1
|
Tao Y, Wang L, Ye X, Qian X, Pan D, Dong X, Jiang Q, Hu P. Huang Qin decoction increases SLC6A4 expression and blocks the NFκB-mediated NLRP3/Caspase1/GSDMD pathway to disrupt colitis-associated carcinogenesis. Funct Integr Genomics 2024; 24:55. [PMID: 38467948 PMCID: PMC10927794 DOI: 10.1007/s10142-024-01334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.
Collapse
Affiliation(s)
- Yili Tao
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Lai Wang
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xin Qian
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Danye Pan
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaoyu Dong
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Qian Jiang
- Digestive Disease Diagnosis and Treatment Center of Integrated Traditional Chinese and Western Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Po Hu
- Department of Pulmonary Diseases, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Brooks EL, Hussain KK, Kotecha K, Abdalla A, Patel BA. Three-Dimensional-Printed Electrochemical Multiwell Plates for Monitoring Food Intolerance from Intestinal Organoids. ACS Sens 2023; 8:712-720. [PMID: 36749605 DOI: 10.1021/acssensors.2c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common symptoms of food intolerance are caused by chemical components within food that have a pharmacological activity to alter the motility of the gastrointestinal tract. Food intolerance is difficult to diagnose as it requires a long-term process of eliminating foods that are responsible for gastrointestinal symptoms. Enterochromaffin (EC) cells are key intestinal epithelium cells that respond to luminal chemical stimulants by releasing 5-HT. Changes in 5-HT levels have been shown to directly alter the motility of the intestinal tract. Therefore, a rapid approach for monitoring the impact of chemicals in food components on 5-HT levels can provide a personalized insight into food intolerance and help stratify diets. Within this study, we developed a three-dimensional (3D)-printed electrochemical multiwell plate to determine changes in 5-HT levels from intestinal organoids that were exposed to varying chemical components found in food. The carbon black/poly-lactic acid (CB/PLA) electrodes had a linear range in physiological concentrations of 5-HT (0.1-2 μM) with a limit of detection of 0.07 μM. The electrodes were stable for monitoring 5-HT overflow from intestinal organoids. Using the electrochemical multiwell plate containing intestinal organoids, increases in 5-HT were observed in the presence of 0.1 mM cinnamaldehyde and 10 mM quercetin but reduction in 5-HT levels was observed in 1 mM sorbitol when compared to control. These changes in the presence of chemicals commonly found in food were verified with ex vivo ileum tissue measurements using chromatography and amperometry with boron-doped diamond electrodes. Overall, our 3D electrochemical multiwell plate measurements with intestinal organoids highlight an approach that can be a high-throughput platform technology for rapid screening of food intolerance to provide personalized nutritional diet.
Collapse
Affiliation(s)
- Emily L Brooks
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khalil K Hussain
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khushboo Kotecha
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| | - Aya Abdalla
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| |
Collapse
|
3
|
Hizay A, Dag K, Oz N, Comak-Gocer EM, Ozbey-Unlu O, Ucak M, Keles-Celik N. Lactobacillus acidophilus regulates abnormal serotonin availability in experimental ulcerative colitis. Anaerobe 2023; 80:102710. [PMID: 36708801 DOI: 10.1016/j.anaerobe.2023.102710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Probiotics are known to play a beneficial role in curing irritable bowel syndrome such as ulcerative colitis. Commensal Lactobacillus species are thought to play a protective role against ulcerative colitis, as they restore homeostasis in intestinal disorders. Abnormal serotonin availability has been described in ulcerative colitis, but the underlying mechanism is still unclear. The aim of this study was to determine the anti-inflammatory role of Lactobacillus acidophilus (L. acidophilus) and its effect on serotonin expression. METHODS Ulcerative colitis was created with the intrarectal administration of acetic acid. A total of 40 adult male rats were divided into five groups of eight rats as control, sham, experimental colitis, treatment (Colitis + L. acidophilus) and protective group (L. acidophilus + colitis). To evaluate the effects of L. acidophilus on serotonin expression in ulcerative colitis, this bacterial strain was administered orally to the rats with acetic acid-induced colitis. After oral administration of L. acidophilus for 14 days, serotonin content was biochemically measured and serotonin expression was evaluated immunohistochemically. RESULTS The expression of serotonin and its protein content was significantly increased in colitis compared to the control and sham groups. Abnormal serotonin availability in the rats with acetic acid-induced colitis was significantly reduced by the L. acidophilus. CONCLUSIONS In our study, it was observed that the amount of serotonin in the intestinal tissue increased excessively with ulcerative colitis. In addition, L.acidophilus has been found to reduce the abnormally increased amount of serotonin in the colon tissue, as well as reduce the inflammation in the intestinal tissue that occurs with ulcerative colitis. With our findings, it is predicted that probiotic application can be used as a treatment option in ulcerative colitis.
Collapse
Affiliation(s)
- Arzu Hizay
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Kubra Dag
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Nuriye Oz
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Emine Mine Comak-Gocer
- Department of Nutrition and Dietetics, Akdeniz University, Faculty of Health Sciences, Antalya, Turkey.
| | - Ozlem Ozbey-Unlu
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Melike Ucak
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Nigar Keles-Celik
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
4
|
Effect of sumatriptan on acetic acid-induced experimental colitis in rats: a possible role for the 5-HT 1B/1D receptors. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:563-577. [PMID: 35171300 DOI: 10.1007/s00210-022-02215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Mucosal inflammation in colitis is associated with changes in the intestinal serotonin (5-HT) level. Sumatriptan, a 5-HT1B/1D receptor agonist, has demonstrated anti-inflammatory characteristics. The purpose of this study was to determine the effects of sumatriptan in a rat model of acute experimental colitis and to elucidate the probable participation of presynaptic 5-HT1B/1D receptors. To induce colitis, acetic acid (4%) was injected intrarectally. Treatments were given intraperitoneally (IP) once daily over 3 consecutive days starting 1-h post-induction. Sumatriptan was given at 0.5, 1, 2, and 5 mg/kg. GR-127935, a 5-HT1B/1D receptor antagonist, was injected (0.1 and 0.3 mg/kg) 30 min prior to the most effective dose of sumatriptan (1 mg/kg). On day 4, the colon samples were isolated. Significant enhancements of the tissue tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), microscopic and macroscopic damages, body weight losses, and also reductions in tissue superoxide dismutase (SOD) and 5-HT were observed in colitis rats. On the other hand, sumatriptan at doses 0.5, 1, and 2 mg/kg could diminish pathologic changes in the measured biomarkers, histopathologic damages, and body weight losses. Although GR-127935 at dose 0.3 mg/kg could markedly improve the pathologic indexes, its sub-effective dose (0.1 mg/kg) reversed the protective effect of sumatriptan (1 mg/kg). Moreover, sumatriptan (1 and 5 mg/kg) and GR-127935 (0.3 mg/kg) increased the serotonin level. Post-treatment with low-dose sumatriptan demonstrated a protective impact on this peripheral inflammatory condition. Notably, this protective effect may be mediated, at least in part, through 5-HT1B/1D receptors, as well as anti-inflammatory and anti-oxidative characteristics.
Collapse
|
5
|
Wei N, Li C, Zhu Y, Zheng P, Hu R, Chen J. Fluoxetine regulates the neuronal differentiation of neural stem cells transplanted into rat brains after stroke by increasing the 5HT level. Neurosci Lett 2022; 772:136447. [PMID: 35007690 DOI: 10.1016/j.neulet.2022.136447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
Fluoxetine, a 5-HT uptake inhibitor, has been adopted for the treatment of post-stroke depression in recent years. It has been confirmed to induce neuronal regeneration in vivo, but its effect on inducing stem cell differentiation after transplantation has not yet been verified. To evaluate its regulatory effect on stem cell differentiation, fluoxetine was used in this study to treat rats with cerebral ischemia after neural stem cell (NSC) transplantation. The results showed that the proportion of NSCs differentiating into neurons significantly increased after fluoxetine treatment. In NSC adherent culture, the addition of 5-HT but not of fluoxetine significantly increased the neuronal differentiation ratio of NSCs. Moreover, the addition of 5-HT2A or 5-HT3A antagonists inhibited this effect. In addition, Western blotting revealed that the increase in 5-HT inhibited ERK2 phosphorylation and upregulated neurogenin1 expression. In conclusion, fluoxetine increased the 5-HT level and promoted neuronal differentiation, thereby upregulating neurogenin1 expression and downregulating ERK2 phosphorylation.
