1
|
Li R, Su K, Wu T, Xu L, Song W, Sun D, Zeng T, Chen J, Xin H, Li Y, Zang M, Hu M. Genome-wide enhancer-gene regulatory maps of liver reveal novel regulatory mechanisms underlying NAFLD pathogenesis. BMC Genomics 2025; 26:493. [PMID: 40375105 PMCID: PMC12082939 DOI: 10.1186/s12864-025-11668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) represents the most widespread liver disease globally, ranging from non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH) to fibrosis/cirrhosis, with potential progression to hepatocellular carcinoma (HCC). Genome-wide association studies (GWASs) have identified several single nucleotide polymorphisms (SNPs) associated with NAFLD. However, numerous GWAS signals associated with NAFLD locate in non-coding regions, posing a challenge for interpreting their functional annotation. RESULTS In this study, we utilized the Activity-by-Contact (ABC) model to construct the enhancer-gene maps of liver by integrating epigenomic data from 15 liver tissues and cell lines. We constructed the most comprehensive genome-wide regulatory maps of the liver, identifying 543,486 enhancer-gene connections, including 267,857 enhancers and 16,872 target genes. Enrichment analyses revealed that the ABC SNPs are significantly enriched in active chromatin regions and active chromatin state. By combining the ABC regulatory maps and NAFLD GWAS data, we systematically identified ABC SNPs associated with NAFLD risk. Through the functional annotations, such as pathway enrichment and drug-gene interaction analyses, we identified 6 genes (GGT1, ACTG1, SPP1, EPHA2, PROZ and SHMT1) as candidate NAFLD genes, with SHMT1 previously reported. Among the SNPs connected to the candidate genes, the ABC SNP rs2017869 (odds ratio [OR] for the C allele = 1.10, 95% CI = 1.04-1.16, P = 5.97 × 10- 4) had the highest ABC score. According to the ABC maps, rs2017869 links to GGT1, and several drugs targeting this gene, such as liothyronine, showed potential benefits to patients with NAFLD. Furthermore, we identified that another novel gene, EPHA2, may play a crucial role in NAFLD by regulating the GGT levels. CONCLUSIONS Our study provides the most comprehensive ABC regulatory maps of the liver to date. This resource offers a valuable reference for identifying regulatory variants and prioritizing susceptibility genes of liver diseases, such as NAFLD.
Collapse
Affiliation(s)
- Ruofan Li
- Medical School of Chinese People's Liberation Army (PLA), 28 Fuxing Road, 100853, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Kaiyan Su
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1,838 North Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Tianzhun Wu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Li Xu
- Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenyu Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Dandan Sun
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tao Zeng
- Medical School of Chinese People's Liberation Army (PLA), 28 Fuxing Road, 100853, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1,838 North Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
| | - Haibei Xin
- Department of Hepatobiliary Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Mengya Zang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1,838 North Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
| | - Minggen Hu
- Medical School of Chinese People's Liberation Army (PLA), 28 Fuxing Road, 100853, Beijing, China.
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
2
|
Iakovleva V, de Jong YP. Gene-based therapies for steatotic liver disease. Mol Ther 2025:S1525-0016(25)00298-9. [PMID: 40254880 DOI: 10.1016/j.ymthe.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Advances in nucleic acid delivery have positioned the liver as a key target for gene therapy, with adeno-associated virus vectors showing long-term effectiveness in treating hemophilia. Steatotic liver disease (SLD), the most common liver condition globally, primarily results from metabolic dysfunction-associated and alcohol-associated liver diseases. In some individuals, SLD progresses from simple steatosis to steatohepatitis, cirrhosis, and eventually hepatocellular carcinoma, driven by a complex interplay of genetic, metabolic, and environmental factors. Genetic variations in various lipid metabolism-related genes, such as patatin-like phospholipase domain-containing protein 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), and mitochondrial amidoxime-reducing component 1 (MTARC1), impact the progression of SLD and offer promising therapeutic targets. This review largely focuses on genes identified through clinical association studies, as they are more likely to be effective and safe for therapeutic intervention. While preclinical research continues to deepen our understanding of genetic factors, early-stage clinical trials involving gene-based SLD therapies, including transient antisense and small-molecule approaches, are helping prioritize therapeutic targets. Meanwhile, hepatocyte gene editing technologies are advancing rapidly, offering alternatives to transient methods. As such, gene-based therapies show significant potential for preventing the progression of SLD and enhancing long-term liver health.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
3
|
Priego-Parra BA, Gallego-Durán R, Román-Calleja BM, Velarde-Ruiz Velasco JA, Romero-Gómez M, Gracia-Sancho J. Advancing precision medicine in metabolic dysfunction-associated steatotic liver disease. Trends Endocrinol Metab 2025:S1043-2760(25)00052-9. [PMID: 40221323 DOI: 10.1016/j.tem.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), has become a pressing global health concern. The complexity of MASLD and the lack of universally effective treatments expose the limitations of current interventions, which focus mainly on lifestyle modifications. Here, we explore the multilayered nature of MASLD, emphasizing its pathophysiology in shaping future medical and lifestyle interventions from a personalized medicine perspective, based on individual molecular profiles. Additionally, we address the limitations of current animal models in reflecting human metabolic syndrome and sex-specific differences. We argue that a holistic approach, integrating social determinants of health, patient preferences, and adherence patterns, is essential for advancing MASLD management effectively.
Collapse
Affiliation(s)
- Bryan A Priego-Parra
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico; Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, Mexico
| | - Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. SeLiver Group, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Berenice M Román-Calleja
- División de Hepatología, Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. SeLiver Group, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Liver Vascular Biology Lab, IDIBAPS - Hospital Clínic de Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
4
|
Seko Y, Yamaguchi K, Shima T, Iwaki M, Takahashi H, Kawanaka M, Tanaka S, Mitsumoto Y, Yoneda M, Nakajima A, Okanoue T, Itoh Y. Clinical Utility of Genetic Variants in PNPLA3 and TM6SF2 to Predict Liver-Related Events in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int 2025; 45:e16124. [PMID: 39373247 DOI: 10.1111/liv.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND AIMS Fibrosis-4 (FIB-4) index and genetic polymorphisms have been used in assessing the risk of liver-related events (LRE) in metabolic dysfunction-associated steatotic liver disease (MASLD). To establish a more efficient prediction strategy for LRE, we investigated a combined approach that uses the FIB-4 index and genetic polymorphisms. METHODS We enrolled 1304 Japanese patients with biopsy-proven MASLD in this longitudinal multicenter cohort study. PNPLA3, TM6SF2, GCKR and MBOAT7 genotypes were genotyped, and polygenic risk score high fat content (PRS-HFC) were calculated. RESULTS During the follow-up period of 8.1 year, 96 LRE occurred and 53 patients died. PNPLA3, TM6SF2 and GCKR genotypes were associated with LRE development. We divided patients into three groups based on the FIB-4 index and PNPLA3 and TM6SF2 genotype. The cumulative LRE development rate in each group was 2.1%/28.9%/53.5%, respectively, at 10 years. Multivariate analysis revealed hazard ratios (HRs) for LRE of 10.72 in the high-risk group and 4.80 in the intermediate-risk group. Overall survival in each group was 98.8%/85.2%/72.4%, respectively, at 10 years. HRs for prognosis were 8.74 in the high-risk group and 5.62 in the intermediate-risk group. Patients with FIB-4 index > 2.67 and high PRS-HFC had HR of 6.70 for LRE development and HR of 6.07 for prognosis compared to patients with FIB-4 ≤ 2.67. CONCLUSIONS The approach of measuring the FIB-4 index first followed by assessment of genetic polymorphisms efficiently detected patients at high risk of developing LRE. Therefore, this two-step strategy could be used as a screening method in large populations of patients with MASLD.
Collapse
Affiliation(s)
- Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Miwa Kawanaka
- General Internal Medicine 2, General Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Saiyu Tanaka
- Center for Digestive and Liver Diseases, Nara City Hospital, Nara, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Venu S, Gopalakrishna R, Pillai BV, Biswas L, Poojara R, Raj M. Assessment of dietary, genetic and metabolic factors in South Indian adolescents with metabolic dysfunction-associated steatotic liver disease: a case-control study protocol. BMJ Paediatr Open 2025; 9:e003138. [PMID: 40127963 PMCID: PMC11934355 DOI: 10.1136/bmjpo-2024-003138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of liver disease among adolescents. The objectives of this study are to investigate the associations of dietary, genetic and metabolic factors with MASLD in South Indian adolescents. METHODS AND ANALYSIS The study will employ a case-control study design. We will recruit 280 adolescents (140 cases and 140 controls) from hospital and school settings. The hospital setting will be the paediatric gastroenterology outpatient department (OPD) at the study institution and the school setting will be selected urban schools from Ernakulam, Kerala. At the hospital, cases and controls will be selected from the patients who are attending the paediatric gastroenterology OPD with complaints of generalised abdominal pain or constipation with no other significant medical complaints or use of medications. A sensitisation programme on MASLD for parents of adolescents will be conducted in schools. All consenting parents along with their adolescent wards will be invited for study participation. Cases will be defined as adolescents having evidence of hepatic steatosis in ultrasound and meeting any one of the paediatric cardiometabolic criteria for MASLD. Those who fail to satisfy this criteria will be defined as controls. All participants will undergo nutritional and physical activity assessments using validated questionnaires along with blood sampling for biochemical analysis and genetic testing. We will examine the associations between MASLD and dietary parameters using Pearson's χ2 tests after stratifying dietary variables into categorical groups. Logistic regression will be used to assess the impact of dietary parameters and single-nucleotide polymorphisms (SNPs) on the risk of MASLD. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee of Amrita School of Medicine, Kochi. Informed consent will be obtained from participants and their legal guardians before enrolment. The study findings will provide valuable insights into the evolution of MASLD among adolescents in South India.
