1
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
2
|
|
3
|
Effect of lifelong carnitine supplementation on plasma and tissue carnitine status, hepatic lipid metabolism and stress signalling pathways and skeletal muscle transcriptome in mice at advanced age. Br J Nutr 2019; 121:1323-1333. [DOI: 10.1017/s0007114519000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractWhile strong evidence from clinical studies suggests beneficial effects of carnitine supplementation on metabolic health, serious safety concerns associated with carnitine supplementation have been raised from studies in mice. Considering that the carnitine doses in these mice studies were up to 100 times higher than those used in clinical studies, the present study aimed to address possible safety concerns associated with long-term supplementation of a carnitine dose used in clinical trials. Two groups of NMRI mice were fed either a control or a carnitine-supplemented diet (1 g/kg diet) from weaning to 19 months of age, and parameters of hepatic lipid metabolism and stress signalling and skeletal muscle gene expression were analysed in the mice at 19 months of age. Concentrations of free carnitine and acetylcarnitine in plasma and tissues were higher in the carnitine than in the control group (P<0·05). Plasma concentrations of free carnitine and acetylcarnitine were higher in mice at adult age (10 and 15 months) than at advanced age (19 months) (P<0·05). Hepatic mRNA and protein levels of genes involved in lipid metabolism and stress signalling and hepatic and plasma lipid concentrations did not differ between the carnitine and the control group. Skeletal muscle transcriptome analysis in 19-month-old mice revealed only a moderate regulation between carnitine and control group. Lifelong carnitine supplementation prevents an age-dependent impairment of plasma carnitine status, but safety concerns associated with long-term supplementation of carnitine at doses used in clinical trials can be considered as unfounded.
Collapse
|
4
|
Kou L, Yao Q, Sun M, Wu C, Wang J, Luo Q, Wang G, Du Y, Fu Q, Wang J, He Z, Ganapathy V, Sun J. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs. Adv Healthc Mater 2017; 6. [PMID: 28661032 DOI: 10.1002/adhm.201700165] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/21/2017] [Indexed: 01/16/2023]
Abstract
OCTN2 (SLC22A5) is a Na+ -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na+ . Computational OCTN2 docking analysis shows that the presence of Na+ is important for the formation of the energetically stable intermediate complex of transporter-Na+ -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles.
Collapse
Affiliation(s)
- Longfa Kou
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
- Department of Cell Biology and Biochemistry; Texas Tech University Health Sciences Center; Lubbock TX 79430 USA
| | - Qing Yao
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Mengchi Sun
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Chunnuan Wu
- Tianjin Medical University Cancer Institute & Hospital; Tianjin 300060 China
| | - Jia Wang
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Qiuhua Luo
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Gang Wang
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Yuqian Du
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Qiang Fu
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery; Shenyang Pharmaceutical University; Ministry of Education; Shenyang 110016 China
| | - Zhonggui He
- Department of Pharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry; Texas Tech University Health Sciences Center; Lubbock TX 79430 USA
| | - Jin Sun
- Municipal Key Laboratory of Biopharmaceutics; School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 China
| |
Collapse
|
5
|
Sarlos P, Kovesdi E, Magyari L, Banfai Z, Szabo A, Javorhazy A, Melegh B. Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature. World J Gastrointest Pathophysiol 2014; 5:304-21. [PMID: 25133031 PMCID: PMC4133528 DOI: 10.4291/wjgp.v5.i3.304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/19/2014] [Accepted: 07/12/2014] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is one of the main types of inflammatory bowel disease, which is caused by dysregulated immune responses in genetically predisposed individuals. Several genetic factors, including interleukin and interleukin receptor gene polymorphisms and other inflammation-related genes play central role in mediating and modulating the inflammation in the human body, thereby these can be the main cause of development of the disease. It is clear these data are very important for understanding the base of the disease, especially in terms of clinical utility and validity, but summarized literature is exiguous for challenge health specialist that can used in the clinical practice nowadays. This review summarizes the current literature on inflammation-related genetic polymorphisms which are associated with UC. We performed an electronic search of Pubmed Database among publications of the last 10 years, using the following medical subject heading terms: UC, ulcerative colitis, inflammation, genes, polymorphisms, and susceptibility.