Collapse
Affiliation(s)
- Naili Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Guangdong, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Peiqi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Guangdong, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jian Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Guangdong, China
| |
Collapse
|
6
|
Al Saedi A, Sharma S, Bani Hassan E, Chen L, Ghasem-Zadeh A, Hassanzadeganroudsari M, Gooi JH, Stavely R, Eri R, Miao D, Nurgali K, Duque G. Characterization of Skeletal Phenotype and Associated Mechanisms With Chronic Intestinal Inflammation in the Winnie Mouse Model of Spontaneous Chronic Colitis. Inflamm Bowel Dis 2022; 28:259-272. [PMID: 34347076 DOI: 10.1093/ibd/izab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Osteoporosis is a common extraintestinal manifestation of inflammatory bowel disease (IBD). However, studies have been scarce, mainly because of the lack of an appropriate animal model of colitis-associated bone loss. In this study, we aimed to decipher skeletal manifestations in the Winnie mouse model of spontaneous chronic colitis, which carries a MUC2 gene mutation and closely replicates ulcerative colitis. In our study, Winnie mice, prior to the colitis onset at 6 weeks old and progression at 14 and 24 weeks old, were compared with age-matched C57BL/6 controls. We studied several possible mechanisms involved in colitis-associated bone loss. METHODS We assessed for bone quality (eg, microcomputed tomography [micro-CT], static and dynamic histomorphometry, 3-point bending, and ex vivo bone marrow analysis) and associated mechanisms (eg, electrochemical recordings for gut-derived serotonin levels, real-time polymerase chain reaction [qRT-PCR], double immunofluorescence microscopy, intestinal inflammation levels by lipocalin-2 assay, serum levels of calcium, phosphorus, and vitamin D) from Winnie (6-24 weeks) and age-matched C57BL6 mice. RESULTS Deterioration in trabecular and cortical bone microarchitecture, reductions in bone formation, mineral apposition rate, bone volume/total volume, osteoid volume/bone surface, and bone strength were observed in Winnie mice compared with controls. Decreased osteoblast and increased osteoclast numbers were prominent in Winnie mice compared with controls. Upregulation of 5-HTR1B gene and increased association of FOXO1 with ATF4 complex were identified as associated mechanisms concomitant to overt inflammation and high levels of gut-derived serotonin in 14-week and 24-week Winnie mice. CONCLUSIONS Skeletal phenotype of the Winnie mouse model of spontaneous chronic colitis closely represents manifestations of IBD-associated osteoporosis/osteopenia. The onset and progression of intestinal inflammation are associated with increased gut-derived serotonin level, increased bone resorption, and decreased bone formation.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| | - Shilpa Sharma
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| | - Ebrahim Bani Hassan
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| | - Lulu Chen
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ali Ghasem-Zadeh
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
- Departments of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Kulmira Nurgali
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Gustavo Duque
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Engevik M, Ruan W, Visuthranukul C, Shi Z, Engevik KA, Engevik AC, Fultz R, Schady DA, Spinler JK, Versalovic J. Limosilactobacillus reuteri ATCC 6475 metabolites upregulate the serotonin transporter in the intestinal epithelium. Benef Microbes 2021; 12:583-599. [PMID: 34550056 DOI: 10.3920/bm2020.0216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The serotonin transporter (SERT) readily takes up serotonin (5-HT), thereby regulating the availability of 5-HT within the intestine. In the absence of SERT, 5-HT remains in the interstitial space and has the potential to aberrantly activate the many 5-HT receptors distributed on the epithelium, immune cells and enteric neurons. Perturbation of SERT is common in many gastrointestinal disorders as well as mouse models of colitis. Select commensal microbes regulate intestinal SERT levels, but the mechanism of this regulation is poorly understood. Additionally, ethanol upregulates SERT in the brain and dendritic cells, but its effects in the intestine have never been examined. We report that the intestinal commensal microbe Limosilactobacillus (previously classified as Lactobacillus) reuteri ATCC PTA 6475 secretes 83.4 mM ethanol. Consistent with the activity of L. reuteri alcohol dehydrogenases, we found that L. reuteri tolerated various levels of ethanol. Application of L. reuteri conditioned media or exogenous ethanol to human colonic T84 cells was found to upregulate SERT at the level of mRNA. A 4-(4-(dimethylamino) phenyl)-1-methylpyridinium (APP+) uptake assay confirmed the functional activity of SERT. These findings were mirrored in mouse colonic organoids, where L. reuteri metabolites and ethanol were found to upregulate SERT at the apical membrane. Finally, in a trinitrobenzene sulphonic acid model of acute colitis, we observed that mice treated with L. reuteri maintained SERT at the colon membrane compared with mice receiving phosphate buffered saline vehicle control. These data suggest that L. reuteri metabolites, including ethanol, can upregulate SERT and may be beneficial for maintaining intestinal homeostasis with respect to serotonin signalling.
Collapse
Affiliation(s)
- M Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, 173 Ashely Ave, BSB 626, Charleston, SC 29425, USA
| | - W Ruan
- Department of Pediatrics, Baylor College of Medicine, 6701 Fannin Street, Houston, TX 77030, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6701 Fannin St, Houston, TX 77030, USA
| | - C Visuthranukul
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Pediatric Nutrition Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Z Shi
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - K A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 7703, USA
| | - A C Engevik
- Departments of Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, USA
| | - R Fultz
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, USA
| | - D A Schady
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - J K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - J Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
8
|
Stavely R, Abalo R, Nurgali K. Targeting Enteric Neurons and Plexitis for the Management of Inflammatory Bowel Disease. Curr Drug Targets 2021; 21:1428-1439. [PMID: 32416686 DOI: 10.2174/1389450121666200516173242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are pathological conditions with an unknown aetiology that are characterised by severe inflammation of the intestinal tract and collectively referred to as inflammatory bowel disease (IBD). Current treatments are mostly ineffective due to their limited efficacy or toxicity, necessitating surgical resection of the affected bowel. The management of IBD is hindered by a lack of prognostic markers for clinical inflammatory relapse. Intestinal inflammation associates with the infiltration of immune cells (leukocytes) into, or surrounding the neuronal ganglia of the enteric nervous system (ENS) termed plexitis or ganglionitis. Histological observation of plexitis in unaffected intestinal regions is emerging as a vital predictive marker for IBD relapses. Plexitis associates with alterations to the structure, cellular composition, molecular expression and electrophysiological function of enteric neurons. Moreover, plexitis often occurs before the onset of gross clinical inflammation, which may indicate that plexitis can contribute to the progression of intestinal inflammation. In this review, the bilateral relationships between the ENS and inflammation are discussed. These include the effects and mechanisms of inflammation-induced enteric neuronal loss and plasticity. Additionally, the role of enteric neurons in preventing antigenic/pathogenic insult and immunomodulation is explored. While all current treatments target the inflammatory pathology of IBD, interventions that protect the ENS may offer an alternative avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas
(CSIC), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences,
The University of Melbourne, Melbourne, Victoria, Australia,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Aggarwal S, Ranjha R, Paul J. Neuroimmunomodulation by gut bacteria: Focus on inflammatory bowel diseases. World J Gastrointest Pathophysiol 2021; 12:25-39. [PMID: 34084590 PMCID: PMC8160600 DOI: 10.4291/wjgp.v12.i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes colonize the gastrointestinal tract are considered as highest complex ecosystem because of having diverse bacterial species and 150 times more genes as compared to the human genome. Imbalance or dysbiosis in gut bacteria can cause dysregulation in gut homeostasis that subsequently activates the immune system, which leads to the development of inflammatory bowel disease (IBD). Neuromediators, including both neurotransmitters and neuropeptides, may contribute to the development of aberrant immune response. They are emerging as a regulator of inflammatory processes and play a key role in various autoimmune and inflammatory diseases. Neuromediators may influence immune cell’s function via the receptors present on these cells. The cytokines secreted by the immune cells, in turn, regulate the neuronal functions by binding with their receptors present on sensory neurons. This bidirectional communication of the enteric nervous system and the enteric immune system is involved in regulating the magnitude of inflammatory pathways. Alterations in gut bacteria influence the level of neuromediators in the colon, which may affect the gastrointestinal inflammation in a disease condition. Changed neuromediators concentration via dysbiosis in gut microbiota is one of the novel approaches to understand the pathogenesis of IBD. In this article, we reviewed the existing knowledge on the role of neuromediators governing the pathogenesis of IBD, focusing on the reciprocal relationship among the gut microbiota, neuromediators, and host immunity. Understanding the neuromediators and host-microbiota interactions would give a better insight in to the disease pathophysiology and help in developing the new therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Surbhi Aggarwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Raju Ranjha
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
- Field Unit Raipur, ICMR-National Institute of Malaria Research, Raipur 492015, Chhattisgarh, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
10
|
Suga N, Murakami A, Arimitsu H, Nakamura T, Nakamura Y, Kato Y. Luteolin suppresses 5-hydroxytryptamine elevation in stimulated RBL-2H3 cells and experimental colitis mice. J Clin Biochem Nutr 2021; 69:20-27. [PMID: 34376910 PMCID: PMC8325766 DOI: 10.3164/jcbn.20-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/20/2020] [Indexed: 01/11/2023] Open
Abstract
Increased 5-hydroxytryptamine may be associated with the development and progression of inflammatory bowel disease. In this study, we examined the suppressive effect of flavonoids on the increased intra- and extracellular 5-hydroxytryptamine levels in rat mast RBL-2H3 cells, known to produce 5-hydroxytryptamine by the phorbol 12-myristate 13-acetate stimulation. Among the flavonoids examined, luteolin and quercetin significantly reduced the cellular 5-hydroxytryptamine concentration. Gene and protein expression analyses revealed that luteolin significantly suppressed cellular tryptophan hydroxylase 1 expression induced by phorbol 12-myristate 13-acetate stimulation. Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling was also suppressed by luteolin, suggesting that this pathway is one of targets of 5-hydroxytryptamine modulation by luteolin. An in vivo experimental colitis model was prepared by administering 2.5% dextran sodium sulfate in drinking water to C57BL/6 mice for seven days. The ingestion of 0.1% dietary luteolin suppressed the increasing 5-hydroxytryptamine in the colorectal mucosa. In conclusion, luteolin possesses a suppressive effect on extensive 5-hydroxytryptamine formation in both experimental RBL-2H3 cells and colitis models.
