Editorial Open Access
Copyright ©2010 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastrointest Pathophysiol. Oct 15, 2010; 1(4): 115-117
Published online Oct 15, 2010. doi: 10.4291/wjgp.v1.i4.115
Emerging roles of connexin hemichannels in gastrointestinal and liver pathophysiology
Mathieu Vinken, Tamara Vanhaecke, Vera Rogiers, Department of Toxicology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium
Author contributions: Vinken M wrote the manuscript; and Vanhaecke T and Rogiers V revised the manuscript.
Correspondence to: Mathieu Vinken, PhD, PharmD, Department of Toxicology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium. mvinken@vub.ac.be
Telephone: +32-2-4774587 Fax: +32-2-4774582
Received: May 26, 2010
Revised: August 24, 2010
Accepted: August 31, 2010
Published online: October 15, 2010

Abstract

Connexin hemichannels have long been considered as mere structural precursors for gap junctions. In the last decade, it has become clear that they also act as individual channels, connecting the intracellular compartment and the extracellular environment. Impairement of connexin hemichannel functionality may result in disturbance of homeostasis, as exemplified in the current paper for the intestine and the liver. Research in this field still has a number of shortcomings, of which some are also discussed here.

Key Words: Hemichannel, Connexin, Pathophysiology



CONNEXIN CHANNELS: STRUCTURAL ASPECTS

The maintenance of tissue homeostasis is governed by the well-orchestrated interplay between three major communicative networks located at the extracellular, intracellular and intercellular level. Direct intercellular communication is mediated by gap junctions, which arise from the interaction of two hemichannels of neighbouring cells. Hemichannels, in turn, are composed of six connexin (Cx) units (Figure 1). The connexin family comprises as many as twenty isoforms in mammals. They are named according to their molecular weight and are expressed in a cell-specific way[1-5]. In the gastrointestinal tract, Cx40, Cx45 and particularly Cx43 are expressed by the intestinal smooth muscle cells and the interstitial cells of Cajal[6,7]. In the liver, hepatocytes abundantly produce Cx32 and small quantities of Cx26, while non-parenchymal hepatic cells mainly harbour Cx43[3,4].

Figure 1
Figure 1 Molecular architecture of gap junctions. Gap junctions are grouped in plaques at the cell membrane surface and are composed of twelve connexin proteins organized as two hexameric hemichannels. The connexin structure consists of four membrane-spanning domains, two extracellular loops, one cytoplasmic loop, one cytoplasmic amino tail and one cytoplasmic carboxy tail.
CONNEXIN CHANNELS: FUNCTIONAL ASPECTS

Gap junctions provide a pathway for the intercellular exchange of small and hydrophilic substances, including nucleotides (e.g. ATP) and ions (e.g. Ca2+). As numerous physiological processes are driven by these substances, gap junctional intercellular communication is considered as a key mechanism in the maintenance of tissue homeostasis[1-5]. Gastrointestinal gap junctions play a specific role in pacemaking and neurotransmission, and thus in the regulation of motility[7,8]. Hepatocellular gap junctions, on the other hand, essentially underlie most liver-specific functions, such as xenobiotic biotransformation and albumin secretion[3,4]. Gap junctions are also master regulators of cell growth and cell death[1,2]. In fact, a growing number of reports point to non-gap junctional functions for connexins in these events. Indeed, connexin proteins themselves can alter the production of critical homeostasis regulators, such as caspases and cyclins, irrespective of their channel properties. The mechanisms that govern these atypical connexin functions remain elusive, but may involve direct interaction with these regulatory molecules or the modulation of their gene transcription[1,2,9-11]. Another gap junction-independent cell signalling platform for connexins relates to hemichannels. For a long time, hemichannels have been considered as merely structural precursors for gap junctions, remaining closed until docking with counterparts from adjacent cells prior to gap junction formation. It has now become clear that connexin hemichannels also provide a pathway for communication, albeit between the intracellular compartment and the extracellular environment. The substances that travel through hemichannels are very similar to those that are intercellularly exchanged via gap junctions[1,2,9-12]. To make the picture even more complicated, a second set of gap junction-related proteins has been described in recent years, the pannexins, which are structurally similar but phylogenetically unrelated to the connexin family. At present, three pannexins, namely Panx1, Panx2 and Panx3, have been identified in humans and rodents, and they preferentially occur in a hemichannel configuration[1,13,14].

