  [PubMed]  [DOI]
26.  Pirgon O, Cekmez F, Bilgin H, Eren E, Dundar B. Low 25-hydroxyvitamin D level is associated with insulin sensitivity in obese adolescents with non-alcoholic fatty liver disease. Obes Res Clin Pract. 2013;7:e275-e283.  [PubMed]  [DOI]
27.  Dasarathy J, Periyalwar P, Allampati S, Bhinder V, Hawkins C, Brandt P, Khiyami A, McCullough AJ, Dasarathy S. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014;34:e118-e127.  [PubMed]  [DOI]
28.  Rhee EJ, Kim MK, Park SE, Park CY, Baek KH, Lee WY, Kang MI, Park SW, Kim SW, Oh KW. High serum vitamin D levels reduce the risk for nonalcoholic fatty liver disease in healthy men independent of metabolic syndrome. Endocr J. 2013;60:743-752.  [PubMed]  [DOI]
29.  Wang D, Lin H, Xia M, Aleteng Q, Li X, Ma H, Pan B, Gao J, Gao X. Vitamin D Levels Are Inversely Associated with Liver Fat Content and Risk of Non-Alcoholic Fatty Liver Disease in a Chinese Middle-Aged and Elderly Population: The Shanghai Changfeng Study. PLoS One. 2016;11:e0157515.  [PubMed]  [DOI]
30.  Zhai HL, Wang NJ, Han B, Li Q, Chen Y, Zhu CF, Chen YC, Xia FZ, Cang Z, Zhu CX, Lu M, Lu YL. Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: A cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China)). Br J Nutr. 2016;115:1352-1359.  [PubMed]  [DOI]
31.  Nobili V, Giorgio V, Liccardo D, Bedogni G, Morino G, Alisi A, Cianfarani S. Vitamin D levels and liver histological alterations in children with nonalcoholic fatty liver disease. Eur J Endocrinol. 2014;170:547-553.  [PubMed]  [DOI]
32.  Manco M, Ciampalini P, Nobili V. Low levels of 25-hydroxyvitamin D(3) in children with biopsy-proven nonalcoholic fatty liver disease. Hepatology. 2010;51:2229; author reply 2230.  [PubMed]  [DOI]
33.  Roth CL, Elfers CT, Figlewicz DP, Melhorn SJ, Morton GJ, Hoofnagle A, Yeh MM, Nelson JE, Kowdley KV. Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and Toll-like receptor activation. Hepatology. 2012;55:1103-1111.  [PubMed]  [DOI]
34.  Beilfuss A, Sowa JP, Sydor S, Beste M, Bechmann LP, Schlattjan M, Syn WK, Wedemeyer I, Mathé Z, Jochum C, Gerken G, Gieseler RK, Canbay A. Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently. Gut. 2015;64:791-799.  [PubMed]  [DOI]
35.  Abramovitch S, Dahan-Bachar L, Sharvit E, Weisman Y, Ben Tov A, Brazowski E, Reif S. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011;60:1728-1737.  [PubMed]  [DOI]
36.  Abramovitch S, Sharvit E, Weisman Y, Bentov A, Brazowski E, Cohen G, Volovelsky O, Reif S. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G112-G120.  [PubMed]  [DOI]
37.  Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M, Coulter S, He M, Scott C, Lau SL, Atkins AR, Barish GD, Gunton JE, Liddle C, Downes M, Evans RM. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153:601-613.  [PubMed]  [DOI]
38.  Nakano T, Cheng YF, Lai CY, Hsu LW, Chang YC, Deng JY, Huang YZ, Honda H, Chen KD, Wang CC, Chiu KW, Jawan B, Eng HL, Goto S, Chen CL. Impact of artificial sunlight therapy on the progress of non-alcoholic fatty liver disease in rats. J Hepatol. 2011;55:415-425.  [PubMed]  [DOI]
39.  Sakpal M, Satsangi S, Mehta M, Duseja A, Bhadada S, Das A, Dhiman RK, Chawla YK. Vitamin D supplementation in patients with nonalcoholic fatty liver disease: A randomized controlled trial. JGH Open. 2017;1:62-67.  [PubMed]  [DOI]
40.  Geier A, Eichinger M, Stirnimann G, Semela D, Tay F, Seifert B, Tschopp O, Bantel H, Jahn D, Marques Maggio E, Saleh L, Bischoff-Ferrari HA, Müllhaupt B, Dufour JF. Treatment of non-alcoholic steatohepatitis patients with vitamin D: a double-blinded, randomized, placebo-controlled pilot study. Scand J Gastroenterol. 2018;53:1114-1120.  [PubMed]  [DOI]
41.  Barchetta I, Del Ben M, Angelico F, Di Martino M, Fraioli A, La Torre G, Saulle R, Perri L, Morini S, Tiberti C, Bertoccini L, Cimini FA, Panimolle F, Catalano C, Baroni MG, Cavallo MG. No effects of oral vitamin D supplementation on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. BMC Med. 2016;14:92.  [PubMed]  [DOI]