Collapse
Affiliation(s)
- Naoko Suga
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Akira Murakami
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Hideyuki Arimitsu
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
11
|
Jørandli JW, Thorsvik S, Skovdahl HK, Kornfeld B, Sæterstad S, Gustafsson BI, Sandvik AK, van Beelen Granlund A. The serotonin reuptake transporter is reduced in the epithelium of active Crohn's disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2020; 319:G761-G768. [PMID: 32967429 DOI: 10.1152/ajpgi.00244.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin is a highly conserved and ubiquitous signaling molecule involved in a vast variety of biological processes. A majority of serotonin is produced in the gastrointestinal epithelium, where it is suggested to act as a prominent regulatory molecule in the inflammatory bowel diseases (IBDs) Crohn's disease (CD) and ulcerative colitis (UC). Extracellular and circulating serotonin levels are thought to be elevated during intestinal inflammation, but the underlying mechanisms have been poorly understood. The data on human material are limited, contradictory, and in need of further investigation and substantiating. In this study, we show a potent and significant downregulation of the dominant serotonin reuptake transporter (SERT) mRNA (SLC6A4) in the epithelium from active CD ileitis, CD colitis, and UC colitis, compared with healthy controls. The mRNA of tryptophan hydroxylase 1, the rate-limiting enzyme in serotonin synthesis, was unregulated. Immunohistochemistry showed expression of the SERT protein in both the epithelium and the lamina propria and localized the downregulation to the epithelial monolayer. Laser capture microdissection followed by RNA sequencing confirmed downregulation of SLC6A4 in the epithelial monolayer during intestinal inflammation. Patient-derived colon epithelial cell lines (colonoids) incubated with the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) reduced SERT expression. In summary, these results show that intestinal inflammation potently reduces the expression of SERT in both CD and UC and that TNF-α alone is sufficient to induce a similar reduction in colonoids. The reduced serotonin reuptake capacity may contribute to the increased interstitial serotonin level associated with intestinal inflammation.NEW & NOTEWORTHY The serotonin reuptake transporter is potently reduced in inflamed areas of Crohn's ileitis, Crohn's colitis, and ulcerative colitis. The changes are localized to the intestinal epithelium and can be induced by TNF-α. The serotonin synthesis through tryptophan hydroxylase 1 is unchanged. This regulation is suggested as a mechanism underlying the increased extracellular serotonin levels associated with intestinal inflammation.
Collapse
Affiliation(s)
- Jonas Woll Jørandli
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Thorsvik
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benedikt Kornfeld
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Sæterstad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Björn Inge Gustafsson
- Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Engevik MA, Luck B, Visuthranukul C, Ihekweazu FD, Engevik AC, Shi Z, Danhof HA, Chang-Graham AL, Hall A, Endres BT, Haidacher SJ, Horvath TD, Haag AM, Devaraj S, Garey KW, Britton RA, Hyser JM, Shroyer NF, Versalovic J. Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis. Cell Mol Gastroenterol Hepatol 2020; 11:221-248. [PMID: 32795610 PMCID: PMC7683275 DOI: 10.1016/j.jcmgh.2020.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Berkley Luck
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Pediatrics, Pediatric Nutrition Special Task Force for Activating Research (STAR), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Faith D Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Amy C Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
13
|
Najjar SA, Davis BM, Albers KM. Epithelial-Neuronal Communication in the Colon: Implications for Visceral Pain. Trends Neurosci 2020; 43:170-181. [PMID: 31983457 DOI: 10.1016/j.tins.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Visceral hypersensitivity and pain result, at least in part, from increased excitability of primary afferents that innervate the colon. In addition to intrinsic changes in these neurons, emerging evidence indicates that changes in lining epithelial cells may also contribute to increased excitability. Here we review recent studies on how colon epithelial cells communicate directly with colon afferents. Specifically, anatomical studies revealed specialized synaptic connections between epithelial cells and nerve fibers and studies using optogenetic activation of the epithelium showed initiation of pain-like responses. We review the possible mechanisms of epithelial-neuronal communication and provide an overview of the possible neurotransmitters and receptors involved. Understanding the biology of this interface and how it changes in pathological conditions may provide new treatments for visceral pain conditions.
Collapse
Affiliation(s)
- Sarah A Najjar
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian M Davis
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Qin HY, Xavier Wong HL, Zang KH, Li X, Bian ZX. Enterochromaffin cell hyperplasia in the gut: Factors, mechanism and therapeutic clues. Life Sci 2019; 239:116886. [PMID: 31678286 DOI: 10.1016/j.lfs.2019.116886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023]
Abstract
Enterochromaffin (EC) cell is the main cell type that responsible for 5-hydroxytryptamine (5-HT) synthesis, storage and release of the gut. Intestinal 5-HT play a key role in visceral sensation, intestinal motility and permeability, EC cell hyperplasia and increased 5-HT bioavailability in the gut have been found to be involved in the symptoms generation of irritable bowel syndrome and inflammatory bowel disease. EC cells originate from intestinal stem cells, the interaction between proliferation and differentiation signals on intestinal stem cells enable EC cell number to be regulated in a normal level. This review focuses on the impact factors, pathogenesis mechanisms, and therapeutic clues for intestinal EC cells hyperplasia, and showed that EC cell hyperplasia was observed under the condition of physiological stress, intestinal infection or intestinal inflammation, the disordered proliferation and/or differentiation of intestinal stem cells as well as their progenitor cells all contribute to the pathogenesis of intestinal EC cell hyperplasia. The altered intestinal niche, i.e. increased corticotrophin releasing factor (CRF) signal, elevated nerve growth factor (NGF) signal, and Th2-dominant cytokines production, has been found to have close correlation with intestinal EC cell hyperplasia. Currently, CRF receptor antagonist, nuclear factor-κB inhibitor, and NGF receptor neutralizing antibody have been proved useful to attenuate intestinal EC cell hyperplasia, which may provide a promising clue for the therapeutic strategy in EC cell hyperplasia related diseases.
Collapse
Affiliation(s)
- Hong-Yan Qin
- Department of Pharmacy, First Hospital of Lanzhou University, Lanzhou, China
| | - Hoi Leong Xavier Wong
- Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kai-Hong Zang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xun Li
- Fifth Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, China.
| | - Zhao-Xiang Bian
- Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
15
|
Chang-Graham AL, Danhof HA, Engevik MA, Tomaro-Duchesneau C, Karandikar UC, Estes MK, Versalovic J, Britton RA, Hyser JM. Human Intestinal Enteroids With Inducible Neurogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cell Mol Gastroenterol Hepatol 2019; 8:209-229. [PMID: 31029854 PMCID: PMC6664234 DOI: 10.1016/j.jcmgh.2019.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Enteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but because of their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are biologically relevant in an in vitro model of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, similar to the intestine, HIEs spontaneously produce few EECs, which limits their study. METHODS To increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact of NGN3 induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection. RESULTS Treating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, showing increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3-HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types. CONCLUSIONS We have combined HIEs and inducible-NGN3 expression to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs.
Collapse
Affiliation(s)
- Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Heather A Danhof
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Melinda A Engevik
- Department of Pathology and Immunology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Catherine Tomaro-Duchesneau
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
16
|
Zhu MJ, Yang ZJ, Wang FF, Di ZS, Wang YX, Li LS, Xu JD. Enterochromaffin cells and gastrointestinal diseases. Shijie Huaren Xiaohua Zazhi 2019; 27:117-124. [DOI: 10.11569/wcjd.v27.i2.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterochromaffin cells (ECs), known for their special histochemical characteristics, originate from enteroblasts. For their important role in physiological and pathophysiological conditions, ECs in the gut could synthesize and secrete about 95% of 5-hydroxytryptamine (5-HT) in the body, which is an important humoral factor. As a chemosensor, ECs can regulate nutrition absorption and satiety through the sensory neural pathways. In addition, ECs participate in immune regulation. What's more, ECs and 5-HT are closely related to many kinds of gastrointestinal diseases.
Collapse
Affiliation(s)
- Min-Jia Zhu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Zhi-Shan Di
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Yue-Xiu Wang
- International College, Capital Medical University, Beijing 100069, China
| | - Li-Sheng Li
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Lavoie B, Roberts JA, Haag MM, Spohn SN, Margolis KG, Sharkey KA, Lian JB, Mawe GM. Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res 2018; 140:75-84. [PMID: 30030171 PMCID: PMC6336528 DOI: 10.1016/j.phrs.2018.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
Osteoporosis and bone fractures occur at higher frequency in patients with inflammatory bowel disease (IBD), and decreased bone mass is observed in animal models of colitis. Another consistent feature of colitis is increased serotonin (5-HT) availability in the intestinal mucosa. Since gut-derived 5-HT can decrease bone mass, via activation of 5-HT1B receptors on pre-osteoblasts, we tested the hypothesis that 5-HT contributes to bone loss in colitis. Colitis was chronically induced in mice by adding dextran sodium sulfate (DSS) to their drinking water for 21 days. At day 21, circulating 5-HT levels were elevated in DSS-inflamed mice. Micro-computed tomography of femurs showed a decrease in trabecular bone volume fraction, formation, and surface area, due largely to decreased trabecular numbers in DSS-treated mice. The colitis-induced loss of trabecular bone was significantly suppressed in mice treated with the 5-HT synthesis inhibitor, p-chloro-DL-phenylalanine (PCPA; 300 mg/kg/day IP daily), and in mice treated with the 5-HT1B receptor antagonist GR55562 (1 mg/Kg/day SC daily). The 5-HT reuptake transporter (SERT) is critical for moving 5-HT from the interstitial space into enterocytes and from serum into platelets. Mice lacking SERT exhibited significant deficits in trabecular bone mass that are similar to those observed in DSS-inflamed mice, and these deficits were not extensively worsened by DSS-induced colitis in the SERT-/- mice. Taken together, findings from both the DSS and SERT-/- mouse models support a contributing role for 5-HT as a significant factor in bone loss induced by colitis.