Collapse
Affiliation(s)
- Swathilakshmi Venu
- Amrita Institute of Medical Sciences and Research Centre, Ernakulam, Kerala, India
| | - Rajesh Gopalakrishna
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Bhanu Vikraman Pillai
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - Rashmi Poojara
- Department of Home Science, St Teresa's College, Ernakulam, Kerala, India
| | - Manu Raj
- Department of Pediatrics, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| |
Collapse
|
6
|
Samarasinghe SM, Hewage AS, Siriwardana RC, Tennekoon KH, Niriella MA, De Silva S, Abeysuriya V. Association between single nucleotide polymorphisms in PNPLA3, TM6SF2 and MBOAT7 genes and markers of cancer aggressiveness in a Sri Lankan NASH-related HCC cohort. BMC Gastroenterol 2025; 25:151. [PMID: 40065199 PMCID: PMC11892176 DOI: 10.1186/s12876-025-03738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2) and membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes were reported to be strongly associated with non-alcoholic fatty liver disease (NAFLD) pathogenicity among different populations. We investigated whether these SNPs are associated with prognostic factors and genetic biomarkers of non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) in the Sri Lankan context. METHODS We conducted an exploratory study to evaluate the prevalence of five SNPs (PNPLA3 rs738409, PNPLA3 rs2281135, PNPLA3 rs2294918, TM6SF2 rs58542926 and MBOAT7 rs641738) as genetic risk factors for NASH-HCC pathogenicity. We genotyped 48 NASH-HCC patient samples collected at a clinical setting using a minisequencing method. Impact of each SNP with tumor prognostic factors such as nodularity, tumor size and AFP (alpha-feto protein) level was analyzed using chi square test. We also analyzed the expression of micro RNA-122 (miR-122) in serum and leukocyte telomere length via quantitative real-time PCR. Associations between each SNP with micro RNA-122 (miR-122) expression level and leukocyte telomere length of NASH-HCC patients were analyzed using one-way analysis of variance (ANOVA) test and independent t test. Relationships among tested SNPs and some well-established HCC risk factors such as age, BMI, gender, diabetes status and the cirrhotic stage were also analyzed using chi square test, independent t-test and One-way ANOVA test. RESULTS Our analyses demonstrated significant associations between PNPLA3 rs2281135 variant and tumor nodularity. Also, PNPLA3 rs2281135 and PNPLA3 rs2294918 variants were significantly associated with miR-122 expression levels of NASH-HCC patients. Further, age and body mass index (BMI) were significantly associated with PNPLA3 rs2281135 variant in our study cohort. CONCLUSION We found that in the Sri Lankan NASH-related HCC cohort, some PNPLA3 variants (rs2281135 and rs2294918) correlate with tumor nodularity, higher miR-122 expression, and distinct demographic features such as age and BMI. Our work highlights the role of specific SNPs in tumor aggressiveness, contributing to the precision screening for HCC in NASH patients.
Collapse
Affiliation(s)
- Saumya Madushani Samarasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No 90, Cumarathunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Asanka Sudeshini Hewage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No 90, Cumarathunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | | | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No 90, Cumarathunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Madunil Anuk Niriella
- Colombo North Center for Liver Diseases, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No 90, Cumarathunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Visula Abeysuriya
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No 90, Cumarathunga Munidasa Mawatha, Colombo 03, Sri Lanka
| |
Collapse
|
7
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
8
|
Zhang Y, Xie M, Wen J, Liang C, Song Q, Liu W, Liu Y, Song Y, Lau HCH, Cheung AHK, Man K, Yu J, Zhang X. Hepatic TM6SF2 activates antitumour immunity to suppress metabolic dysfunction-associated steatotic liver disease-related hepatocellular carcinoma and boosts immunotherapy. Gut 2025; 74:639-651. [PMID: 39667906 PMCID: PMC12014897 DOI: 10.1136/gutjnl-2024-333154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Transmembrane 6 superfamily member 2 (TM6SF2) has a protective role against metabolic dysfunction-associated steatotic liver disease (MASLD). OBJECTIVE We aim to investigate the mechanistic role and therapeutic potential of hepatic TM6SF2 in MASLD-related hepatocellular carcinoma (HCC). DESIGN Hepatocyte-specific Tm6sf2 knockout (Tm6sf2 ∆hep) mice were fed with high-fat/high-cholesterol (HFHC) diet or diethylnitrosamine plus HFHC diet to induce MASLD-HCC. TM6SF2 function was also evaluated in orthotopic MASLD-HCC mice. Human MASLD-HCC specimens were included to evaluate clinical significance. RESULTS TM6SF2 was downregulated in tumours compared with adjacent normal tissues from MASLD-HCC patients. Hepatocyte-specific Tm6sf2 knockout exacerbated tumour formation in mice with diet-induced or diet-induced and carcinogen-induced MASLD-HCC. The tumour-promoting effect of Tm6sf2 knockout was verified in orthotopic MASLD-HCC mice, while mice bearing Tm6sf2-overexpressing tumours had opposite phenotypes. We observed the reduction of interferon-gamma (IFN-γ)+CD8+ T cells in the tumours of Tm6sf2 ∆hep mice and orthotopic Tm6sf2 knockout mice, while the tumour-suppressive effect of Tm6sf2 was abolished after depleting CD8+ T cells. The correlation between TM6SF2 and CD8+ T cells was confirmed in human MASLD-HCC tissues, inferring that TM6SF2 could promote antitumour immunity. Mechanistically, TM6SF2 directly bound to IKKβ and inhibited NF-κB signalling pathway to reduce interleukin (IL)-6 secretion, thereby activating cytotoxic CD8+ T cells. IL-6 neutralisation abolished the tumour-promoting and immunosuppressive effects of Tm6sf2 knockout in mice. Moreover, introducing Tm6sf2 by adenovirus improved immunotherapy response against MASLD-HCC in mice. CONCLUSION Hepatic TM6SF2 protects against MASLD-HCC and activates cytotoxic CD8+ T cells via NF-κB-IL-6 axis. TM6SF2 is a promising strategy for sensitising MASLD-HCC to immunotherapy.
Collapse
Affiliation(s)
- Yating Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxu Xie
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Wen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guang Zhou, China
| | - Qian Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yali Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Kim D, Shah M, Kim JH, Kim J, Baek YH, Jeong JS, Han SY, Lee YS, Park G, Cho JH, Roh YH, Lee SW, Choi GB, Park JH, Yoo KH, Seong RH, Lee YS, Woo HG. Integrative transcriptomic and genomic analyses unveil the IFI16 variants and expression as MASLD progression markers. Hepatology 2025; 81:962-975. [PMID: 38385945 DOI: 10.1097/hep.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - JungMo Kim
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Yang-Hyun Baek
- Department of Internal Medicine, Liver Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin-Sook Jeong
- Pathology and Laboratory Medicine, St Mary's Hospital, Busan, Republic of Korea
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Gaeul Park
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Han Cho
- Department of Diagnostic Radiology, Dong-A University Medical Center, Busan, Republic of Korea
| | - Young-Hoon Roh
- Department of Surgery, Dong-A University Medical Center, Busan, Republic of Korea
| | - Sung-Wook Lee
- Department of Internal Medicine, Liver Center, Dong-A University Medical Center, Busan, Republic of Korea
| | - Gi-Bok Choi
- Department of Radiology, On Hospital, Busan, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Rho Hyun Seong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| |
Collapse
|
10
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Pei Y, Goh GBB. Genetic Risk Factors for Metabolic Dysfunction-Associated Steatotic Liver Disease. Gut Liver 2025; 19:8-18. [PMID: 39774124 PMCID: PMC11736312 DOI: 10.5009/gnl240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is the most common cause of liver disease, and its burden on health systems worldwide continues to rise at an alarming rate. MASLD is a complex disease in which the interactions between susceptible genes and the environment influence the disease phenotype and severity. Advances in human genetics over the past few decades have provided new opportunities to improve our understanding of the multiple pathways involved in the pathogenesis of MASLD. Notably, the PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 single nucleotide polymorphisms have been demonstrated to be robustly associated with MASLD development and disease progression. These genetic variants play crucial roles in lipid droplet remodeling, secretion of hepatic very low-density lipoprotein and lipogenesis, and understanding the biology has brought new insights to this field. This review discusses the current body of knowledge regarding these genetic drivers and how they can lead to development of MASLD, the complex interplay with metabolic factors such as obesity, and how this information has translated clinically into the development of risk prediction models and possible treatment targets.
Collapse
Affiliation(s)
- Yiying Pei
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| |
Collapse
|
12
|
Tilg H, Grander C. TM6SF2 as new intestinal lipid player. Nat Metab 2025; 7:4-5. [PMID: 39794538 DOI: 10.1038/s42255-024-01156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Huang HYR, Vitali C, Zhang D, Hand NJ, Phillips MC, Creasy KT, Scorletti E, Park J, Regeneron Centre, Schneider KM, Rader DJ, Schneider CV. Deep metabolic phenotyping of humans with protein-altering variants in TM6SF2 using a genome-first approach. JHEP Rep 2025; 7:101243. [PMID: 39687601 PMCID: PMC11647476 DOI: 10.1016/j.jhepr.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aim An unbiased genome-first approach can expand the molecular understanding of specific genes in disease-agnostic biobanks for deeper phenotyping. TM6SF2 represents a good candidate for this approach due to its known association with steatotic liver disease (SLD). Methods We screened participants with whole-exome sequences in the Penn Medicine Biobank (PMBB, n >40,000) and the UK Biobank (UKB, n >200,000) for protein-altering variants in TM6SF2 and evaluated their association with liver phenotypes and clinical outcomes. Results Missense variants in TM6SF2 (E167K, L156P, P216L) were associated with an increased risk of clinically diagnosed and imaging-proven steatosis, independent of the PNPLA3 I48M risk allele and hepatitis B/C (p <0.001). E167K homozygotes had significantly increased risk of SLD (odds ratio [OR] 5.38, p <0.001), steatohepatitis (OR 5.76, p <0.05) and hepatocellular carcinoma (OR 11.22, p <0.0001), while heterozygous carriers of L156P and P216L were also at an increased risk of steatohepatitis. In addition, carriers of E167K are at a 3-fold increased risk of at-risk MASH (OR 2.75, p <0.001). CT-derived liver fat scores were higher in E167K and L156P in an allele-dose manner (p <0.05). This corresponded with the UKB nuclear magnetic resonance-derived lipidomic analyses (n = 105,348), revealing all carriers to exhibit lower total cholesterol, triglycerides and total choline. In silico predictions suggested that these missense variants cause structural disruptions in the EXPERA domain, leading to reduced protein function. This hypothesis was supported by the association of rare loss-of-function variants in TM6SF2 with an increased risk of SLD (OR 4.9, p <0.05), primarily driven by a novel rare stop-gain variant (W35X) with the same directionality. Conclusion The functional genetic study of protein-altering variants provides insights on the association between loss of TM6SF2 function and SLD and provides the basis for future mechanistic studies. Impact and implications The genome-first approach expands insights into genetic risk factors for steatotic liver disease with TM6SF2 being a focal point due to its known association with plasma lipid traits. Our findings validated the association of two missense variants (E167K and L156P) with increased risk of hepatic steatosis on CT and MRI scans, as well as the risk of clinically diagnosed hepatocellular carcinoma independent of the common PNPLA3 I48M risk variant. Notably, we also identified a predicted deleterious missense variant (P216L) linked to steatotic risk and demonstrated that an aggregated gene burden of rare putative loss-of-function variants was associated with the risk of hepatic steatosis. Combined, this study sets the stage for future mechanistic investigations into the functional consequences of TM6SF2 variants in metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Zhang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Hand
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C. Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- NewYork-Presbyterian, Weill Cornell Medical Center, New York, NY 10065, USA
| | | | - Kai Markus Schneider
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Medical Department 1, Technische Universität, Dresden, Germany
| | - Daniel J. Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolin Victoria Schneider
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
14
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Chen VL, Brady GF. Recent advances in MASLD genetics: Insights into disease mechanisms and the next frontiers in clinical application. Hepatol Commun 2025; 9:e0618. [PMID: 39774697 PMCID: PMC11717516 DOI: 10.1097/hc9.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the world and a growing cause of liver-related morbidity and mortality. Yet, at the same time, our understanding of the pathophysiology and genetic underpinnings of this increasingly common yet heterogeneous disease has increased dramatically over the last 2 decades, with the potential to lead to meaningful clinical interventions for patients. We have now seen the first pharmacologic therapy approved for the treatment of MASLD, and multiple other potential treatments are currently under investigation-including gene-targeted RNA therapies that directly extend from advances in MASLD genetics. Here we review recent advances in MASLD genetics, some of the key pathophysiologic insights that human genetics has provided, and the ways in which human genetics may inform our clinical practice in the field of MASLD in the near future.