CONNEXIN HEMICHANNELS IN THE INTESTINE AND THE LIVER

Thus far, most attention has been paid to connexin hemichannels in nervous tissue as well as their involvement in cerebral ischemia, in which their opening results in cell death[1,15,16]. Nevertheless, a limited number of studies have addressed hemichannels in the gastrointestinal tract and the liver. In an attempt to characterize gap junctions in a human intestinal epithelial cell line, Clair and colleagues found that functional hemichannels composed of Cx26, Cx32 and Cx43 are abundantly present at the basal side of these polarized cells[17]. Research from the same group showed that the Cx26 hemichannels facilitate the pathogenesis induced by Shigella flexneri, the causative agent of bacillary dysentery that invades the colonic mucosa where it elicits an intense inflammatory reaction responsible for destruction of the mucosa. Thus, Shigella invasion induces the opening of Cx26 hemichannels, allowing extracellular release of ATP, which in turn favours bacterial dissemination[18]. In a recent in vivo study conducted by Guttman et al, increasing levels of Cx43 were observed in mouse colon infected with the diarrhea-causing Citrobacter rodentium, whereby unpaired hemichannels were formed at both the apical and the lateral membrane surface of the colonocytes. Using animals genetically deficient in Cx43, it was subsequently demonstrated that Cx43 hemichannel opening triggers water release during infectious diarrhea[19]. Our group was the first to report the occurrence of Cx32 hemichannels in hepatocytes. Using an in vitro model of Fas-mediated apoptosis, a cell death mode involved in most liver pathologies, we found that de novo synthesized Cx32 gathers in hemichannels during apoptosis, and that hemichannel opening is critical for the termination of the cell death response[20].

CONCLUSION

Although a large body of evidence is nowadays available, the concept of functional connexin hemichannels still remains controversial[1,21]. A major point of debate concerns the identity of the molecular constituents of hemichannels. Critics claim that most, if not all, of the functions that have been attributed to connexin hemichannels, can actually be ascribed to other channel types, consisting for example of pannexins[21,22]. In addition, it seems challenging to discriminate between the functionality of connexin hemichannels and that of gap junctions, especially in an in vivo environment[1,21]. These constraints mainly arise from the ubiquitous lack of appropriate testing approaches to unequivocally study connexin hemichannels[21,23], including pannexin hemichannel- and connexin hemichannel-specific inhibitors. Undoubtedly, this research field will become more appealing when such experimental tools are avaliable. Moreover, it can be anticipated that the basic knowledge that will be gained by doing so, will also open new perspectives for the development of new clinical (gastrointestinal and liver) therapies.

Footnotes

Supported partially by the Fund for Scientific Research Flanders (FWO-Vlaanderen), Belgium

Peer reviewers: Dong-Ping Xie, PhD, Associate Professor, Department of Physiology, Tongji University, Chifeng Rd. 50 Medical Building 617, Shanghai 200092, China; Marc Stemmler, PhD, Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, Freiburg 79108, Germany