Collapse
Affiliation(s)
- B Lavoie
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA.
| | - J A Roberts
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - M M Haag
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - S N Spohn
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - K G Margolis
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - K A Sharkey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - J B Lian
- Department of Biochemistry, The University of Vermont, Burlington, VT, USA
| | - G M Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Stavely R, Fraser S, Sharma S, Rahman AA, Stojanovska V, Sakkal S, Apostolopoulos V, Bertrand P, Nurgali K. The Onset and Progression of Chronic Colitis Parallels Increased Mucosal Serotonin Release via Enterochromaffin Cell Hyperplasia and Downregulation of the Serotonin Reuptake Transporter. Inflamm Bowel Dis 2018; 24:1021-1034. [PMID: 29668991 DOI: 10.1093/ibd/izy016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) has been linked with several inflammation-associated intestinal diseases, including ulcerative colitis (UC). The largest pool of 5-HT in the body is in enterochromaffin (EC) cells located throughout the intestinal tract. EC cells are mechanosensitive and detect noxious stimuli, inducing secretion of 5-HT, which plays an important role in enteric reflexes and immunomodulation. In this study, we evaluated intestinal 5-HT levels in the Winnie mouse model of spontaneous chronic colitis, which closely replicates UC. METHODS Real-time electrochemical recordings of 5-HT oxidation currents were obtained from ex vivo preparations of jejunum, ileum, proximal, and distal colon from Winnie (5-25 weeks old) and age matched C57BL/6 mice. EC cells were examined by immunohistochemistry, and the gene expression of tryptophan hydroxylase 1 (5-HT synthesis) and the serotonin reuptake transporter (SERT) were determined by quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). RESULTS Compression-evoked and basal 5-HT concentrations were elevated in the distal and proximal colon of Winnie mice. EC cell hyperplasia and downregulation of SERT on the transcriptional level were identified as mechanisms underlying increased levels of 5-HT. Increase in mucosal 5-HT release was observed at the onset of disease at 7-14 weeks, confirmed by disease activity scores. Furthermore, increases in 5-HT levels and progression of disease activity correlated linearly with age, but not sex. CONCLUSIONS Our findings in the Winnie mouse model of spontaneous chronic colitis demonstrate for the first time that the onset and progression of chronic UC-like intestinal inflammation is associated with increased 5-HT levels in the colonic mucosa.
Collapse
Affiliation(s)
- Rhian Stavely
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Sarah Fraser
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Shilpa Sharma
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Hudson Institute of Medical Research; Monash Health Translation Precinct, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Paul Bertrand
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| |
Collapse
|
19
|
MacEachern SJ, Keenan CM, Papakonstantinou E, Sharkey KA, Patel BA. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis. Br J Pharmacol 2018; 175:1535-1547. [PMID: 29447434 DOI: 10.1111/bph.14163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/16/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. EXPERIMENTAL APPROACH Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. KEY RESULTS We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. CONCLUSION AND IMPLICATIONS Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton, UK.,Centre for Stress and Age-related Diseases, University of Brighton, Huxley Building, Brighton, UK
| |
Collapse
|
20
|
Patel N, Fagan-Murphy A, Covill D, Patel BA. 3D Printed Molds Encompassing Carbon Composite Electrodes To Conduct Multisite Monitoring in the Entire Colon. Anal Chem 2017; 89:11690-11696. [DOI: 10.1021/acs.analchem.7b03148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nirav Patel
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| | - Aidan Fagan-Murphy
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| | - Derek Covill
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| | - Bhavik Anil Patel
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| |
Collapse
|
21
|
Coates MD, Tekin I, Vrana KE, Mawe GM. Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46:569-580. [PMID: 28737264 DOI: 10.1111/apt.14226] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/10/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of every major gut-related function. Recent investigations also suggest that 5-HT can influence the development and severity of inflammation within the gut, particularly in the setting of inflammatory bowel disease (IBD). AIM To review the roles that the intestinal serotonin signalling system plays in gut function, with a specific focus on IBD. METHODS We reviewed manuscripts from 1952 to 2017 that investigated and discussed roles for 5-HT signalling in gastrointestinal function and IBD, as well as the influence of inflammation on 5-HT signalling elements within the gut. RESULTS Inflammation appears to affect every major element of intestinal 5-HT signalling, including 5-HT synthesis, release, receptor expression and reuptake capacity. Importantly, many studies (most utilising animal models) also demonstrate that modulation of selective serotonergic receptors (via agonism of 5-HT4 R and antagonism of 5-HT3 R) or 5-HT signal termination (via serotonin reuptake inhibitors) can alter the likelihood and severity of intestinal inflammation and/or its complicating symptoms. However, there are few human studies that have studied these relationships in a targeted manner. CONCLUSIONS Insights discussed in this review have strong potential to lead to new diagnostic and therapeutic tools to improve the management of IBD and other related disorders. Specifically, strategies that focus on modifying the activity of selective serotonin receptors and reuptake transporters in the gut could be effective for controlling disease activity and/or its associated symptoms. Further studies in humans are required, however, to more completely understand the pathophysiological mechanisms underlying the roles of 5-HT in this setting.
Collapse
Affiliation(s)
- M D Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - I Tekin
- Neuroscience Institute, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - K E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - G M Mawe
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
22
|
Dong Y, Han Y, Wang Z, Qin Z, Yang C, Cao J, Chen Y. Role of serotonin on the intestinal mucosal immune response to stress-induced diarrhea in weaning mice. BMC Gastroenterol 2017; 17:82. [PMID: 28633646 PMCID: PMC5479009 DOI: 10.1186/s12876-017-0634-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During weaning, babies and young animal often experience diarrhea from food intolerance and/or decreasing levels of maternal antibodies, and diarrhea tends to be particularly severe during the early-weaned period, which often exhibits an underdeveloped immune system, a disturbed gut environment and results in nutrient malabsorption and dehydration. It was deduced that neuroendocrine might have close relation with diarrhea, especially 5-HT. METHODS To explore the role of serotonin (5-HT) in weaning mice subjected to stress-induced diarrhea, 21-day-old weaned mice were divided into the following groups: control group, stress-induced diarrhea group (restrained by binding the hind limbs and intragastric administration of folium sennae with 0.4 g/mL, 15 mL/kg body weight) and para-chlorophenylalanine (PCPA) + stress-induced diarrhea group (30 mg/mL, 300 mg/kg body weight PCPA intraperitoneal injection before stress-induced diarrhea treatment). RESULTS Based on results from enzyme-linked immunosorbent assays, histological staining, lymphocyte proliferation assays and flow cytometry analysis, we found that the mice experienced increases in several stress markers, which coincided with severe diarrhea and an increase in 5-HT levels. However, pre-treatment with PCPA resulted in a decrease in the stress indicators and the severity of diarrhea, which correlated with decreased 5-HT levels. Interestingly, stress-induced diarrhea caused changes in various aspects of the immune system, including the amount of intraepithelium lymphocytes, CD4+/CD8+ T lymphocyte populations, B and T lymphocyte proliferation, and the secretion of sIgA and cytokines in the small intestine and ileum. However, these immune system changes could be reversed upon treatment with PCPA. CONCLUSIONS We observed a distinct correlation between 5-HT levels and the occurrence of stress-induced diarrhea in weaning mice, which may result in the deregulation of the mucosal immune system.
Collapse
Affiliation(s)
- Yulan Dong
- Laboratory of Veterinary Anatomy, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Yanan Han
- Laboratory of Veterinary Anatomy, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Zixu Wang
- Laboratory of Veterinary Anatomy, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Zhuoming Qin
- Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Chenyu Yang
- Laboratory of Veterinary Anatomy, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Jing Cao
- Laboratory of Veterinary Anatomy, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Yaoxing Chen
- Laboratory of Veterinary Anatomy, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| |
Collapse
|
23
|
Latorre E, Layunta E, Grasa L, Castro M, Pardo J, Gomollón F, Alcalde AI, Mesonero JE. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation. PLoS One 2016; 11:e0169303. [PMID: 28033388 PMCID: PMC5199115 DOI: 10.1371/journal.pone.0169303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023] Open
Abstract
TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.
Collapse
Affiliation(s)
- Eva Latorre
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- RNA—Mediated Mechanisms of Disease, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School. Exeter. United Kingdom
- * E-mail:
| | - Elena Layunta
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Laura Grasa
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Marta Castro
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Julián Pardo
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Gomollón
- Servicio de Sistema Digestivo. Hospital Clínico Universitario "Lozano Blesa", Instituto de Investigación Sanitaria de Aragón (IIS); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Zaragoza, Spain
| | - Ana I. Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - José E. Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| |
Collapse
|
24
|
Dong Y, Yang C, Wang Z, Qin Z, Cao J, Chen Y. The injury of serotonin on intestinal epithelium cell renewal of weaned diarrhoea mice. Eur J Histochem 2016; 60:2689. [PMID: 28076934 PMCID: PMC5381531 DOI: 10.4081/ejh.2016.2689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/30/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023] Open
Abstract
Diarrhoea is a common cause of death in children and weaned animals. Recent research has found that serotonin (5-HT) in the gastrointestinal tract plays an important role in regulating growth and the maintenance of mucosa, which protect against diarrhoea. To determine the influence of 5-HT on intestinal epithelium cell renewal under weaned stress diarrhoea, a weaned-stress diarrhoea mouse model was established with senna infusion (15 mL/Kg) via intragastric administration and stress restraint (SR). Mice with an increase in 5-HT were induced by intraperitoneal injection with citalopram hydrobromide (CH, 10 mg/Kg). The results demonstrated that compared with the control animals, diarrhoea appeared in weaned stress mice and the 5-HT content in the small intestine was significantly increased (P<0.05). Further, the caspase-3 cells and cells undergoing apoptosis in the small intestine were significantly increased, but the VH (villus height), V/C (villus height /crypt depth), and PCNA-positive rate significantly decreased. Compared with the control animals, CH increased the intestinal 5-HT content, caspase-3 cells and cells undergoing apoptosis but decreased the VH and V/C. Compared with both control and weaned stress animals, weaned stress animals that were pre-treated with CH showed higher 5-HT concentrations, positive caspase-3 cells and cells undergoing apoptosis but lower VH, V/C and PCNA-positive rate. In vitro, a low concentration of 5-HT inhibit, IEC-6 cell line apoptosis but a higher concentration of 5-HT promoted it. Therefore, weaned stress diarrhoea mice were accompanied by a 5-HT increase in the small intestine and vice versa, and the increase in 5-HT induced by CH caused diarrhoea. In brief, 5-HT and diarrhoea slowed the intestinal epithelium cell renewal and injured the abortion function and mucosal barrier by decreasing VH, V/C and proliferation and increasing epithelium cell apoptosis.