Collapse
|
16
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
17
|
Ha S, Wong VWS, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024; 74:141-152. [PMID: 38950910 PMCID: PMC11671994 DOI: 10.1136/gutjnl-2024-332398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.
Collapse
Affiliation(s)
- Suki Ha
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
19
|
Lan T, Tacke F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 2024; 161:156015. [PMID: 39216799 DOI: 10.1016/j.metabol.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it the leading etiology of chronic liver diseases and a prime cause of liver-related mortality. MASLD can progress into steatohepatitis (termed MASH), fibrosis, cirrhosis, and ultimately cancer. MASLD is associated with increased risks of hepatocellular carcinoma (HCC) and also extrahepatic malignancies, which can develop in both cirrhotic and non-cirrhotic patients, emphasizing the importance of identifying patients with MASLD at risk of developing MASLD-associated malignancies. However, the optimal screening, diagnostic, and risk stratification strategies for patients with MASLD at risk of cancer are still under debate. Individuals with MASH-associated cirrhosis are recommended to undergo surveillance for HCC (e.g. by ultrasound and biomarkers) every six months. No specific screening approaches for MASLD-related malignancies in non-cirrhotic cases are established to date. The rapidly developing omics technologies, including genetics, metabolomics, and proteomics, show great potential for discovering non-invasive markers to fulfill this unmet need. This review provides an overview on the incidence and mortality of MASLD-associated malignancies, current strategies for HCC screening, surveillance and diagnosis in patients with MASLD, and the evolving role of omics technologies in the discovery of non-invasive markers for the prediction and risk stratification of MASLD-associated HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
20
|
Repetto L, Chen J, Yang Z, Zhai R, Timmers PRHJ, Feng X, Li T, Yao Y, Maslov D, Timoshchuk A, Tu F, Twait EL, May-Wilson S, Muckian MD, Prins BP, Png G, Kooperberg C, Johansson Å, Hillary RF, Wheeler E, Pan L, He Y, Klasson S, Ahmad S, Peters JE, Gilly A, Karaleftheri M, Tsafantakis E, Haessler J, Gyllensten U, Harris SE, Wareham NJ, Göteson A, Lagging C, Ikram MA, van Duijn CM, Jern C, Landén M, Langenberg C, Deary IJ, Marioni RE, Enroth S, Reiner AP, Dedoussis G, Zeggini E, Sharapov S, Aulchenko YS, Butterworth AS, Mälarstig A, Wilson JF, Navarro P, Shen X. The genetic landscape of neuro-related proteins in human plasma. Nat Hum Behav 2024; 8:2222-2234. [PMID: 39210026 DOI: 10.1038/s41562-024-01963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.
Collapse
Affiliation(s)
- Linda Repetto
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Health Data Science Centre, Fondazione Human Technopole, Milan, Italy
| | - Jiantao Chen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ranran Zhai
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xiao Feng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Li
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Yao
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Denis Maslov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Fengyu Tu
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Emma L Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marisa D Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bram P Prins
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lu Pan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Department of Epidemiology and Medical Statistics, Division of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Sofia Klasson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah E Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Sodbo Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Biostatistics Unit-Population and Medical Genomics Programme, Genomics Research Centre, Fondazione Human Technopole, Milan, Italy
| | - Yurii S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Rahdan F, Saberi A, Saraygord-Afshari N, Hadizadeh M, Fayeghi T, Ghanbari E, Dianat-Moghadam H, Alizadeh E. Deciphering the multifaceted role of microRNAs in hepatocellular carcinoma: Integrating literature review and bioinformatics analysis for therapeutic insights. Heliyon 2024; 10:e39489. [PMID: 39498055 PMCID: PMC11532857 DOI: 10.1016/j.heliyon.2024.e39489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health challenge, necessitating innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as pivotal regulators of HCC pathogenesis, influencing key processes such as self-renewal, angiogenesis, glycolysis, autophagy, and metastasis. This article integrates findings from a comprehensive literature review and bioinformatics analysis to elucidate the role of miRNAs in HCC. We discuss how dysregulation of miRNAs can drive HCC initiation, progression, and metastasis by modulating various signaling pathways and target genes. Moreover, leveraging high-throughput technology and bioinformatics tools, we identify key miRNAs involved in multiple cancer hallmarks, offering insights into potential combinatorial therapeutic strategies. Through our analysis considering p-values and signaling pathways associated with key features, we unveil miRNAs with simultaneous roles across critical cancer characteristics, providing a basis for the development of high-performance biomarkers. The microRNAs, miR-34a-5p, miR-373-3p, miR-21-5p, miR-214-5p, miR-195-5p, miR-139-5p were identified to be shared microRNAs in stemness, angiogenesis, glycolysis, autophagy, EMT, and metastasis of HCC. However, challenges such as miRNA stability and delivery hinder the translation of miRNA-based therapeutics into clinical practice. This review underscores the importance of further research to overcome existing barriers and realize the full potential of miRNA-based interventions for HCC management.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahura Fayeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Moonlisarn K, Somnark P, Boonkaew B, Bunchorntavakul C, Tangkijvanich P. Interaction Between PNPLA3 and SIRT5 Genetic Variants in Association with Liver Fibrosis Severity in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 15:1370. [PMID: 39596570 PMCID: PMC11593416 DOI: 10.3390/genes15111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study evaluated the association between polymorphisms in the PNPLA3, TM6SF2, HSD17B13, and SIRT5 genes and the severity of fibrosis and steatosis in metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Fibrosis and steatosis were assessed by MRE and MRI-PDFF, respectively. The polymorphisms were determined by allelic discrimination in blood samples. RESULTS 204 patients aged 57.0 ± 13.5 years were included. Sixty-two (30.4%) patients had significant fibrosis (≥F2). Among F2-F4 fibrosis, the PNPLA3 rs738409 GG genotype was significantly higher than the CC + CG genotypes (44.9% vs. 21.4%, p = 0.001). The SIRT5 rs12216101 GG vs. TT + TG genotypes also exhibited a similar trend (64.3% vs. 27.9%, p = 0.012). In multivariate analysis, the PNPLA3 GG genotype (OR = 3.48, 95%CI: 1.50-8.06; p = 0.004) and SIRT5 rs12216101 GG genotype (OR = 5.43, 95%CI: 1.32-22.33; p = 0.019) were independently associated with F2-F4 fibrosis. Additionally, the proportion of patients with F2-F4 fibrosis significantly increased with the number of combined risk genotypes. Among S2-S3 steatosis, the prevalence of HSD17B13 AG + GG genotypes was higher than that of the AA genotype (37.5% vs. 23.9%, p = 0.048) and independently associated with moderate/severe steatosis in multivariate analysis (OR = 2.26, 95%CI: 1.14-4.49; p = 0.020). CONCLUSIONS Our data indicate that the PNPLA3 and SIRT5 polymorphisms were independently and additively linked to significant fibrosis, while the HSD17B13 polymorphism was associated with increased steatosis in Thai populations. These data might emphasize the importance of genetic variants in progressive MASLD.
Collapse
Affiliation(s)
- Kamonchanok Moonlisarn
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.M.); (P.S.); (B.B.)
| | - Pornjira Somnark
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.M.); (P.S.); (B.B.)
| | - Bootsakorn Boonkaew
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.M.); (P.S.); (B.B.)
| | | | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.M.); (P.S.); (B.B.)
| |
Collapse
|
23
|
Liang J, Kim N, Yang JD. Hepatocellular carcinoma risk prediction and early detection in patients with metabolic dysfunction associated steatotic liver disease. Transl Gastroenterol Hepatol 2024; 9:67. [PMID: 39503040 PMCID: PMC11535805 DOI: 10.21037/tgh-24-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/01/2024] [Indexed: 11/08/2024] Open
Abstract
The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form, metabolic dysfunction-associated steatohepatitis (MASH), is closely linked with a heightened risk of hepatocellular carcinoma (HCC), the fourth leading cause of cancer-related deaths worldwide. Despite the elevated risk of HCC in patients with MASLD, the existing surveillance guidelines are inadequate, particularly for those without cirrhosis. This review evaluates current HCC surveillance practices in patients with MASLD and their shortcomings. It also highlights the critical need for enhanced HCC risk stratification and diagnostic accuracy through new techniques. In this review article, we performed a comprehensive literature review of studies focusing on HCC risk factors in MASLD/MASH patients from 2000 to 2023. We discussed that demographics, comorbidities, liver fibrosis, and genetic markers play critical roles in HCC risk stratification. Additionally, non-invasive tests (NITs) for fibrosis may improve the accuracy for HCC risk stratification and diagnosis. More recently, innovative approaches, such as machine learning techniques and liquid biopsy utilizing extracellular vesicles, cell-free DNA, and circulating tumor cells show promise in redefining early HCC detection. Thus, integrating these various risk factors could optimize early detection of HCC for the growing MASLD/MASH patient population. However, further research is needed to confirm their effectiveness and practical implementation in clinical settings.