Collapse
|
6
|
Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and current challenges. Adv Drug Deliv Rev 2014; 73:102-26. [PMID: 24189013 DOI: 10.1016/j.addr.2013.10.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 12/23/2022]
Abstract
The complex process of oral drug absorption is influenced by a host of drug and formulation properties as well as their interaction with the gastrointestinal environment in terms of drug solubility, dissolution, permeability and pre-systemic metabolism. For adult dosage forms the use of biopharmaceutical tools to aid in the design and development of medicinal products is well documented. This review considers current literature evidence to guide development of bespoke paediatric biopharmaceutics tools and reviews current understanding surrounding extrapolation of adult methodology into a paediatric population. Clinical testing and the use of in silico models were also reviewed. The results demonstrate that further work is required to adequately characterise the paediatric gastrointestinal tract to ensure that biopharmaceutics tools are appropriate to predict performance within this population. The most vulnerable group was found to be neonates and infants up to 6 months where differences from adults were greatest.
Collapse
|
7
|
Ling B, Aziz C, Alcorn J. Systematic Evaluation of Key L-Carnitine Homeostasis Mechanisms during Postnatal Development in Rat. Nutr Metab (Lond) 2012; 9:66. [PMID: 22805277 PMCID: PMC3408321 DOI: 10.1186/1743-7075-9-66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/17/2012] [Indexed: 01/01/2023] Open
Abstract
Background The conditionally essential nutrient, L-carnitine, plays a critical role in a number of physiological processes vital to normal neonatal growth and development. We conducted a systematic evaluation of the developmental changes in key L-carnitine homeostasis mechanisms in the postnatal rat to better understand the interrelationship between these pathways and their correlation to ontogenic changes in L-carnitine levels during postnatal development. Methods mRNA expression of heart, kidney and intestinal L-carnitine transporters, liver γ-butyrobetaine hydroxylase (Bbh) and trimethyllysine hydroxylase (Tmlh), and heart carnitine palmitoyltransferase (Cpt) were measured using quantitative RT-PCR. L-Carnitine levels were determined by HPLC-UV. Cpt and Bbh activity were measured by a spectrophotometric method and HPLC, respectively. Results Serum and heart L-carnitine levels increased with postnatal development. Increases in serum L-carnitine correlated significantly with postnatal increases in renal organic cation/carnitine transporter 2 (Octn2) expression, and was further matched by postnatal increases in intestinal Octn1 expression and hepatic γ-Bbh activity. Postnatal increases in heart L-carnitine levels were significantly correlated to postnatal increases in heart Octn2 expression. Although cardiac high energy phosphate substrate levels remained constant through postnatal development, creatine showed developmental increases with advancing neonatal age. mRNA levels of Cpt1b and Cpt2 significantly increased at postnatal day 20, which was not accompanied by a similar increase in activity. Conclusions Several L-carnitine homeostasis pathways underwent significant ontogenesis during postnatal development in the rat. This information will facilitate future studies on factors affecting the developmental maturation of L-carnitine homeostasis mechanisms and how such factors might affect growth and development.
Collapse
Affiliation(s)
- Binbing Ling
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.
| | | | | |
Collapse
|
8
|
Lin Z, Nelson L, Franke A, Poritz L, Li TY, Wu R, Wang Y, MacNeill C, Thomas NJ, Schreiber S, Koltun WA. OCTN1 variant L503F is associated with familial and sporadic inflammatory bowel disease. J Crohns Colitis 2010; 4:132-8. [PMID: 21122496 DOI: 10.1016/j.crohns.2009.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 02/07/2023]
Abstract
PURPOSE A two-allele haplotype of TC (OCTN1 rs1050152 and OCTN2 -207G→C) is associated with Crohn's disease (CD). The association has been replicated in different populations, but also failed in some studies. The present study is to replicate the association of OCTN1 rs1050152 and examine another variant rs272879 with familial and sporadic inflammatory bowel disease (IBD) in a cohort from central Pennsylvania, USA. METHODS The study samples (n=465) included 212 inflammatory bowel disease patients (CD=115, UC=97), including 103 familial (CD=55, UC=46) and 111 sporadic (CD=60, UC=51) IBD, 139 non-IBD family members from a familial IBD registry, and 114 unrelated healthy controls. A total of 12 OCTN1 variants within exonic sequences were examined. Two nonsynonymous SNPs, rs1050152 (L503F) and rs272879 (L395V) were genotyped by a PCR-based RFLP/cRFLP method and statistically analyzed. These samples with an additional 141 unrelated healthy samples were also genotyped for rs1050152 using the SNPlex™ Genotyping System. RESULTS The OCTN1 rs1050152 is associated with CD (OR=1.745, 95% CI=1.019-2.990, χ²=4.129, p=0.042) and with IBD (OR=1.68, 95% CI=1.052-2.676, χ²=4.732, p=0.030); while the variant rs272879 is not associated with IBD, CD or ulcerative colitis (UC). The distribution of the rs1050152 variant showed a high level of the T allele in male UC (OR=2.585, 95% CI=1.139-5.869, p=0.023) and IBD (OR=2.039, 95% CI=1.024-4.059, p=0.042) patients, and in female CD patients (OR=2.329, 95% CI=1.038-5.226, ρ value=0.039). CONCLUSION The present results replicated the association of the OCTN1 rs1050152 (L503F) variant with CD and IBD overall. A weak gender-specific effect of rs1050152 (L503F) on male UC and female CD was observed.