Collapse
Affiliation(s)
- Y Dong
- China Agricultural University.
| | | | | | | | | | | |
Collapse
|
25
|
Kaneko Y, Onda N, Watanabe Y, Shibutani M. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections. Eur J Histochem 2016; 60:2684. [PMID: 27734992 PMCID: PMC5062634 DOI: 10.4081/ejh.2016.2684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) produced by enterochromaffin (EC) cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of fluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of fluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between fluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Fluorescence+ EC cells were detected in the colon of mice and rats. Fluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or fluorescence. These results suggest that fluorescence+ cells are identical to 5-HT+ cells, and the source of fluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This fluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.
Collapse
|
26
|
Serotonin-Exacerbated DSS-Induced Colitis Is Associated with Increase in MMP-3 and MMP-9 Expression in the Mouse Colon. Mediators Inflamm 2016; 2016:5359768. [PMID: 27478308 PMCID: PMC4949340 DOI: 10.1155/2016/5359768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/24/2016] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
Background. 5-HT enhances dextran sulfate sodium- (DSS-) induced colitis and is involved in inflammatory bowel disease (IBD). Matrix metalloproteinases (MMPs) play roles in the process of intestinal inflammation. Aims. To examine whether 5-HT induces MMPs expression in mouse colon to enhance DSS-induced colitis. Materials and Methods. C57BL/6J (B6) mice were treated with either low-dose (1.0 mg/kg) or high-dose (2.0 mg/kg) 5-HT by enema, low-dose (1.0%) or high-dose (2.5%) DSS, or combined low-dose (1.0%) DSS and (1.0 mg/kg) 5-HT. Mouse colitis was analyzed. MMPs and tissue inhibitors of MMPs (TIMPs) mRNA were measured by real-time quantitative RT-PCR in mouse colon and in human Caco-2 cells and neutrophils. MMP-3 and MMP-9 protein levels were quantified from immunohistochemistry (IHC) images of mouse colons. Results. 5-HT exacerbated DSS-induced colitis, low-dose 5-HT induces both MMP-3 and MMP-9, and high-dose 5-HT only increased MMP-3 mRNA expression in mouse colon. Mouse colon MMP-3 and MMP-9 protein levels were also elevated by 5-HT treatment. The MMP-2, TIMP-1, and TIMP-2 mRNA levels were increased in the inflamed colon. 5-HT induced MMP-3 and MMP-9 mRNA expression in Caco-2 and human neutrophils, respectively, in vitro. Conclusion. 5-HT induced MMP-3 and MMP-9 expression in mouse colon; these elevated MMPs may contribute to DSS-induced colitis.
Collapse
|
27
|
Utsumi D, Matsumoto K, Amagase K, Horie S, Kato S. 5-HT3 receptors promote colonic inflammation via activation of substance P/neurokinin-1 receptors in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 2016; 173:1835-49. [PMID: 26990520 DOI: 10.1111/bph.13482] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT (serotonin) regulates various physiological functions, both directly and via enteric neurons. The present study investigated the role of endogenous 5-HT and 5-HT3 receptors in the pathogenic mechanisms involved in colonic inflammation, especially in relation to substance P (SP) and the neurokinin-1 (NK1 ) receptor. EXPERIMENTAL APPROACH The effects of 5-HT3 and NK1 receptor antagonists were examined in dextran sulphate sodium (DSS)-induced colitis in mice. Inflammatory mediator expression and the distribution of 5-HT3 and NK1 receptors were also determined. KEY RESULTS Daily administration of ramosetron and ondansetron (5-HT3 antagonists) dose-dependently attenuated the severity of DSS-induced colitis and up-regulation of inflammatory mediator expression. Immunohistochemical analysis showed 5-HT3 receptors are mainly expressed in vesicular ACh transporter-positive cholinergic nerve fibres in normal colon. DSS increased the number of colonic nerve fibres that were double positive for 5-HT3 receptors and SP but not of those that were double positive for 5-HT3 receptors and vesicular ACh transporter. DSS increased colonic SP levels and SP-positive nerve fibres; these responses were attenuated by ramosetron. DSS-induced colitis and up-regulation of inflammatory mediators were attenuated by aprepitant, an NK1 antagonist. Immunohistochemical studies further revealed that DSS treatment markedly increased NK1 receptor expression in CD11b-positive cells. CONCLUSIONS AND IMPLICATIONS These findings indicate that the 5-HT/5-HT3 receptor and SP/NK1 receptor pathways play pathogenic roles in colonic inflammation. 5-HT acts via 5-HT3 receptors to up-regulate inflammatory mediators and promote colonic inflammation. These effects may be further mediated by activation of macrophage NK1 receptors via SP released from 5-HT3 receptor-positive nerve fibres.
Collapse
Affiliation(s)
- Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
28
|
Terry N, Margolis KG. Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:319-342. [PMID: 28035530 DOI: 10.1007/164_2016_103] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is best known as a neurotransmitter critical for central nervous system (CNS) development and function. 95% of the body's serotonin, however, is produced in the intestine where it has been increasingly recognized for its hormonal, autocrine, paracrine, and endocrine actions. This chapter provides the most current knowledge of the critical autocrine and paracrine roles of 5-HT in intestinal motility and inflammation as well as its function as a hormone in osteocyte homeostasis. Therapeutic applications in each of these areas are also discussed.
Collapse
Affiliation(s)
- Natalie Terry
- Division of Pediatric Gastroenterology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kara Gross Margolis
- Division of Pediatric Gastroenterology, Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
29
|
Raghupathi R, Jessup CF, Lumsden AL, Keating DJ. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles. J Cell Physiol 2015; 231:1593-600. [PMID: 26574734 DOI: 10.1002/jcp.25256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles.
Collapse
Affiliation(s)
- Ravinarayan Raghupathi
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
30
|
Abstract
BACKGROUND The intestine is known to contain enteric neuronal progenitors, but their precise identity and the mechanisms that activate them remain unknown. Based on the evidence for the neurogenic role of serotonin (5-HT) in the postnatal gut and the observation of enteric neuronal hyperplasia in inflammatory bowel disease, we hypothesized that colitis induces a neurogenic response through 5-HT4 receptor signaling. METHODS We examined the effects of 5-HT4 agonism on colonic neurogenesis and gliogenesis in vitro and in vivo in adult mice using dextran sodium sulfate to experimentally induce colitis. RESULTS In vitro, 5-HT4 agonism led to increased neuronal proliferation and density. Induction of experimental colitis in vivo similarly resulted in increased numbers of myenteric neurons, and this was inhibited by 5-HT4 antagonism. Interestingly, both in vitro and in vivo, 5-HT4 signaling increased glial cell proliferation but did not increase glial cell numbers, leading us to hypothesize that glia may give rise to neurons. After induction of colitis in normal, Nestin-GFP and Sox2-GFP transgenic mice, it was revealed that multiple glial markers (Sox2, Nestin, and CD49b) became strongly expressed by enteric neurons. Immunoselected enteric glia were found to give rise to neurons in culture, and this was inhibited in the presence of 5-HT4 blockade. Finally, isolated glia gave rise to a neuronal network upon transplantation into aganglionic embryonic avian hindgut. CONCLUSIONS These results show that colitis promotes enteric neurogenesis in the adult colon through a serotonin-dependent mechanism that drives glial cells to transdifferentiate into neurons.
Collapse
|
31
|
Martín R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Sokol H, Theodorou V, Bercik P, Verdu EF, Langella P, Bermúdez-Humarán LG. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 2015; 15:67. [PMID: 25888448 PMCID: PMC4391109 DOI: 10.1186/s12866-015-0400-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/02/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The human gut houses one of the most complex and abundant ecosystems composed of up to 10(13)-10(14) microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated. RESULTS No significant differences were observed in classical inflammation markers confirming that inflammation was subclinical. However, gut permeability, colonic serotonin levels and the colonic levels of the cytokines IL-6, INF-γ, IL-4 and IL-22 were higher in DNBS-treated than in untreated mice. Importantly, mice treated with either F. prausnitzii or its SN exhibited significant decreases in intestinal permeability, tissue cytokines and serotonin levels. CONCLUSIONS Our results show that F. prausnitzii and its SN had beneficial effects on intestinal epithelial barrier impairment in a chronic low-grade inflammation model. These observations confirm the potential of this bacterium as a novel probiotic treatment in the management of gut dysfunction and low-grade inflammation.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Sylvie Miquel
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Florian Chain
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Jane M Natividad
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Jennifer Jury
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Harry Sokol
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,INSERM, Equipe AVENIR U1057 / UMR CNRS 7203, 75012, Paris, France. .,Department of Gastroenterology and Nutrition, AP-HP, Hôpital Saint-Antoine F-75012 and UPMC Univ Paris 06F-75005, Paris, France.
| | - Vassilia Theodorou
- INRA, Neuro-Gastroenterology and Nutrition Team, UMR 1331 Toxalim, F-31931, Toulouse, France.
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
32
|
SCHOFFEN JOÃOPAULOF, VICENTINI FERNANDOA, MARCELINO CAROLINAG, ARAÚJO EDUARDOJ, PEDROSA MARIAM, NATALI MARIAR. Food restriction beginning at lactation interferes with the cellular dynamics of the mucosa and colonic myenteric innervation in adult rats. AN ACAD BRAS CIENC 2014; 86:1833-48. [DOI: 10.1590/0001-3765201420140163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/30/2014] [Indexed: 01/12/2023] Open
Abstract
The effects of food restriction (FR) on the morphoquantitative aspects of the wall and myenteric neurons of the proximal colon in adult rats were analysed. FR was imposed by duplication of the experimental brood size in relation to the control brood during lactation. The FR group received a 50% reduction of food from weaning until 90 days of age. Samples of the colon underwent histological processing to morphometrically analyze the crypts, muscularis mucosae, tunica mucosa, and muscularis externa. We determined the number of goblet cells and serotoninergic enteroendocrine cells, and morphoquantitatively studied the myenteric neuronal population. FR caused hypertrophy in the tunica mucosa, increase in crypt depth and in the muscular layer of the mucosa, a decrease in the thickness of the tunica muscularis and in the number of goblet cells and an increase in serotoninergic cells. A higher neuronal density in the ganglia and a reduction of the cell profile area were observed in the FR group. FR imposed since lactation led to hypertrophy of the tunica mucosa, a reduction of neutral mucin production, atrophy of the tunica muscularis, and an increase in the survival neuronal in adult rats, attributable to an increase in the number of serotoninergic enteroendocrine cells in mucosa.