Collapse
Affiliation(s)
- Jeff Liang
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naomy Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
24
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Argenziano ME, Kim MN, Montori M, Di Bucchianico A, Balducci D, Ahn SH, Svegliati Baroni G. Epidemiology, pathophysiology and clinical aspects of Hepatocellular Carcinoma in MAFLD patients. Hepatol Int 2024; 18:922-940. [PMID: 39012579 DOI: 10.1007/s12072-024-10692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is undergoing a transformative shift, with metabolic-associated fatty liver disease (MAFLD) emerging as a dominant etiology. Diagnostic criteria for MAFLD involve hepatic steatosis and metabolic dysregulation. Globally, MAFLD prevalence stands at 38.77%, significantly linked to the escalating rates of obesity. Epidemiological data indicate a dynamic shift in the major etiologies of hepatocellular carcinoma (HCC), transitioning from viral to metabolic liver diseases. Besides the degree of liver fibrosis, several modifiable lifestyle risk factors, such as type 2 diabetes, obesity, alcohol use, smoking, and HBV, HCV infection contribute to the pathogenesis of HCC. Moreover gut microbiota and genetic variants may contribute to HCC development.The pathophysiological link between MAFLD and HCC involves metabolic dysregulation, impairing glucose and lipid metabolism, inflammation and oxidative stress. Silent presentation poses challenges in early MAFLD-HCC diagnosis. Imaging, biopsy, and AI-assisted techniques aid diagnosis, while HCC surveillance in non-cirrhotic MAFLD patients remains debated.ITA.LI.CA. group proposes a survival-based algorithm for treatment based on Barcelona clinic liver cancer (BCLC) algorithm. Liver resection, transplantation, ablation, and locoregional therapies are applied based on the disease stage. Systemic treatments is promising, with initial immunotherapy results indicating a less favorable response in MAFLD-related HCC.Adopting lifestyle interventions and chemopreventive measures with medications, including aspirin, metformin, and statins, constitute promising approaches for the primary prevention of HCC.Prognosis is influenced by multiple factors, with MAFLD-HCC associated with prolonged survival. Emerging diagnostic biomarkers and epigenomic markers, show promising results for early HCC detection in the MAFLD population.
Collapse
Affiliation(s)
- Maria Eva Argenziano
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
- Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
| | - Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Michele Montori
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
| | - Alessandro Di Bucchianico
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
| | - Daniele Balducci
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea.
| | - Gianluca Svegliati Baroni
- Liver Disease and Transplant Unit, Obesity Center, Azienda Ospedaliero-Universitaria Delle Marche, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
26
|
Sun B, Ding X, Tan J, Zhang J, Chu X, Zhang S, Liu S, Zhao Z, Xuan S, Xin Y, Zhuang L. TM6SF2 E167K variant decreases PNPLA3-mediated PUFA transfer to promote hepatic steatosis and injury in MASLD. Clin Mol Hepatol 2024; 30:863-882. [PMID: 39054606 PMCID: PMC11540376 DOI: 10.3350/cmh.2024.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUNDS/AIMS Transmembrane 6 superfamily member 2 (TM6SF2) E167K variant is closely associated with the occurrence and development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the role and mechanism of TM6SF2 E167K variant during MASLD progression are not yet fully understood. METHODS The Tm6sf2167K knock-in (KI) mice were subjected to high-fat diet (HFD). Hepatic lipid levels of Tm6sf2167K KI mice were detected by lipidomics analysis. Thin-layer chromatography (TLC) was used to measure the newly synthesized triglyceride (TG) and phosphatidylcholine (PC). RESULTS The TM6SF2 E167K variant significantly aggravated hepatic steatosis and injury in HFD-induced mice. Decreased polyunsaturated PC level and increased polyunsaturated TG level were found in liver tissue of HFD-induced Tm6sf2167K KI mice. Mechanistic studies demonstrated that the TM6SF2 E167K variant increased the interaction between TM6SF2 and PNPLA3, and impaired PNPLA3-mediated transfer of polyunsaturated fatty acids (PUFAs) from TG to PC. The TM6SF2 E167K variant increased the level of fatty acid-induced malondialdehyde and reactive oxygen species, and decreased fatty acid-downregulated cell membrane fluidity. Additionally, the TM6SF2 E167K variant decreased the level of hepatic PC containing C18:3, and dietary supplementation of PC containing C18:3 significantly attenuated the TM6SF2 E167K-induced hepatic steatosis and injury in HFD-fed mice. CONCLUSION The TM6SF2 E167K variant could promote its interaction with PNPLA3 and inhibit PNPLA3-mediated transfer of PUFAs from TG to PC, resulting in the hepatic steatosis and injury during MASLD progression. PC containing C18:3 could act as a potential therapeutic supplement for MASLD patients carrying the TM6SF2 E167K variant.
Collapse
Affiliation(s)
- Baokai Sun
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiaoqian Ding
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Tan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xueru Chu
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shuimi Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhenzhen Zhao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shiying Xuan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Likun Zhuang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Baechler SA, Saha LK, Factor VM, Chitnis C, Dhall A, Becker D, Marquardt JU, Pommier Y. Mitochondrial topoisomerase I (Top1MT) prevents the onset of metabolic dysfunction-associated steatohepatitis (MASH) in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611454. [PMID: 39372760 PMCID: PMC11451593 DOI: 10.1101/2024.09.05.611454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
High fat (HF) diet is a major factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatis (MASH), and mitochondria have been proposed to play a role in the pathogenesis of HF diet-induced MASH. Because Mitochondrial topoisomerase I (Top1MT) is exclusively present in mitochondria and Top1MT knock-out mice are viable, we were able to assess the role of Top1MT in the development of MASH. We show that after 16 weeks of HF diet, mice lacking Top1MT are prone to the development of severe MASH characterized by liver steatosis, lobular inflammation and hepatocyte damage. Mice lacking Top1MT also show prominent mitochondrial dysfunction, ROS production and mitochondrial DNA (mtDNA) release, accompanied by hepatic inflammation and fibrosis. In summary, our study demonstrates the importance of Top1MT in sustaining hepatocyte functions and suppressing MASH.
Collapse
Affiliation(s)
- SA Baechler
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - LK Saha
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - VM Factor
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - C Chitnis
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - A Dhall
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - D Becker
- Department of Medicine I, Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - JU Marquardt
- Department of Medicine I, Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Y Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
28
|
Rivera-Esteban J, Muñoz-Martínez S, Higuera M, Sena E, Bermúdez-Ramos M, Bañares J, Martínez-Gomez M, Cusidó MS, Jiménez-Masip A, Francque SM, Tacke F, Minguez B, Pericàs JM. Phenotypes of Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2024; 22:1774-1789.e8. [PMID: 38604295 DOI: 10.1016/j.cgh.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Hepatocellular carcinoma (HCC) typically develops as a consequence of liver cirrhosis, but HCC epidemiology has evolved drastically in recent years. Metabolic dysfunction-associated steatotic liver disease (MASLD), including metabolic dysfunction-associated steatohepatitis, has emerged as the most common chronic liver disease worldwide and a leading cause of HCC. A substantial proportion of MASLD-associated HCC (MASLD-HCC) also can develop in patients without cirrhosis. The specific pathways that trigger carcinogenesis in this context are not elucidated completely, and recommendations for HCC surveillance in MASLD patients are challenging. In the era of precision medicine, it is critical to understand the processes that define the profiles of patients at increased risk of HCC in the MASLD setting, including cardiometabolic risk factors and the molecular targets that could be tackled effectively. Ideally, defining categories that encompass key pathophysiological features, associated with tailored diagnostic and treatment strategies, should facilitate the identification of specific MASLD-HCC phenotypes. In this review, we discuss MASLD-HCC, including its epidemiology and health care burden, the mechanistic data promoting MASLD, metabolic dysfunction-associated steatohepatitis, and MASLD-HCC. Its natural history, prognosis, and treatment are addressed specifically, as the role of metabolic phenotypes of MASLD-HCC as a potential strategy for risk stratification. The challenges in identifying high-risk patients and screening strategies also are discussed, as well as the potential approaches for MASLD-HCC prevention and treatment.
Collapse
Affiliation(s)
- Jesús Rivera-Esteban
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergio Muñoz-Martínez
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain
| | - Mónica Higuera
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - Elena Sena
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - María Bermúdez-Ramos
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Liver Unit, Department of Digestive Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Juan Bañares
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - María Martínez-Gomez
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - M Serra Cusidó
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - Alba Jiménez-Masip
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sven M Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Beatriz Minguez
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Madrid, Spain.
| | - Juan M Pericàs
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Madrid, Spain.
| |
Collapse
|
29
|
Ciardullo S, Perseghin G. From NAFLD to MAFLD and MASLD: a tale of alcohol, stigma and metabolic dysfunction. METABOLISM AND TARGET ORGAN DAMAGE 2024. [DOI: 10.20517/mtod.2024.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Liver steatosis is a frequent finding in clinical practice and it is estimated to affect 30% of the general adult population worldwide. It became one of the leading causes of end-stage liver disease and hepatocellular carcinoma. From its first description, a diagnosis of nonalcoholic fatty liver disease (NAFLD) required the exclusion of excessive alcohol consumption and concomitant chronic liver diseases of different origins, making it a diagnosis of exclusion. In recent years, the need to stress the strict association between liver steatosis and metabolic dysfunction (i.e., insulin resistance, overweight/obesity, type 2 diabetes, and metabolic syndrome), as well as the desire to define a condition in a positive rather than negative way, led to new definitions and new diagnostic criteria. Metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed by Eslam et al. in 2020. More recently, a Delphi consensus endorsed by several international hepatologic societies proposed a new terminology [metabolic dysfunction-associated steatotic liver disease (MASLD)] and a new set of diagnostic criteria. The MAFLD and MASLD definitions have a good degree of concordance. They mainly differ in the number of metabolic derangements needed to define “metabolic dysfunction” in normal-weight individuals and in alcohol consumption. Indeed, while MAFLD does not exclude patients with significant alcohol consumption, the recent Delphi consensus included the metabolic dysfunction and alcohol-related liver disease (MetALD) disease entity, a condition in which steatosis, metabolic dysfunction, and moderate alcohol intake coexist. In the present narrative review, we underline the strengths and possible limitations of each definition and summarize available evidence from epidemiologic studies evaluating the clinical usefulness of each set of diagnostic criteria.