42.  Dabbaghmanesh MH, Danafar F, Eshraghian A, Omrani GR. Vitamin D supplementation for the treatment of non-alcoholic fatty liver disease: A randomized double blind placebo controlled trial. Diabetes Metab Syndr. 2018;12:513-517.  [PubMed]  [DOI]
43.  Lorvand Amiri H, Agah S, Tolouei Azar J, Hosseini S, Shidfar F, Mousavi SN. Effect of daily calcitriol supplementation with and without calcium on disease regression in non-alcoholic fatty liver patients following an energy-restricted diet: Randomized, controlled, double-blind trial. Clin Nutr. 2017;36:1490-1497.  [PubMed]  [DOI]
44.  Kitson MT, Pham A, Gordon A, Kemp W, Roberts SK. High-dose vitamin D supplementation and liver histology in NASH. Gut. 2016;65:717-718.  [PubMed]  [DOI]
45.  Sharifi N, Amani R, Hajiani E, Cheraghian B. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine. 2014;47:70-80.  [PubMed]  [DOI]
46.  Barchetta I, Carotti S, Labbadia G, Gentilucci UV, Muda AO, Angelico F, Silecchia G, Leonetti F, Fraioli A, Picardi A, Morini S, Cavallo MG. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: Relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology. 2012;56:2180-2187.  [PubMed]  [DOI]
47.  Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T, Karin M, Diaz-Meco MT, Moscat J. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell. 2016;30:595-609.  [PubMed]  [DOI]
48.  Wahsh E, Abu-Elsaad N, El-Karef A, Ibrahim T. The vitamin D receptor agonist, calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in-vivo: An experimental study. Eur J Pharmacol. 2016;789:362-369.  [PubMed]  [DOI]
49.  Petta S, Grimaudo S, Tripodo C, Cabibi D, Calvaruso M, Di Cristina A, Guarnotta C, Macaluso FS, Minissale MG, Marchesini G, Craxì A. The hepatic expression of vitamin D receptor is inversely associated with the severity of liver damage in genotype 1 chronic hepatitis C patients. J Clin Endocrinol Metab. 2015;100:193-200.  [PubMed]  [DOI]
50.  Bozic M, Guzmán C, Benet M, Sánchez-Campos S, García-Monzón C, Gari E, Gatius S, Valdivielso JM, Jover R. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis. J Hepatol. 2016;65:748-757.  [PubMed]  [DOI]
51.  Arai T, Atsukawa M, Tsubota A, Koeda M, Yoshida Y, Okubo T, Nakagawa A, Itokawa N, Kondo C, Nakatsuka K, Masu T, Kato K, Shimada N, Hatori T, Emoto N, Kage M, Iwakiri K. Association of vitamin D levels and vitamin D-related gene polymorphisms with liver fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease. Dig Liver Dis. 2019;51:1036-1042.  [PubMed]  [DOI]
52.  Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296:1313-1316.  [PubMed]  [DOI]
53.  Han S, Li T, Ellis E, Strom S, Chiang JY. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol. 2010;24:1151-1164.  [PubMed]  [DOI]
54.  García-Monzón C, Petrov PD, Rey E, Marañón P, Del Pozo-Maroto E, Guzmán C, Rodríguez de Cía J, Casado-Collado AJ, Vargas-Castrillón J, Saez A, Miquilena-Colina ME, Lo Iacono O, Castell JV, González-Rodríguez Á, Jover R. Angiopoietin-Like Protein 8 Is a Novel Vitamin D Receptor Target Gene Involved in Nonalcoholic Fatty Liver Pathogenesis. Am J Pathol. 2018;188:2800-2810.  [PubMed]  [DOI]
55.  Lee YH, Lee SG, Lee CJ, Kim SH, Song YM, Yoon MR, Jeon BH, Lee JH, Lee BW, Kang ES, Lee HC, Cha BS. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: Animal and human studies. Sci Rep. 2016;6:24013.  [PubMed]  [DOI]
56.  Mele C, Grugni G, Mai S, Vietti R, Aimaretti G, Scacchi M, Marzullo P. Circulating angiopoietin-like 8 (ANGPTL8) is a marker of liver steatosis and is negatively regulated by Prader-Willi Syndrome. Sci Rep. 2017;7:3186.  [PubMed]  [DOI]
57.  von Loeffelholz C, Pfeiffer AFH, Lock JF, Lieske S, Döcke S, Murahovschi V, Kriebel J, de Las Heras Gala T, Grallert H, Rudovich N, Stockmann M, Spranger J, Jahreis G, Bornstein SR, Lau G, Xu A, Schulz-Menger J, Exner L, Haufe S, Jordan J, Engeli S, Birkenfeld AL. ANGPTL8 (Betatrophin) is Expressed in Visceral Adipose Tissue and Relates to Human Hepatic Steatosis in Two Independent Clinical Collectives. Horm Metab Res. 2017;49:343-349.  [PubMed]  [DOI]