Collapse
|
33
|
Matsumoto K. [Immunohistochemical analysis of altered serotonin signaling and transient receptor potential vanilloid 1 channels in experimental colitis mice]. YAKUGAKU ZASSHI 2014; 134:1165-70. [PMID: 25366913 DOI: 10.1248/yakushi.14-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary afferent nerve fibers are highly associated with visceral hypersensitivity state of inflammatory bowel disease. Hypersensitivity of afferent fibers occurs during inflammation, and therefore to gain insight into the alteration of receptors and channels, we examined receptors such as 5-HT receptors and transient receptor potential vanilloid type 1 (TRPV1), which are expressed in primary afferent neurons. The current study was designed to investigate the time-dependent dynamic changes of 5-HT3 receptors, 5-HT4 receptors, TRPV1 channels, and 5-HT regulatory factors in DSS-induced colitis model mice. Colitis was induced by 3% dextran sulfate sodium (DSS) solution given as drinking water in C57BL/6J mice. Immunohistochemical analysis and visceromotor responses to colorectal distension were measured during induction of DSS colitis (day 0, 4 and 7). Progress of the inflammation led to down regulation of serotonin transporter immunoreactivities with concomitant increases in 5-HT and tryptophan hydroxylase-1 positive cell numbers. TRPV1-expressing nerve fibers gradually increased during DSS treatment. Abundant non-neuronal TRPV1-immunopositive cell like structure was observed on day 7 of DSS treatment, but not on day 4. The number of 5-HT3 receptor-expressing nerve fibers increased in mucosa on day 7. On the other hand, 5-HT4 receptor-expressing nerve fibers decreased on day 7. TRPV1 antagonist and 5-HT3 receptor antagonist attenuated the visceral hyperalgesia to control level in the DSS-induced colitis model. We made the novel observations of increased neuronal/non-neuronal TRPV1 channel and 5-HT3 receptor expression, and decreased 5-HT4 receptor expression in mucosa. Moreover, we show that a correlation existed between the mucosal changes and visceral hypersensitivity in experimental colitis.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University
| |
Collapse
|
34
|
Martín R, Chain F, Miquel S, Natividad JM, Sokol H, Verdu EF, Langella P, Bermúdez-Humarán LG. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Hum Vaccin Immunother 2014; 10:1611-21. [PMID: 24732667 DOI: 10.4161/hv.28549] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Florian Chain
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Sylvie Miquel
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Jane M Natividad
- Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada
| | - Harry Sokol
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France; Department of Gastroenterology and Nutrition; AP-HP; Hôpital Saint-Antoine F-75012 and UPMC Univ Paris; Paris, France; INSERM; Equipe AVENIR U1057 / UMR CNRS 7203; Paris, France
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada
| | - Philippe Langella
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- INRA; Commensal and Probiotics-Host Interactions Laboratory; UMR 1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR1319 Micalis; Jouy-en-Josas, France
| |
Collapse
|
35
|
Abstract
Serotonin (5-hydroxytryptamine; 5-HT), a well-characterized neurotransmitter in the central nervous system, plays a crucial role in regulating mood, body temperature, sleep, appetite, and metabolism. Serotonin is synthesized in the serotonergic neuron of the central nervous system; however, approximately 90% of serotonin is synthesized and localized in the gastrointestinal (GI) tract, especially in the enterochromaffin (EC) cells. In the GI tract, serotonin mediates control over a variety of physiological functions such as contraction/relaxation of smooth muscle, and peristaltic and secretory reflexes, directly or indirectly through intrinsic primary afferent neurons. The receptors mediating the action of serotonin are mainly classified into 7 major groups known as the 5-HT1 to 5-HT7 receptors. The 5-HT3 receptor is distinguished from among the other 5-HT receptor subtypes because it is only a ligand-gated ion channel, whereas the other subtypes serve as G protein-coupled receptors. The 5-HT3 receptor, which is generally considered to be localized in the central and peripheral nervous systems, is involved in processes associated with emotion, cognition, memory, pain perception, and GI functions including secretion and motility. Recently, an increasing number of findings have provided evidence of the important role of the 5-HT3 receptor in the regulation of inflammatory and immune responses. In fact, several 5-HT3 receptor antagonists have been reported to ameliorate intestinal inflammation. Therefore, this review focuses on the role of 5-HT3 receptors in the pathogenesis of intestinal inflammation.
Collapse
Affiliation(s)
- Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| |
Collapse
|
36
|
de Theije CG, Wu J, Koelink PJ, Korte-Bouws GA, Borre Y, Kas MJ, Lopes da Silva S, Korte SM, Olivier B, Garssen J, Kraneveld AD. Autistic-like behavioural and neurochemical changes in a mouse model of food allergy. Behav Brain Res 2014; 261:265-74. [DOI: 10.1016/j.bbr.2013.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/01/2023]
|
37
|
Patel BA. Mucosal adenosine triphosphate mediates serotonin release from ileal but not colonic guinea pig enterochromaffin cells. Neurogastroenterol Motil 2014; 26:237-46. [PMID: 24188286 DOI: 10.1111/nmo.12254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mechanical stimulation of the mucosal epithelium results in increased serotonin (5-HT) release from enterochromaffin (EC) cells. Little is known about how this process varies in different regions of the intestinal tract; however, purines are felt to play a role. We studied the relationship between mechanical stimulation, adenosine triphosphate (ATP), and 5-HT release from ileal and colonic mucosal tissue. METHODS Amperometric recordings of ATP and 5-HT were carried out using an ATP biosensor and boron-doped diamond microelectrode. Levels of extracellular ATP and 5-HT were monitored using high performance liquid chromatography. KEY RESULTS Under basal conditions, 5-HT levels were significantly decreased in the ileum (p < 0.001) but not the colon in the presence of the P2 antagonist suramin (100 μM). Ecto-ATPase inhibitor ARL67156 (10 μM) elevated ATP levels in the ileum and colon (both p < 0.001), but only 5-HT levels in the ileum (p < 0.001). Exogenous ATP increased 5-HT release in the presence of tetrodotoxin in the ileum (p < 0.001), but had not effect in the colon. Mechanical stimulation increased levels of 5-HT in the ileum (p < 0.001) and colon (p < 0.01), but levels returned to baseline in the presence of suramin and MRS2179 in the ileum. The onset of 5-HT release was delayed following mechanical stimulation. The rise time of the ATP response was quicker than that of 5-HT during mechanical stimulation. CONCLUSIONS & INFERENCES During mechanical stimulation of the mucosal epithelium, ATP mediates 5-HT release from EC cells in the ileum, but not the colon. Mucosal 5-HT signaling following mechanical stimulation is varied in different regions of the intestinal tract.
Collapse
Affiliation(s)
- B A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
38
|
Raghupathi R, Duffield MD, Zelkas L, Meedeniya A, Brookes SJH, Sia TC, Wattchow DA, Spencer NJ, Keating DJ. Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J Physiol 2013; 591:5959-75. [PMID: 24099799 PMCID: PMC3872764 DOI: 10.1113/jphysiol.2013.259796] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/02/2013] [Indexed: 12/21/2022] Open
Abstract
The major source of serotonin (5-HT) in the body is the enterochromaffin (EC) cells lining the intestinal mucosa of the gastrointestinal tract. Despite the fact that EC cells synthesise ∼95% of total body 5-HT, and that this 5-HT has important paracrine and endocrine roles, no studies have investigated the mechanisms of 5-HT release from single primary EC cells. We have developed a rapid primary culture of guinea-pig and human EC cells, allowing analysis of single EC cell function using electrophysiology, electrochemistry, Ca(2+) imaging, immunocytochemistry and 3D modelling. Ca(2+) enters EC cells upon stimulation and triggers quantal 5-HT release via L-type Ca(2+) channels. Real time amperometric techniques reveal that EC cells release 5-HT at rest and this release increases upon stimulation. Surprisingly for an endocrine cell storing 5-HT in large dense core vesicles (LDCVs), EC cells release 70 times less 5-HT per fusion event than catecholamine released from similarly sized LDCVs in endocrine chromaffin cells, and the vesicle release kinetics instead resembles that observed in mammalian synapses. Furthermore, we measured EC cell density along the gastrointestinal tract to create three-dimensional (3D) simulations of 5-HT diffusion using the minimal number of variables required to understand the physiological relevance of single cell 5-HT release in the whole-tissue milieu. These models indicate that local 5-HT levels are likely to be maintained around the activation threshold for mucosal 5-HT receptors and that this is dependent upon stimulation and location within the gastrointestinal tract. This is the first study demonstrating single cell 5-HT release in primary EC cells. The mode of 5-HT release may represent a unique mode of exocytosis amongst endocrine cells and is functionally relevant to gastrointestinal sensory and motor function.