Collapse
|
30
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
31
|
Hydes TJ, Kennedy OJ, Glyn-Owen K, Buchanan R, Parkes J, Cuthbertson DJ, Roderick P, Byrne CD. Liver Fibrosis Assessed Via Noninvasive Tests Is Associated With Incident Heart Failure in a General Population Cohort. Clin Gastroenterol Hepatol 2024; 22:1657-1667. [PMID: 38723982 DOI: 10.1016/j.cgh.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND & AIMS The aim of this study was to determine whether liver fibrosis is associated with heart failure in a general population cohort, and if genetic polymorphisms (PNPLA3 rs738409; TM6SF2 rs58542926), linked to increased risk of liver fibrosis and decreased risk of coronary artery disease, modify this association. METHODS Using UK Biobank data, we prospectively examined the relationship between noninvasive fibrosis markers (nonalcoholic fatty liver disease [NAFLD] fibrosis score [NFS], Fibrosis-4 [FIB-4] and aspartate transaminase [AST] to platelet ratio index [APRI]) and incident hospitalization/death from heart failure (n = 413,860). Cox-regression estimated hazard ratios (HRs) for incident heart failure. Effects of PNPLA3 and TM6SF2 on the association between liver fibrosis and heart failure were estimated by stratifying for genotype and testing for an interaction between genotype and liver fibrosis using a likelihood ratio test. RESULTS A total of 12,527 incident cases of heart failure occurred over a median of 10.7 years. Liver fibrosis was associated with an increased risk of hospitalization or death from heart failure (multivariable adjusted high-risk NFS score HR, 1.59; 95% confidence interval [CI],1.47-1.76; P < .0001; FIB-4 HR, 1.69; 95% CI, 1.55-1.84; P < .0001; APRI HR, 1.85; 95% CI, 1.56-2.19; P < .0001; combined fibrosis scores HR, 1.90; 95% CI, 1.44-2.49; P < .0001). These associations persisted for people with metabolic dysfunction-associated steatotic liver disease (MASLD), MASLD with alcohol consumption (Met-ALD), and harmful alcohol consumption. PNPLA3 rs738409 GG and TM6SF2 rs58542926 TT did not attenuate the positive association between fibrosis markers and heart failure. For PNPLA3, a statistically significant interaction was found between PNPLA3 rs738409, FIB-4, APRI score, and heart failure. CONCLUSION In the general population, serum markers of liver fibrosis are associated with increased hospitalization/death from heart failure. Genetic polymorphisms associated with liver fibrosis were not positively associated with elevated heart failure risk.
Collapse
Affiliation(s)
- Theresa J Hydes
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom; University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom; Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom.
| | - Oliver J Kennedy
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kate Glyn-Owen
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ryan Buchanan
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Southampton National Institute for Health and Care Research, Biomedical Research Centre, University Hospital Southampton, Southamptom, United Kingdom
| | - Julie Parkes
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom; University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom; Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | - Paul Roderick
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research, Biomedical Research Centre, University Hospital Southampton, Southamptom, United Kingdom; Nutrition and Metabolism, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Zhang W, Li MY, Li ZQ, Diao YK, Liu XK, Guo HW, Wu XC, Wang H, Wang SY, Zhou YH, Lu J, Lin KY, Gu WM, Chen TH, Li J, Liang YJ, Yao LQ, Wang MD, Li C, Yin DX, Pawlik TM, Lau WY, Shen F, Chen Z, Yang T. Long-term outcomes following hepatectomy in patients with lean non-alcoholic fatty liver disease-associated hepatocellular carcinoma versus overweight and obese counterparts: A multicenter analysis. Asian J Surg 2024:S1015-9584(24)01459-3. [PMID: 39054140 DOI: 10.1016/j.asjsur.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND & AIMS With the rising prevalence of non-alcoholic fatty liver disease (NAFLD) as a significant etiology for hepatocellular carcinoma (HCC), lean NAFLD-HCC has emerged as a specific distinct subtype. This study sought to investigate long-term outcomes following curative-intent hepatectomy for early-stage NAFLD-HCC among lean patients compared with overweight and obese individuals. METHODS A multicenter retrospective analysis was used to assess early-stage NAFLD-HCC patients undergoing curative-intent hepatectomy between 2009 and 2022. Patients were stratified by preoperative body mass index (BMI) into the lean (<23.0 kg/m2), overweight (23.0-27.4 kg/m2) and obese (≥27.5 kg/m2) groups. Study endpoints were overall survival (OS) and recurrence-free survival (RFS), which were compared among groups. RESULTS Among 309 patients with NAFLD-HCC, 66 (21.3 %), 176 (57.0 %), and 67 (21.7 %) were lean, overweight, and obese, respectively. The three groups were similar relative to most liver, tumor, and surgery-related variables. Compared with overweight patients (71.3 % and 55.6 %), the lean individuals had a worse 5-year OS and RFS (55.4 % and 35.1 %, P = 0.017 and 0.002, respectively), which were comparable to obese patients (48.5 % and 38.2 %, P = 0.939 and 0.442, respectively). After adjustment for confounding factors, multivariable Cox-regression analysis identified that lean bodyweight was independently associated with decreased OS (hazard ratio: 1.69; 95 % confidence interval: 1.06-2.71; P = 0.029) and RFS (hazard ratio: 1.72; 95 % confidence interval: 1.17-2.52; P = 0.006) following curative-intent hepatectomy for early-stage NAFLD-HCC. CONCLUSIONS Compared with overweight patients, individuals with lean NAFLD-HCC had inferior long-term oncological survival after hepatectomy for early-stage NAFLD-HCC. These data highlight the need for examination of the distinct carcinogenic pathways of lean NAFLD-HCC and its potential consequences in HCC recurrence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Min-Yu Li
- Department of Special Care Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zi-Qiang Li
- Department of Liver Transplantation and Hepatic Surgery, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yong-Kang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Hong-Wei Guo
- The 2nd Department of General Surgery, The Second People's Hospital of Changzhi, Changzhi, China
| | - Xiao-Chang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Hong Wang
- Department of General Surgery, Liuyang People's Hospital, Liuyang, China
| | - Si-Yuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Ya-Hao Zhou
- Department of Hepatobiliary Surgery, Pu'er People's Hospital, Pu'er, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Kong-Ying Lin
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wei-Min Gu
- The First Department of General Surgery, The Fourth Hospital of Harbin, Harbin, China
| | - Ting-Hao Chen
- Department of General Surgery, Ziyang First People's Hospital, Ziyang, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Fuyang People's Hospital, Fuyang, China
| | - Ying-Jian Liang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lan-Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Dong-Xu Yin
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Timothy M Pawlik
- Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, United States
| | - Wan Yee Lau
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
33
|
Seko Y, Yamaguchi K, Shima T, Iwaki M, Takahashi H, Kawanaka M, Tanaka S, Mitsumoto Y, Yoneda M, Nakajima A, Okanoue T, Itoh Y. Differential Effects of Genetic Polymorphism on Comorbid Disease in Metabolic Dysfunction-Associated Steatotic Liver Disease. Clin Gastroenterol Hepatol 2024; 22:1436-1443.e4. [PMID: 38604296 DOI: 10.1016/j.cgh.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND & AIMS PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 have been associated with an increased risk of liver-related events (LREs) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated the combined effects of these variants on LREs. METHODS The longitudinal multicenter cohort study enrolled 1178 patients with biopsy-proven MASLD. We calculated the genetic risk of hepatic fibrosis and LRE according to the impact of these variants. RESULTS Patients with genetic fibrosis scores of 2, 3, and 4 or 5 were at greater risk than patients with scores of 0 or 1, with odds ratios of 2.45 (95% CI, 1.27-4.74), 2.14 (95% CI, 1.17-3.94), and 2.54 (95% CI, 1.35-4.77), respectively. Multivariate analysis revealed that PNPLA3 and TM6SF2, but not HSD17B13, were associated significantly with LRE development. The hazard ratio of the genetic high-risk group for LRE was 1.91 (95% CI, 1.20-3.04). The higher risk of LRE development in the genetic high-risk group also was seen in patients with F ≥ 3 or Fibrosis-4 index > 2.67. The hazard ratios of the genetic high-risk group for LRE were greater in patients without obesity, without diabetes, and of younger age compared with patients with obesity, with diabetes, or of older age, respectively. CONCLUSIONS This combination of MASLD-related genetic variants is useful for predicting LREs in Japanese patients with MASLD. The genetic risk according to these variants is useful for LRE risk assessment, especially in patients without metabolic risk factors or in younger patients in Japan.
Collapse
Affiliation(s)
- Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyou-ku, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyou-ku, Kyoto, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | | | - Miwa Kawanaka
- General Internal Medicine 2, General Medical Center, Kawasaki Medical School, Kita-ku, Okayama, Japan
| | - Saiyu Tanaka
- Center for Digestive and Liver Diseases, Nara City Hospital, Nara, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan.
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyou-ku, Kyoto, Japan
| |
Collapse
|
34
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
35
|
Kaplan DE, Teerlink CC, Schwantes-An TH, Norden-Krichmar TM, DuVall SL, Morgan TR, Tsao PS, Voight BF, Lynch JA, Vujković M, Chang KM. Clinical and genetic risk factors for progressive fibrosis in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8:e0487. [PMID: 38967582 PMCID: PMC11227360 DOI: 10.1097/hc9.0000000000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Fibrosis-4 (FIB4) is a recommended noninvasive test to assess hepatic fibrosis among patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we used FIB4 trajectory over time (ie, "slope" of FIB4) as a surrogate marker of liver fibrosis progression and examined if FIB4 slope is associated with clinical and genetic factors among individuals with clinically defined MASLD within the Million Veteran Program Cohort. METHODS In this retrospective cohort study, FIB4 slopes were estimated through linear regression for participants with clinically defined MASLD and FIB4 <2.67 at baseline. FIB4 slope was correlated with demographic parameters and clinical outcomes using logistic regression and Cox proportional hazard models. FIB4 slope as a quantitative phenotype was used in a genome-wide association analysis in ancestry-specific analysis and multiancestry meta-analysis using METAL. RESULTS FIB4 slopes, generated from 98,361 subjects with MASLD (16,045 African, 74,320 European, and 7996 Hispanic), showed significant associations with sex, ancestry, and cardiometabolic risk factors (p < 0.05). FIB4 slopes also correlated strongly with hepatic outcomes and were independently associated with time to cirrhosis. Five genetic loci showed genome-wide significant associations (p < 5 × 10-8) with FIB4 slope among European ancestry subjects, including 2 known (PNPLA3 and TM6SF2) and 3 novel loci (TERT 5.1 × 10-11; LINC01088, 3.9 × 10-8; and MRC1, 2.9 × 10-9). CONCLUSIONS Linear trajectories of FIB4 correlated significantly with time to progression to cirrhosis, with liver-related outcomes among individuals with MASLD and with known and novel genetic loci. FIB4 slope may be useful as a surrogate measure of fibrosis progression.