S- Editor Zhang HN L- Editor Hughes D E- Editor Liu N

References
1.  Decrock E, Vinken M, De Vuyst E, Krysko DV, D'Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L. Connexin-related signaling in cell death: to live or let die? Cell Death Differ. 2009;16:524-536.  [PubMed]  [DOI]  [Cited in This Article: ]
2.  Vinken M, Vanhaecke T, Papeleu P, Snykers S, Henkens T, Rogiers V. Connexins and their channels in cell growth and cell death. Cell Signal. 2006;18:592-600.  [PubMed]  [DOI]  [Cited in This Article: ]
3.  Vinken M, Henkens T, De Rop E, Fraczek J, Vanhaecke T, Rogiers V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology. 2008;47:1077-1088.  [PubMed]  [DOI]  [Cited in This Article: ]
4.  Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol. 2009;44:201-222.  [PubMed]  [DOI]  [Cited in This Article: ]
5.  Vinken M, De Rop E, Decrock E, De Vuyst E, Leybaert L, Vanhaecke T, Rogiers V. Epigenetic regulation of gap junctional intercellular communication: more than a way to keep cells quiet? Biochim Biophys Acta. 2009;1795:53-61.  [PubMed]  [DOI]  [Cited in This Article: ]
6.  Seki K, Komuro T. Immunocytochemical demonstration of the gap junction proteins connexin 43 and connexin 45 in the musculature of the rat small intestine. Cell Tissue Res. 2001;306:417-422.  [PubMed]  [DOI]  [Cited in This Article: ]
7.  Wang YF, Daniel EE. Gap junctions in gastrointestinal muscle contain multiple connexins. Am J Physiol Gastrointest Liver Physiol. 2001;281:G533-G543.  [PubMed]  [DOI]  [Cited in This Article: ]
8.  Daniel EE, Wang YF. Gap junctions in intestinal smooth muscle and interstitial cells of Cajal. Microsc Res Tech. 1999;47:309-320.  [PubMed]  [DOI]  [Cited in This Article: ]
9.  Jiang JX, Gu S. Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta. 2005;1711:208-214.  [PubMed]  [DOI]  [Cited in This Article: ]
10.  Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol. 2007;94:219-232.  [PubMed]  [DOI]  [Cited in This Article: ]
11.  Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC. The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol. 2007;94:245-264.  [PubMed]  [DOI]  [Cited in This Article: ]
12.  Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J. 2006;397:1-14.  [PubMed]  [DOI]  [Cited in This Article: ]
13.  Shestopalov VI, Panchin Y. Pannexins and gap junction protein diversity. Cell Mol Life Sci. 2008;65:376-394.  [PubMed]  [DOI]  [Cited in This Article: ]
14.  D'hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B. Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays. 2009;31:953-974.  [PubMed]  [DOI]  [Cited in This Article: ]
15.  Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev. 2004;47:290-303.  [PubMed]  [DOI]  [Cited in This Article: ]
16.  Bargiotas P, Monyer H, Schwaninger M. Hemichannels in cerebral ischemia. Curr Mol Med. 2009;9:186-194.  [PubMed]  [DOI]  [Cited in This Article: ]
17.  Clair C, Combettes L, Pierre F, Sansonetti P, Tran Van Nhieu G. Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells. Exp Cell Res. 2008;314:1250-1265.  [PubMed]  [DOI]  [Cited in This Article: ]
18.  Tran Van Nhieu G, Clair C, Bruzzone R, Mesnil M, Sansonetti P, Combettes L. Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol. 2003;5:720-726.  [PubMed]  [DOI]  [Cited in This Article: ]
19.  Guttman JA, Lin AE, Li Y, Bechberger J, Naus CC, Vogl AW, Finlay BB. Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Gut. 2010;59:218-226.  [PubMed]  [DOI]  [Cited in This Article: ]
20.  Vinken M, Decrock E, De Vuyst E, De Bock M, Vandenbroucke RE, De Geest BG, Demeester J, Sanders NN, Vanhaecke T, Leybaert L. Connexin32 hemichannels contribute to the apoptotic-to-necrotic transition during Fas-mediated hepatocyte cell death. Cell Mol Life Sci. 2010;67:907-918.  [PubMed]  [DOI]  [Cited in This Article: ]
21.  Spray DC, Ye ZC, Ransom BR. Functional connexin "hemichannels": a critical appraisal. Glia. 2006;54:758-773.  [PubMed]  [DOI]  [Cited in This Article: ]
22.  Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E. Pannexin 1: the molecular substrate of astrocyte "hemichannels". J Neurosci. 2009;29:7092-7097.  [PubMed]  [DOI]  [Cited in This Article: ]
23.  Schalper KA, Palacios-Prado N, Orellana JA, Sáez JC. Currently used methods for identification and characterization of hemichannels. Cell Commun Adhes. 2008;15:207-218.  [PubMed]  [DOI]  [Cited in This Article: ]