Collapse
Affiliation(s)
- Ravinarayan Raghupathi
- D. Keating: Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Road, Adelaide, 5001, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yasuda M, Kato S, Yamanaka N, Iimori M, Matsumoto K, Utsumi D, Kitahara Y, Amagase K, Horie S, Takeuchi K. 5-HT₃ receptor antagonists ameliorate 5-fluorouracil-induced intestinal mucositis by suppression of apoptosis in murine intestinal crypt cells. Br J Pharmacol 2013; 168:1388-400. [PMID: 23072534 DOI: 10.1111/bph.12019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/23/2012] [Accepted: 10/02/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapeutic agents, including 5-fluorouracil (5-FU), frequently cause intestinal mucositis resulting in severe diarrhoea and morphological mucosal damage. 5-HT₃ receptor antagonists are clinically effective in the treatment of nausea and emesis during cancer chemotherapy. Therefore we here have examined the effects of 5-HT₃ receptor antagonists on 5-FU-induced intestinal mucositis in mice. EXPERIMENTAL APPROACH Intestinal mucositis was induced in male C57BL/6 mice by daily administration of 5-FU (50 mg·kg⁻¹) for 5 days. Effects of 5-HT₃ receptor antagonists, ramosetron (0.01-0.1 mg·kg⁻¹) and ondansetron (5 mg·kg⁻¹), on the accompanying histology, cytokine production and apoptosis were assessed. KEY RESULTS Continuous administration of 5-FU to mice caused severe intestinal mucositis, which was histologically characterized by the shortening of villi and destruction of intestinal crypts, accompanied by body weight loss and diarrhoea. Daily ramosetron administration dose-dependently reduced the severity of intestinal mucositis, body weight loss and diarrhoea. Similar beneficial effects were observed with ondansetron. The number of apoptotic, caspase-3- and caspase-8-activated cells increased 24 h after the first 5-FU administration, and these responses were reduced by ramosetron. The up-regulation of TNF-α, IL-1β and IL-6 following 5-FU treatment was also attenuated by ramosetron. CONCLUSIONS AND IMPLICATIONS 5-HT₃ receptor antagonists ameliorated 5-FU-induced intestinal mucositis in mice, and this action could result from suppression of apoptotic responses in the intestinal crypt cells via inhibition of cytokine expression. Thus, 5-HT₃ receptor antagonists may be useful for preventing not only nausea and emesis but also intestinal mucositis during 5-FU chemotherapy.
Collapse
Affiliation(s)
- M Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Serotonin (5-HT) has been recognized for decades as an important signalling molecule in the gut, but it is still revealing its secrets. Novel gastrointestinal functions of 5-HT continue to be discovered, as well as distant actions of gut-derived 5-HT, and we are learning how 5-HT signalling is altered in gastrointestinal disorders. Conventional functions of 5-HT involving intrinsic reflexes include stimulation of propulsive and segmentation motility patterns, epithelial secretion and vasodilation. Activation of extrinsic vagal and spinal afferent fibres results in slowed gastric emptying, pancreatic secretion, satiation, pain and discomfort, as well as nausea and vomiting. Within the gut, 5-HT also exerts nonconventional actions such as promoting inflammation and serving as a trophic factor to promote the development and maintenance of neurons and interstitial cells of Cajal. Platelet 5-HT, originating in the gut, promotes haemostasis, influences bone development and serves many other functions. 5-HT3 receptor antagonists and 5-HT4 receptor agonists have been used to treat functional disorders with diarrhoea or constipation, respectively, and the synthetic enzyme tryptophan hydroxylase has also been targeted. Emerging evidence suggests that exploiting epithelial targets with nonabsorbable serotonergic agents could provide safe and effective therapies. We provide an overview of these serotonergic actions and treatment strategies.
Collapse
|
41
|
Aguilera M, Vergara P, Martínez V. Stress and antibiotics alter luminal and wall-adhered microbiota and enhance the local expression of visceral sensory-related systems in mice. Neurogastroenterol Motil 2013; 25:e515-29. [PMID: 23711047 DOI: 10.1111/nmo.12154] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/19/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Stress leads to altered gastrointestinal neuro-immune responses. We characterized the interaction between stress and gut commensal microbiota and their role modulating colonic responses to stress, the induction of inflammation, the expression of sensory-related markers, and visceral sensitivity. METHODS C57BL/6N female mice were treated (7 days, PO) with non-absorbable-broad spectrum antibiotics (bacitracin/neomycin, 0.4 mg per mouse per day). Simultaneously, mice were subjected to a 1 h per day (7 days) session of psychological stress (water avoidance stress, WAS). Luminal and wall-adhered microbiota were characterized by fluorescent in situ hybridization. Cannabinoid receptors 1 and 2 (CB1/2), tryptophan hydroxylase 1 and 2 (TPH1/2), and inflammatory markers were quantified by reverse transcription-quantitative real-time PCR (RT-qPCR) and secretory-IgA (s-IgA) by ELISA. Visceral sensitivity was assessed after the intracolonic administration of capsaicin. KEY RESULTS Antibiotics did not affect the defecatory and endocrine responses to stress. However, antibiotics diminished by 2.5-folds total bacterial counts, induced a specific dysbiosis and favored bacterial wall adherence. Combining antibiotics and stress resulted in further reductions in bacterial counts and a dysbiosis, with enhanced bacterial wall adherence. Luminal s-IgA levels increased in dysbiotic mice. Nevertheless, no alterations consistent with the induction of colonic inflammation were observed. Dysbiosis upregulated CB2 expression and stress upregulated CB2 and TPH1 expression. Stress enhanced visceral pain-related responses, an effect prevented by antibiotic treatment. CONCLUSIONS & INFERENCES Manipulations of the commensal microbiota and the interaction host-microbiota are able to modulate the local expression of neuro-immune-endocrine systems within the colon, leading to a modulation of visceral sensitivity. These mechanisms might contribute to the pathogenic and protective roles of microbiota in gastrointestinal homeostasis.
Collapse
Affiliation(s)
- M Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
42
|
Latorre E, Mendoza C, Matheus N, Castro M, Grasa L, Mesonero JE, Alcalde AI. IL-10 modulates serotonin transporter activity and molecular expression in intestinal epithelial cells. Cytokine 2013; 61:778-84. [PMID: 23410504 DOI: 10.1016/j.cyto.2013.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/16/2012] [Accepted: 01/13/2013] [Indexed: 12/29/2022]
Abstract
Serotonin is a neuromodulator mainly synthesized by intestinal enterochromaffin cells that regulate overall intestinal physiology. The serotonin transporter (SERT) determines the final serotonin availability and has been described as altered in inflammatory bowel diseases. IL-10 is an anti-inflammatory cytokine that is involved in intestinal inflammatory processes and also contributes to intestinal mucosa homeostasis. The regulation of SERT by pro-inflammatory factors is well known; however, the effect of IL-10 on the intestinal serotoninergic system mediated by SERT remains unknown. Therefore, the aim of the present study is to determine whether IL-10 affects SERT activity and expression in enterocyte-like Caco-2 cells. Treatment with IL-10 was assessed and SERT activity was determined by 5-HT uptake. SERT mRNA and protein expression was analyzed using quantitative RT-PCR and western blotting. The results showed that IL-10 induced a dual effect on SERT after 6h of treatment. On one hand, IL-10, at a low concentration, inhibited SERT activity, and this effect might be explained by a non-competitive inhibition of SERT. On the other hand, IL-10, at a high concentration, increased SERT activity and molecular expression in the membrane of the cells. This effect was mediated by the IL-10 receptor and triggered by the PI3K intracellular pathway. Our results demonstrate that IL-10 modulates SERT activity and expression, depending on its extracellular conditions. This study may contribute to understand serotoninergic responses in intestinal pathophysiology.
Collapse
Affiliation(s)
- Eva Latorre
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Bertrand RL, Senadheera S, Tanoto A, Tan KL, Howitt L, Chen H, Murphy TV, Sandow SL, Liu L, Bertrand PP. Serotonin availability in rat colon is reduced during a Western diet model of obesity. Am J Physiol Gastrointest Liver Physiol 2012; 303:G424-34. [PMID: 22595993 DOI: 10.1152/ajpgi.00048.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constipation and slowed transit are associated with diet-induced obesity, although the mechanisms by which this occurs are unclear. Enterochromaffin (EC) cells within the intestinal epithelium respond to mechanical stimulation with the release of serotonin [5-hydroxytryptamine (5-HT)], which promotes transit. Thus our aim was to characterize 5-HT availability in the rat colon of a physiologically relevant model of diet-induced obesity. EC cell numbers were determined immunohistochemically in chow-fed (CF) and Western diet-fed (WD) rats, while electrochemical methods were used to measure mechanically evoked (peak) and steady-state (SS) 5-HT levels. Fluoxetine was used to block the 5-HT reuptake transporter (SERT), and the levels of mRNA for tryptophan hydroxylase 1 and SERT were determined by quantitative PCR, and SERT protein was determined by Western blot. In WD rats, there was a significant decrease in the total number of EC cells per crypt (0.86 ± 0.06 and 0.71 ± 0.05 in CF and WD, respectively), which was supported by a reduction in the levels of 5-HT in WD rats (2.9 ± 1.0 and 10.5 ± 2.6 μM at SS and peak, respectively) compared with CF rats (7.3 ± 0.4 and 18.4 ± 3.4 μM at SS and peak, respectively). SERT-dependent uptake of 5-HT was unchanged, which was supported by a lack of change in SERT protein levels. In WD rats, there was no change in tryptophan hydroxylase 1 mRNA but an increase in SERT mRNA. In conclusion, our data show that foods typical of a WD are associated with decreased 5-HT availability in rat colon. Decreased 5-HT availability is driven primarily by a reduction in the numbers and/or 5-HT content of EC cells, which are likely to be associated with decreased intestinal motility in vivo.