Collapse
Affiliation(s)
- David E. Kaplan
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Craig C. Teerlink
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Trina M. Norden-Krichmar
- Department of Medicine, Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Scott L. DuVall
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Timothy R. Morgan
- Department of Medicine, Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
- Department of Medicine, University of California, Irvine, California, USA
| | - Philip S. Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, Palo Alto, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin F. Voight
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julie A. Lynch
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marijana Vujković
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyong-Mi Chang
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Bansal SK, Bansal MB. Pathogenesis of MASLD and MASH - role of insulin resistance and lipotoxicity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S10-S22. [PMID: 38451123 DOI: 10.1111/apt.17930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Insulin resistance and lipotoxicity are extremely interconnected but fundamental in setting the stage for the development of MASLD/MASH. AIM/METHODS A comprehensive literature search was performed and key themes were synthesised to provide insight into the underlying molecular mechanisms of insulin resistance and lipotoxicity in the liver, muscle, pancreas and adipose tissue and how organ cross-talk is fundamental to driving disease pathogenesis. RESULTS Classical thinking postulates that excess FFA load exceeds the storage capacity of adipose tissue, which is predicated upon both genetic and environmental factors. This results in insulin resistance and compensatory hyperinsulinaemia by pancreatic beta cells to overcome target organ insulin resistance. As adipocyte dysfunction worsens, not only are excess FFA delivered to other organs, including skeletal muscle, pancreas and liver but a pro-inflammatory milieu is established with increases in IL-6, TNF-α and changes in adipokine levels (increased leptin and decreased adiponectin). With increased intramuscular lipid accumulation, lipotoxic species decrease insulin signalling, reduce glucose uptake by downregulation of GLUT4 and decrease glycogen synthesis. With this additional reduced capacity, hyperglycaemia is further exacerbated and increased FFA are delivered to the liver. The liver has the largest capacity to oxidise fat and to adapt to these stressors and, therefore, has become the last line of defence for excess lipid storage and utilisation, the capacity of which may be impacted by genetic and environmental factors. However, when the liver can no longer keep up with increasing FFA delivery and DNL, lipotoxic species accumulate with ensuing mitochondrial dysfunction, increased ER stress, oxidant stress and inflammasome activation, all of which drive hepatocyte injury and apoptosis. The resulting wound healing response, marked by stellate cell activation, drives collagen accumulation, progressive fibrosis, and, ultimately, end organ failure and death. This vicious cycle and complex interplay between insulin resistance, hyperinsulinaemia, lipotoxicity and multi-directional cross-talk among different target organs are critical drivers of MASLD/MASH. CONCLUSIONS Targeting tissue-specific insulin resistance and hyperinsulinaemia while decreasing FFA load (lipotoxicity) through dietary and lifestyle changes remain the best upstream interventions.
Collapse
Affiliation(s)
- Shalini K Bansal
- Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Meena B Bansal
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
37
|
Mori T, Ozawa E, Sasaki R, Shimakura A, Takahashi K, Kido Y, Kanda Y, Matsuo S, Tajima K, Beppu A, Nakao Y, Fukushima M, Haraguchi M, Miuma S, Miyaaki H, Adachi T, Eguchi S, Okano S, Nakao K. Are transmembrane 6 superfamily member 2 gene polymorphisms associated with steatohepatitis after pancreaticoduodenectomy? JGH Open 2024; 8:e13113. [PMID: 38919271 PMCID: PMC11197035 DOI: 10.1002/jgh3.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Aim After pancreaticoduodenectomy, 20-40% of patients develop steatotic liver disease (SLD), and steatohepatitis can be a problem. Although patatin-like phospholipase domain-containing 3 protein (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2) polymorphisms are involved in SLD and steatohepatitis development, whether this is the case after pancreaticoduodenectomy is unclear. Methods and Results Forty-three patients with pancreatic cancer who underwent pancreaticoduodenectomy at our hospital between April 1, 2018, and March 31, 2021, were included. We extracted DNA from noncancerous areas of residual specimens after pancreaticoduodenectomy and determined PNPLA3 and TM6SF2 gene polymorphisms using real-time polymerase chain reaction. SLD was defined as a liver with an attenuation value of ≤40 HU or a liver-to-spleen ratio of ≤0.9 on computed tomography. We defined high hepatic fibrosis indexes (HFI) instead of steatohepatitis as a Fibrosis-4 index of ≥2.67 or nonalcoholic fatty liver disease fibrosis score of ≥0.675 in patients with SLD. The cumulative incidence of SLD (P = 0.299) and high HFI (P = 0.987) after pancreaticoduodenectomy were not significantly different between the PNPLA3 homozygous and minor allele groups. The incidences of high HFI at 1 year after pancreaticoduodenectomy were 16.8% and 27.0% in the TM6SF2 major homozygous and minor allele groups, respectively, with a significant difference in the cumulative incidence (P = 0.046). Conclusion The TM6SF2 minor allele may contribute to steatohepatitis development after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Tomotaka Mori
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Department of Gastroenterology and HepatologyJapanese Red Cross Nagasaki Genbaku HospitalNagasakiJapan
| | - Eisuke Ozawa
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Ryu Sasaki
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Akane Shimakura
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kosuke Takahashi
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yoko Kido
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yasuko Kanda
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Satoshi Matsuo
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kazuaki Tajima
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Asami Beppu
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yasuhiko Nakao
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Masanori Fukushima
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Masafumi Haraguchi
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Satoshi Miuma
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Tomohiko Adachi
- Department of SurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Susumu Eguchi
- Department of SurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shinji Okano
- Department of PathologyNagasaki University HospitalNagasakiJapan
| | - Kazuhiko Nakao
- Department of Gastroenterology and HepatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
38
|
Golabi P, Owrangi S, Younossi ZM. Global perspective on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis - prevalence, clinical impact, economic implications and management strategies. Aliment Pharmacol Ther 2024; 59 Suppl 1:S1-S9. [PMID: 38813821 DOI: 10.1111/apt.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND The metabolically-based liver disease, nonalcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease currently affecting 38% of the world's adult population. NAFLD can be progressive leading to nonalcoholic steatohepatitis (NASH), liver transplantation, liver cancer, liver-related mortality and is associated with decreased quality of life from impaired physical functioning and increased healthcare resource utilisation. However, screening for NAFLD is cost-prohibitive but screening for high risk NAFLD (NAFLD with F2 fibrosis or greater) is imperative. AIM To review the global perspective on NAFLD and NASH METHODS: We retrieved articles from PubMed using search terms NAFLD, prevalence, clinical burden, economic burden and management strategies. RESULTS NAFLD/NASH shows geographical variation across the globe. Highest prevalence rates are in South America and the Middle East and North Africa; lowest prevalence is in Africa. NAFLD's economic impact is from direct and indirect medical costs and loss in worker productivity. It is projected that, over the next two decades, the total cost of NAFLD and diabetes will exceed $1.5 trillion (USD). Risk stratification algorithms identifying "high risk NAFLD" were made following non-invasive tests for NAFLD identification and fibrosis development. These algorithms should be used in primary care and endocrinology settings so timely and appropriate interventions (lifestyle and cardiometabolic risk factor management) can be initiated. CONCLUSIONS To reduce the burgeoning burden of NAFLD/NASH, management should include risk stratification algorithms for accurate identification of patients, linkage to appropriate settings, and initiation of effective treatment regimens.
Collapse
Affiliation(s)
- Pegah Golabi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| | - Soroor Owrangi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
39
|
Schwantes-An TH, Whitfield JB, Aithal GP, Atkinson SR, Bataller R, Botwin G, Chalasani NP, Cordell HJ, Daly AK, Darlay R, Day CP, Eyer F, Foroud T, Gawrieh S, Gleeson D, Goldman D, Haber PS, Jacquet JM, Lammert CS, Liang T, Liangpunsakul S, Masson S, Mathurin P, Moirand R, McQuillin A, Moreno C, Morgan MY, Mueller S, Müllhaupt B, Nagy LE, Nahon P, Nalpas B, Naveau S, Perney P, Pirmohamed M, Seitz HK, Soyka M, Stickel F, Thompson A, Thursz MR, Trépo E, Morgan TR, Seth D. A polygenic risk score for alcohol-associated cirrhosis among heavy drinkers with European ancestry. Hepatol Commun 2024; 8:e0431. [PMID: 38727677 PMCID: PMC11093576 DOI: 10.1097/hc9.0000000000000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/01/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Polygenic Risk Scores (PRS) based on results from genome-wide association studies offer the prospect of risk stratification for many common and complex diseases. We developed a PRS for alcohol-associated cirrhosis by comparing single-nucleotide polymorphisms among patients with alcohol-associated cirrhosis (ALC) versus drinkers who did not have evidence of liver fibrosis/cirrhosis. METHODS Using a data-driven approach, a PRS for ALC was generated using a meta-genome-wide association study of ALC (N=4305) and an independent cohort of heavy drinkers with ALC and without significant liver disease (N=3037). It was validated in 2 additional independent cohorts from the UK Biobank with diagnosed ALC (N=467) and high-risk drinking controls (N=8981) and participants in the Indiana Biobank Liver cohort with alcohol-associated liver disease (N=121) and controls without liver disease (N=3239). RESULTS A 20-single-nucleotide polymorphisms PRS for ALC (PRSALC) was generated that stratified risk for ALC comparing the top and bottom deciles of PRS in the 2 validation cohorts (ORs: 2.83 [95% CI: 1.82 -4.39] in UK Biobank; 4.40 [1.56 -12.44] in Indiana Biobank Liver cohort). Furthermore, PRSALC improved the prediction of ALC risk when added to the models of clinically known predictors of ALC risk. It also stratified the risk for metabolic dysfunction -associated steatotic liver disease -cirrhosis (3.94 [2.23 -6.95]) in the Indiana Biobank Liver cohort -based exploratory analysis. CONCLUSIONS PRSALC incorporates 20 single-nucleotide polymorphisms, predicts increased risk for ALC, and improves risk stratification for ALC compared with the models that only include clinical risk factors. This new score has the potential for early detection of heavy drinking patients who are at high risk for ALC.
Collapse
Affiliation(s)
- Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis IN, USA
| | - John B. Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland 4029, Australia
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen R. Atkinson
- Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Ramon Bataller
- Center for Liver Diseases, University of Pittsburgh Medical Center, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Greg Botwin
- Department of Veterans Affairs, VA Long Beach Healthcare System, 5901 East Seventh Street, Long Beach, CA 90822, USA
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California CA 90048, USA
| | - Naga P. Chalasani
- Department of Medicine, Indiana University, Indianapolis, IN 46202-5175, USA
| | - Heather J. Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ann K. Daly
- Faculty of Medical Sciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Rebecca Darlay
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Christopher P. Day
- Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Florian Eyer
- Division of Clinical Toxicology, Department of Internal Medicine 2, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis IN, USA
| | - Samer Gawrieh
- Department of Medicine, Indiana University, Indianapolis, IN 46202-5175, USA
| | - Dermot Gleeson
- Liver Unit, Sheffield Teaching Hospitals, AO Floor Robert Hadfield Building, Northern General Hospital, Sheffield S5 7AU, UK
| | - David Goldman
- Office of the Clinical Director and Laboratory of Neurogenetics, NIAAA, Bethesda, MD 20952, USA
| | - Paul S. Haber
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Missenden Road, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2006, Australia
| | | | - Craig S. Lammert
- Department of Medicine, Indiana University, Indianapolis, IN 46202-5175, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University, Indianapolis, IN 46202-5175, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University and Roudebush Veterans Administration Medical Center, Indianapolis, USA
| | - Steven Masson
- Faculty of Medical Sciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Philippe Mathurin
- CHRU de Lille, Hôpital Claude Huriez, Rue M. Polonovski CS 70001, 59 037 Lille Cedex, France
| | - Romain Moirand
- Univ Rennes, INRA, INSERM, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London WC1E 6DE, UK
| | - Christophe Moreno
- CUB Hôpital Erasme, Université Libre de Bruxelles, clinique d’Hépatologie, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marsha Y. Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Sebastian Mueller
- Department of Internal Medicine, Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Zeppelinstraße 11-33, 69121 Heidelberg, Germany
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, CH-8901 Zurich, Switzerland
| | - Laura E. Nagy
- Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| | - Pierre Nahon
- Service d'Hépatologie, APHP Hôpital Avicenne et Université Paris 13, Bobigny, France
- University Paris 13, Bobigny, France
- Inserm U1162 Génomique fonctionnelle des tumeurs solides, Paris, France
| | - Bertrand Nalpas
- Service Addictologie, CHRU Caremeau, 30029 Nîmes, France
- DISC, Inserm, 75013 Paris, France
| | - Sylvie Naveau
- Hôpital Antoine-Béclère, 157 Rue de la Porte de Trivaux, 92140 Clamart, France
| | - Pascal Perney
- Hôpital Universitaire Caremeau, Place du Pr. Robert Debre, 30029 Nîmes, France
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Liverpool Centre for Alcohol Research, University of Liverpool, The Royal Liverpool and Broadgreen University Hospitals NHS Trust, and Liverpool Health Partners, Liverpool, L69 3GL, UK
| | - Helmut K. Seitz
- Department of Internal Medicine, Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Zeppelinstraße 11-33, 69121 Heidelberg, Germany
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Nussbaumsstr.7, 80336 Munich, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, CH-8901 Zurich, Switzerland
| | - Andrew Thompson
- MRC Centre for Drug Safety Science, Liverpool Centre for Alcohol Research, University of Liverpool, The Royal Liverpool and Broadgreen University Hospitals NHS Trust, and Liverpool Health Partners, Liverpool, L69 3GL, UK
- Health Analytics, Lane Clark & Peacock LLP, London, UK
| | - Mark R. Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Eric Trépo
- CUB Hôpital Erasme, Université Libre de Bruxelles, clinique d’Hépatologie, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Timothy R. Morgan
- Department of Medicine, University of California, Irvine, USA
- Department of Veterans Affairs, VA Long Beach Healthcare System, 5901 East Seventh Street, Long Beach, CA 90822, USA
| | - Devanshi Seth
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Missenden Road, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2006, Australia
- Centenary Institute of Cancer Medicine and Cell Biology, the University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
Newberry EP, Molitor EA, Liu A, Chong K, Liu X, Alonso C, Mato JM, Davidson NO. Impaired Hepatic Very Low-Density Lipoprotein Secretion Promotes Tumorigenesis and Is Accelerated with Fabp1 Deletion. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:958-974. [PMID: 38417694 PMCID: PMC11156158 DOI: 10.1016/j.ajpath.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Genetic polymorphisms that impair very low-density lipoprotein (VLDL) secretion are linked to hepatic steatosis, fibrosis, and hepatocellular cancer. Liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) impairs VLDL assembly, promoting hepatic steatosis and fibrosis, which are attenuated in Mttp-LKO X Fabp1-null [Fabp1/Mttp double knockout (DKO)] mice. The current study examined the impact of impaired VLDL secretion in Mttp-LKO mice on hepatocellular cancer incidence and progression in comparison to Fabp1/Mttp DKO mice. Diethylnitrosamine-treated Mttp-LKO mice exhibited steatosis with increased tumor burden compared with flox controls, whereas diethylnitrosamine-treated Fabp1/Mttp DKO mice exhibited a paradoxical increase in tumor burden and >50% mortality by 50 weeks. Serum high-density lipoprotein cholesterol was elevated in both Mttp-LKO and Fabp1/Mttp DKO mice, with increased intratumoral expression of apolipoprotein A1 and apolipoprotein E. Lipidomic surveys revealed progressive enrichment in distinct triglyceride species in livers from Mttp-LKO mice with further enrichment in Fabp1/Mttp DKO mice. RNA sequencing revealed mRNA changes suggesting altered monocarboxylic acid use and increased aerobic glycolysis, whereas hepatocytes from Fabp1/Mttp DKO mice exhibited increased capacity to use glucose and glutamine. These metabolic shifts were accompanied by reduced expression of HNF1 homeobox A (HNF1a), which correlated with tumor burden. Taken together, these findings demonstrate that hepatic tumorigenesis is increased in mice with impaired VLDL secretion and further accelerated via pathways including altered fatty acid compartmentalization and shifts in hepatic energy use.
Collapse
Affiliation(s)
- Elizabeth P Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth A Molitor
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Allen Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kamyar Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xiuli Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Jose M Mato
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
41
|
Tulone A, Pennisi G, Ciccioli C, Infantino G, La Mantia C, Cannella R, Mercurio F, Petta S. Are we ready for genetic testing in metabolic dysfunction-associated steatotic liver disease? United European Gastroenterol J 2024; 12:638-648. [PMID: 38659291 PMCID: PMC11176907 DOI: 10.1002/ueg2.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 04/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with its steadily increasing prevalence, represents now a major problem in public health. A proper referral could benefit from tools allowing more precise risk stratification. To this end, in recent decades, several genetic variants that may help predict and refine the risk of development and progression of MASLD have been investigated. In this review, we aim to discuss the role genetics in MASLD plays in everyday clinical practice. We performed a comprehensive literature search of PubMed for relevant publications. Available evidence highlights the emergence of genetic-based noninvasive algorithms for diagnosing fatty liver, metabolic dysfunction-associated steatohepatitis, fibrosis progression and occurrence of liver-related outcomes including hepatocellular carcinoma. Nevertheless, their accuracy is not optimal and application in everyday clinical practice remains challenging. Furthermore, susceptible genetic markers have recently become subjects of great scientific interest as therapeutic targets in precision medicine. In conclusion, decisional algorithms based on genetic testing in MASLD to facilitate the clinician decisions on management and treatment are under growing investigation and could benefit from artificial intelligence methodology.
Collapse
Affiliation(s)
- Adele Tulone
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Grazia Pennisi
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Carlo Ciccioli
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | | | - Claudia La Mantia
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| | - Roberto Cannella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND)University of PalermoPalermoItaly
| | | | - Salvatore Petta
- Sezione di GastroenterologiaPROMISEUniversity of PalermoPalermoItaly
| |
Collapse
|
42
|
Pan Z, Khatry MA, Yu ML, Choudhury A, Sebastiani G, Alqahtani SA, Eslam M. MAFLD: an ideal framework for understanding disease phenotype in individuals of normal weight. Ther Adv Endocrinol Metab 2024; 15:20420188241252543. [PMID: 38808010 PMCID: PMC11131400 DOI: 10.1177/20420188241252543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is significant, impacting almost one-third of the global population. MAFLD constitutes a primary cause of end-stage liver disease, liver cancer and the need for liver transplantation. Moreover, it has a strong association with increased mortality rates due to various extrahepatic complications, notably cardiometabolic diseases. While MAFLD is typically correlated with obesity, not all individuals with obesity develop the disease and a significant percentage of MAFLD occurs in patients without obesity, termed lean MAFLD. The clinical features, progression and underlying physiological mechanisms of patients with lean MAFLD remain inadequately characterized. The present review aims to provide a comprehensive summary of current knowledge on lean MAFLD and offer a perspective on defining MAFLD in individuals with normal weight. Key to this process is the concept of metabolic health and flexibility, which links states of dysmetabolism to the development of lean MAFLD. This perspective offers a more nuanced understanding of MAFLD and its underlying mechanisms and highlights the importance of considering the broader metabolic context in which the disease occurs. It also bridges the knowledge gap and offers insights that can inform clinical practice.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Maryam Al Khatry
- Department of Gastroenterology, Obaidullah Hospital, Emirates Health Services, Ministry of Health, Ras Al Khaimah, United Arab Emirates
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Road, Westmead 2145, NSW, Australia
| |
Collapse
|
43
|
Habib S. Metabolic dysfunction-associated steatotic liver disease heterogeneity: Need of subtyping. World J Gastrointest Pathophysiol 2024; 15:92791. [PMID: 38845820 PMCID: PMC11151879 DOI: 10.4291/wjgp.v15.i2.92791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread global disease with significant health burden. Unhealthy lifestyle, obesity, diabetes mellitus (DM), insulin resistance, and genetics have been implicated in the pathogenesis of MASLD. A significant degree of heterogeneity exists among each of above-mentioned risk factors. Heterogeneity of these risk factors translates into the heterogeneity of MASLD. On the other hand, MASLD can itself lead to insulin resistance and DM. Such heterogeneity makes it difficult to assess the natural course of an individual with MASLD in clinical practice. At present MASLD is considered as one disease despite the variability of etiopathogenic processes, and we lack the consensus definitions of unique subtypes of MASLD. In this review, pathogenic processes of MASLD are discussed and a need of subtyping is recommended.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85716, United States
| |
Collapse
|
44
|
Maurotti S, Geirola N, Frosina M, Mirarchi A, Scionti F, Mare R, Montalcini T, Pujia A, Tirinato L. Exploring the impact of lipid droplets on the evolution and progress of hepatocarcinoma. Front Cell Dev Biol 2024; 12:1404006. [PMID: 38818407 PMCID: PMC11137176 DOI: 10.3389/fcell.2024.1404006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Over the past 10 years, the biological role of lipid droplets (LDs) has gained significant attention in the context of both physiological and pathological conditions. Considerable progress has been made in elucidating key aspects of these organelles, yet much remains to be accomplished to fully comprehend the myriad functions they serve in the progression of hepatic tumors. Our current perception is that LDs are complex and active structures managed by a distinct set of cellular processes. This understanding represents a significant paradigm shift from earlier perspectives. In this review, we aim to recapitulate the function of LDs within the liver, highlighting their pivotal role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) (Hsu and Loomba, 2024) and their contribution to the progression towards more advanced pathological stages up to hepatocellular carcinoma (HC) (Farese and Walther, 2009). We are aware of the molecular complexity and changes occurring in the neoplastic evolution of the liver. Our attempt, however, is to summarize the most important and recent roles of LDs across both healthy and all pathological liver states, up to hepatocarcinoma. For more detailed insights, we direct readers to some of the many excellent reviews already available in the literature (Gluchowski et al., 2017; Hu et al., 2020; Seebacher et al., 2020; Paul et al., 2022).