Collapse
Affiliation(s)
- R L Bertrand
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dual role of serotonin in the pathogenesis of indomethacin-induced small intestinal ulceration: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors. Pharmacol Res 2012; 66:226-34. [PMID: 22699012 DOI: 10.1016/j.phrs.2012.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 12/19/2022]
Abstract
Serotonin (5-HT) exerts multiple physiological functions not only in the central and peripheral nervous systems but also in the gastrointestinal tract, and these multiple functions are accounted for by a variety of 5-HT receptor subtypes. We investigated the role of 5-HT in the pathogenesis of indomethacin-induced intestinal lesions in mice, in relation to 5-HT receptor subtypes. A single oral administration of indomethacin (10 mg/kg) provoked damage in the small intestine of mice 24 h later, and this response was prevented by pretreatment with p-chlorophenylalanine (a 5-HT synthesis inhibitor). The administration of 5-HT3 receptor antagonists, such as ondansetron and ramosetron, dose-dependently reduced the severity of the intestinal lesions, whereas a high dose of GR113808 (a 5-HT4 receptor antagonist) significantly aggravated these lesions. In contrast, NAN-190 (a 5-HT1 receptor antagonist), ketanserin (a 5-HT2 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effect on these lesions. Mosapride (a 5-HT4 receptor agonist) significantly reduced the severity of indomethacin-induced intestinal lesions, and this protective effect was totally prevented by either GR113808 or methyllycaconitine (an α7-nicotinic acetylcholine receptor antagonist). Indomethacin increased the activity of myeloperoxidase and the expression of inducible nitric oxide synthase, inflammatory cytokines, and chemokines in the small intestine; these responses were significantly attenuated by ondansetron and mosapride. These findings suggest that endogenous 5-HT exerts a dual role in the pathogenesis of indomethacin-induced intestinal lesions: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors, and the latter effect via 5-HT4 receptors may be mediated by activation of α7-nicotinic acetylcholine receptors.
Collapse
|
45
|
Matsumoto K, Lo MW, Hosoya T, Tashima K, Takayama H, Murayama T, Horie S. Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice. J Transl Med 2012; 92:769-82. [PMID: 22330338 DOI: 10.1038/labinvest.2012.14] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abnormalities of primary afferent nerve fibers are strongly associated with the visceral hypersensitivity state in inflammatory bowel disease. Hypersensitivity of afferent fibers occurs during inflammation. Therefore, to gain an insight into the alterations to receptors and channels expressed in primary afferent neurons, the current study aimed to investigate the time-dependent dynamic changes in levels of 5-hydroxytryptamine (5-HT)(3) receptors, 5-HT(4) receptors, transient receptor potential vanilloid type 1 (TRPV1) channels, and 5-HT regulatory factors in dextran sulfate sodium (DSS)-induced colitis model mice. 5-HT signaling molecules were detected by indirect staining with specific antibodies. TRPV1-immunoreactivity was detected by staining with fluorescein-conjugated tyramide amplification. To assess nociception, visceromotor responses (VMRs) to colorectal distension were measured by electromyography of abdominal muscles. Immunohistochemical analysis and VMRs to colorectal distention were measured during induction of DSS colitis (days 4 and 7). Inflammation led to downregulation of serotonin transporter immunoreactivities with concomitant increases in 5-HT and tryptophan hydroxylase-1-positive cell numbers. TRPV1-expressing nerve fibers gradually increased during DSS treatment. Abundant nonneuronal TRPV1-immunopositive cell-like structures were observed on day 7 of DSS treatment but not on day 4. The number of 5-HT(3) receptor-expressing nerve fibers in the mucosa was increased on day 7. On the other hand, the number of 5-HT(4) receptor-expressing nerve fibers in the mucosa decreased on day 7. We made the novel observation of increased expression of neuronal/nonneuronal TRPV1 channels and 5-HT(3) receptors, and decreased expression of 5-HT(4) receptors in the mucosa in a DSS-induced colitis model. Visceral hyperalgesia was observed on day 7 but not on day 4. A TRPV1 antagonist and a 5-HT(3) receptor antagonist attenuated the visceral hyperalgesia to the control level. The alterations of 5-HT signaling via 5-HT(3) receptors and of TRPV1 channels in mucosa may contribute to the visceral hypersensitivity in colitis model mice.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Laboratory of Pharmacology, Josai International University, Togane, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Parmar L, Fidalgo S, Yeoman MS, Patel BA. Chromatographic analysis of age-related changes in mucosal serotonin transmission in the murine distal ileum. Chem Cent J 2012; 6:31. [PMID: 22494644 PMCID: PMC3483693 DOI: 10.1186/1752-153x-6-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/27/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In the upper bowel, alterations in motility and absorption of key nutrients have been observed as part of the normal ageing process. Serotonin (5-HT) is a key signalling molecule in the gastrointestinal tract and is known to influence motility, however little is known of how the ageing process alters 5-HT signalling processes in the bowel. RESULTS An isocratic chromatographic method was able to detect all 5-HT precursors and metabolites. Using extracellular and intracellular sampling approaches, we were able to monitor all key parameters associated with the transmission process. There was no alteration in the levels of tryptophan and 5-HTP between 3 and 18 month old animals. There was a significant increase in the ratio of 5-HT:5-HTP and an increase in intracellular 5-HT between 3 and 18 month old animals suggesting an increase in 5-HT synthesis. There was also a significant increase in extracellular 5-HT with age, suggesting increased 5-HT release. There was an age-related decrease in the ratio of intracellular 5-HIAA:extracellular 5-HT, whilst the amount of 5-HIAA did not change with age. In the presence of an increase in extracellular 5-HT, the lack of an age-related change in 5-HIAA is suggestive of a decrease in re-uptake via the serotonin transporter (SERT). CONCLUSIONS We have used intracellular and extracellular sampling to provide more insight into alterations in the neurotransmission process of 5-HT during normal ageing. We observed elevated 5-HT synthesis and release and a possible decrease in the activity of SERT. Taken together these changes lead to increased 5-HT availability and may alter motility function and could lead to the changes in adsorption observed in the elderly.
Collapse
Affiliation(s)
- Leena Parmar
- Centre for Biomedical and Health Sciences Research, University of Brighton, Brighton, BN2 4GJ, UK.
| | | | | | | |
Collapse
|
47
|
Kawahara I, Kuniyasu H, Matsuyoshi H, Goto K, Obata K, Misawa H, Fujii H, Takaki M. Comparison of effects of a selective 5-HT reuptake inhibitor versus a 5-HT4 receptor agonist on in vivo neurogenesis at the rectal anastomosis in rats. Am J Physiol Gastrointest Liver Physiol 2012; 302:G588-97. [PMID: 22194416 DOI: 10.1152/ajpgi.00284.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It was recently reported that activation of enteric neural 5-HT(4) receptors (SR4) promotes reconstruction of enteric neural circuit injury in distal gut of guinea pigs and that this reconstruction involves neural stem cells. We aimed to explore a novel approach using a selective serotonin reuptake inhibitor (SSRI), which increases endogenous 5-HT, to repair enteric nerve fiber injury in the rat distal gut. Enteric nerve fiber injury was performed by rectal transection and subsequent end-to-end one-layer anastomosis. The SSRI fluvoxamine maleate (100 μmol/l) was applied locally at the anastomotic site to compare with the 5-HT(4) agonist mosapride citrate (100 μmol/l) (applied for patent) applied locally and orally. Unlike mosapride, fluvoxamine failed to promote the regeneration of the nerve fiber tract across the anastomosis. Furthermore, fluvoxamine did not generate anti-distal-less homeobox 2 (DLX2)- and anti-SR4-positive cells (neural stem cells) and/or anti-neurofilament (NF)-positive cells (neural cells) in newly formed granulation tissue at the anastomosis, whereas these cell types were observed in mosapride-treated preparations. In contrast to its effects in guinea pigs, mosapride generated 5-bromo-2'-deoxyuridine (BrdU)-positive neural cells in ganglia sites 3 mm oral and anal from the anastomosis 2 wk after nerve fiber injury. All actions of mosapride were observed after local and or oral applications. These findings indicate that local SSRI treatment does not induce in vivo nerve fiber tract growth across the anastomosis in the rat distal gut. Mosapride induces nerve fiber tract growth across the anastomosis, mediated through enteric neural stem cells possibly from neural crest-derived stem cells or mesenchymal stem cells in the bone marrow.
Collapse
Affiliation(s)
- Isao Kawahara
- Department of Physiology II, Nara Medical University School of Medicine, Kashihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hock M, Soták M, Kment M, Pácha J. The early effect of dextran sodium sulfate administration on carbachol-induced short-circuit current in distal and proximal colon during colitis development. Physiol Res 2011; 60:921-31. [PMID: 21995894 DOI: 10.33549/physiolres.932222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.
Collapse
Affiliation(s)
- M Hock
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
49
|
Patel BA. Electroanalytical approaches to study signaling mechanisms in the gastrointestinal tract. Neurogastroenterol Motil 2011; 23:595-605. [PMID: 21481101 DOI: 10.1111/j.1365-2982.2011.01708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electroanalytical techniques over the past few years have been applied to study real-time release of various signaling molecules in the GI tract. These approaches have become highly attractive as they provide dynamic spatial information on the amount of signaling molecules released. Although these approaches are relatively new to the field, the studies to date have provided useful insights into the alterations in signaling mechanisms during maturation, obesity and in a model of colitis. New methods and techniques have also allowed the possibility to obtain information on the signaling process and future developments will provide a wide diverse array of information that will be of benefit to all researchers in the field of gastroenterology. This review focuses on the types of techniques utilized, the information they can provide, their potential advantages and disadvantages in monitoring signaling processes in the gastrointestinal tract, the existing scientific studies that have utilized electroanalytical methods to date and the future potential impact of such approaches.
Collapse
Affiliation(s)
- B A Patel
- Centre for Biomedical and Health Sciences Research, University of Brighton, Brighton, UK.
| |
Collapse
|
50
|
Koh SJ, Kim JM, Kim IK, Kim N, Jung HC, Song IS, Kim JS. Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol Gastrointest Liver Physiol 2011; 301:G9-19. [PMID: 21436313 DOI: 10.1152/ajpgi.00267.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-κB pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-κB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-α (TNF-α). Pretreatment with fluoxetine attenuated the increased IκB kinase (IKK) and IκBα phosphorylation induced by TNF-α. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-κB activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Hanyang University College of Medicine, Korea
| | | | | | | | | | | | | |
Collapse
|