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Nadia Geirola
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Frosina
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
45
|
Díaz LA, Villota-Rivas M, Barrera F, Lazarus JV, Arrese M. The burden of liver disease in Latin America. Ann Hepatol 2024; 29:101175. [PMID: 37922988 DOI: 10.1016/j.aohep.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
Liver disease poses a substantial burden in Latin America. This burden is primarily attributed to a high level of alcohol consumption and the increasing prevalence of risk factors associated with metabolic dysfunction-associated steatotic liver disease (MASLD), such as sedentary lifestyles, easy access to ultra-processed foods, obesity, and type 2 diabetes mellitus. These epidemiological trends are cause for concern, especially considering that there are significant challenges in addressing them due to disparities in access to liver disease screening and care. In this article, we aim to provide an overview of the current situation regarding liver disease in Latin America. We also discuss recent multinational proposals designed to address the growing MASLD burden via its integration into existing non-communicable diseases policies, at both local and global levels. Additionally, we emphasize the urgent need to establish effective public health policies that target both MASLD risk factors and excessive alcohol consumption. Furthermore, we discuss the development of liver transplantation programs, areas for improvement in medical education and research capabilities, and how the fostering of extensive collaboration among all stakeholders is crucial for addressing liver disease in the region.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Observatorio Multicéntrico de Enfermedades Gastrointestinales (OMEGA), Santiago, Chile
| | - Marcela Villota-Rivas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Francisco Barrera
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Observatorio Multicéntrico de Enfermedades Gastrointestinales (OMEGA), Santiago, Chile
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain; CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, United States; Global NASH Council, Washington DC, United States
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Observatorio Multicéntrico de Enfermedades Gastrointestinales (OMEGA), Santiago, Chile; Global NASH Council, Washington DC, United States.
| |
Collapse
|
46
|
Semmler G, Balcar L, Wernly S, Datz L, Semmler M, Rosenstatter L, Stickel F, Aigner E, Wernly B, Datz C. No association of NAFLD-related polymorphisms in PNPLA3 and TM6SF2 with all-cause and cardiovascular mortality in an Austrian population study. Wien Klin Wochenschr 2024; 136:251-257. [PMID: 37103556 DOI: 10.1007/s00508-023-02196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND AND AIMS Single-nucleotide-polymorphisms in PNPLA3-rs738409 and the TM6SF2-rs58542926, associated with metabolic-dysfunction-associated fatty liver disease (MAFLD), have been discussed as potentially protective for cardiovascular diseases. Therefore, we aimed to study the associations of PNPLA3/TM6SF2 variants with MAFLD and cardiovascular risk in a population-based sample of asymptomatic patients. METHODS The study cohort comprised 1742 patients of European decent aged 45-80 years from a registry study undergoing screening colonoscopy for colorectal cancer between 2010 and 2014. SCORE2 and Framingham risk score calculated to assess cardiovascular risk. Data on survival were obtained from the national death registry RESULTS: Half of included patients were male (52%, 59 ± 10 years), 819 (47%) carried PNPLA3‑G and 278 (16%) TM6SF2-T-alleles. MAFLD (PNPLA3‑G-allele: 46% vs. 41%, p = 0.041; TM6SF2‑T-allele: 54% vs. 42%, p < 0.001) was more frequent in patients harbouring risk alleles with both showing independent associations with MAFLD on multivariable binary logistic regression analysis. While median Framingham risk score was lower in PNPLA3‑G-allele carriers (10 vs. 8, p = 0.011), SCORE2 and established cardiovascular diseases were similar across carriers vs. non-carriers of the respective risk-alleles. During a median follow-up of 9.1 years, neither PNPLA3‑G-allele nor TM6SF2‑T-allele was associated with overall nor with cardiovascular mortality. CONCLUSION Carriage of PNPLA3/TM6SF2 risk alleles could not be identified as significant factor for all-cause or cardiovascular mortality in asymptomatic middle-aged individuals undergoing screening colonoscopy.
Collapse
Affiliation(s)
- Georg Semmler
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sarah Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Leonora Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Marie Semmler
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Lea Rosenstatter
- First Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
- Institute of General Practice, Family Medicine and Preventive Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
47
|
Kodama T, Takehara T. Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:147-158. [PMID: 38499207 PMCID: PMC11245329 DOI: 10.1055/a-2289-2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
48
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
49
|
Lavrado NC, Salles GF, Cardoso CRL, de França PHC, Melo MFDGG, Leite NC, Villela-Nogueira CA. Impact of PNPLA3 and TM6SF2 polymorphisms on the prognosis of patients with MASLD and type 2 diabetes mellitus. Liver Int 2024; 44:1042-1050. [PMID: 38293718 DOI: 10.1111/liv.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND/AIMS Longitudinal studies assessing the impact of genetic polymorphisms on outcomes in patients with Type 2 Diabetes Mellitus (T2DM) and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) are scarce. This study aimed to evaluate the effect of PNPLA3 and TM6SF2 risk alleles on hepatic and extrahepatic outcomes in T2DM-MASLD individuals. METHODS Patients' polymorphisms were analysed as follows: PNPLA3 CC, CG and GG; TM6SF2 CC and CT + TT; combined comparing no mutant allele, one allele G or T or ≥2 alleles G or T. Hierarchical models were built to assess associations between polymorphisms and outcomes, independently of confounding factors. Multivariate logistic regression was used for cirrhosis and its complications and extrahepatic cancer, and Cox regression for cardiovascular events (CVEs) and all-cause mortality. RESULTS In total, 407 T2DM-MASLD patients (62.1 ± 10.5 years, 67.6% women) were followed for 11 (6-13) years. Having at least one G or T allele independently increased the risk of cirrhosis in the separate analysis of PNPLA3 and TM6SF2. Combined polymorphism analysis demonstrated an even higher risk of cirrhosis if two or more risk alleles were present (OR 18.48; 95% CI 6.15-55.58; p < .001). Regarding cirrhosis complications, the risk was higher in PNPLA3 GG and TM6SF2 CT + TT, also with an even higher risk when two or more risk alleles were present in the combined evaluation (OR 27.20; 95% CI 5.26-140.62; p < .001). There were no associations with CVEs or mortality outcomes. CONCLUSION In T2DM, PNPLA3 and TM6SF2 polymorphisms, individually and additively, impact MASLD severity, with an increased risk of cirrhosis and its complications.
Collapse
Affiliation(s)
- Natália Coelho Lavrado
- Internal Medicine Post Graduate Program, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gil Fernando Salles
- Department of Internal Medicine, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Nathalie Carvalho Leite
- Division of Hepatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
50
|
Wattacheril J, Kleinstein SE, Shea PR, Wilson LA, Subramanian GM, Myers RP, Lefkowitch J, Behling C, Xanthakos SA, Goldstein DB, NASH Clinical Research Network. Investigating the Relationship Between Rare Genetic Variants and Fibrosis in Pediatric Nonalcoholic Fatty Liver Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.02.24303632. [PMID: 38496563 PMCID: PMC10942529 DOI: 10.1101/2024.03.02.24303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background and Aims Nonalcoholic Fatty Liver Disease (NAFLD) is a complex human disease. Common genetic variation in the patatin-like phospholipase domain containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2) genes have been associated with an increased risk of developing NAFLD, nonalcoholic steatohepatitis (NASH), and fibrosis in adults. The role of rare genetic variants in the development and progression of NAFLD in children is not well known. We aimed to explore the role of rare genetic variants in pediatric patients with advanced fibrosis. Methods Whole exome sequencing data was generated for 229 pediatric patients diagnosed with NAFLD recruited from the NASH Clinical Research Network (NASH CRN). Case-control single variant and gene-based collapsing analyses were used to test for rare variants that were enriched or depleted within the pediatric NAFLD cohort specifically for advanced fibrosis (cases) versus those without fibrosis (controls) or six other histologic characteristics. Exome data from non-NAFLD population controls were also used for additional analyses. All results were adjusted for multiple testing using a Bonferroni correction. Results No genome-wide significant associations were found between rare variation and presence of advanced fibrosis or NASH, nor the severity of steatosis, inflammation, or hepatocellular ballooning. Significantly, no enrichment of rare variants in PNPLA3 or TM6SF2 was observed across phenotypes. Conclusion In a cohort of children with histologically proven NAFLD, no genome-wide significant associations were found between rare genetic variation and advanced fibrosis or six other histologic features. Of particular interest was the lack of association with genes of interest in adults: PNPLA3 and TM6SF2, though limitations in sample size may reduce the ability to detect associations, particularly with rare variation.
Collapse
Affiliation(s)
- Julia Wattacheril
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Center for Liver Disease and Transplantation, New York Presbyterian Hospital
| | - Sarah E. Kleinstein
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | - Patrick R. Shea
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | | | | | | | - Jay Lefkowitch
- Columbia University Vagelos College of Physicians and Surgeons, Department of Pathology
| | | | - Stavra A. Xanthakos
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center
| | - David B. Goldstein
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | | |
Collapse
|