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Surgery, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 581] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
10
|
Annaert P, Brouwers J, Bijnens A, Lammert F, Tack J, Augustijns P. Ex vivo permeability experiments in excised rat intestinal tissue and in vitro solubility measurements in aspirated human intestinal fluids support age-dependent oral drug absorption. Eur J Pharm Sci 2010; 39:15-22. [DOI: 10.1016/j.ejps.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 09/06/2009] [Accepted: 10/12/2009] [Indexed: 01/21/2023]
|
11
|
Thomson ABR. Small intestinal disorders in the elderly. Best Pract Res Clin Gastroenterol 2009; 23:861-74. [PMID: 19942164 DOI: 10.1016/j.bpg.2009.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 01/31/2023]
Abstract
The topic of gastroenterology (GI) in the elderly has been extensively reviewed. It takes special skill, patience and insight to interview the elderly, as well as to appreciate their altered physiology and interpretation of their presenting symptoms and signs, often against an extreme background of complex medical problems. The maldigestion and malabsorption coupled with altered motility contributes to the development of malnutrition. There generally a decrease of function of the GI tract, but there may be loss of adaptability in response to changes in diet or nutritional stress. Pathological alterations which might lead to minor overall intestinal functional variations in the young because of a normal process of adaptation, may lead to much more serious events in the elderly.
Collapse
Affiliation(s)
- Alan B R Thomson
- Division of General Internal Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
García-Delgado M, Peral MJ, Durán JM, García-Miranda P, Calonge ML, Ilundáin AA. Ontogeny of Na+/l-carnitine transporter and of γ-trimethylaminobutyraldehyde dehydrogenase and γ-butyrobetaine hydroxylase genes expression in rat kidney. Mech Ageing Dev 2009; 130:227-33. [DOI: 10.1016/j.mad.2008.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/20/2008] [Accepted: 12/13/2008] [Indexed: 11/26/2022]
|
13
|
Srinivas SR, Prasad PD, Umapathy NS, Ganapathy V, Shekhawat PS. Transport of butyryl-L-carnitine, a potential prodrug, via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+). Am J Physiol Gastrointest Liver Physiol 2007; 293:G1046-53. [PMID: 17855766 PMCID: PMC3583010 DOI: 10.1152/ajpgi.00233.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
L-carnitine is absorbed in the intestinal tract via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+). Loss-of-function mutations in OCTN2 may be associated with inflammatory bowel disease (IBD), suggesting a role for carnitine in intestinal/colonic health. In contrast, ATB(0,+) is upregulated in bowel inflammation. Butyrate, a bacterial fermentation product, is beneficial for prevention/treatment of ulcerative colitis. Butyryl-L-carnitine (BC), a butyrate ester of carnitine, may have potential for treatment of gut inflammation, since BC would supply both butyrate and carnitine. We examined the transport of BC via ATB(0,+) to determine if this transporter could serve as a delivery system for BC. We also examined the transport of BC via OCTN2. Studies were done with cloned ATB(0,+) and OCTN2 in heterologous expression systems. BC inhibited ATB(0,+)-mediated glycine transport in mammalian cells (IC(50), 4.6 +/- 0.7 mM). In Xenopus laevis oocytes expressing human ATB(0,+), BC induced Na(+) -dependent inward currents under voltage-clamp conditions. The currents were saturable with a K(0.5) of 1.4 +/- 0.1 mM. Na(+) activation kinetics of BC-induced currents suggested involvement of two Na(+) per transport cycle. BC also inhibited OCTN2-mediated carnitine uptake (IC(50), 1.5 +/- 0.3 microM). Transport of BC via OCTN2 is electrogenic, as evidenced from BC-induced inward currents. These currents were Na(+) dependent and saturable (K(0.5), 0.40 +/- 0.02 microM). We conclude that ATB(0,+) is a low-affinity/high-capacity transporter for BC, whereas OCTN2 is a high-affinity/low-capacity transporter. ATB(0,+) may mediate intestinal absorption of BC when OCTN2 is defective.
Collapse
Affiliation(s)
- Sonne R Srinivas
- Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
14
|
Szymeczko R, Burlikowska K, Iben C, Piotrowska A, Bogusławska-Tryk M. Ileal absorption of L-carnitine from diets used in reproductive polar fox (Alopex lagopusL.) nutrition. ACTA AGR SCAND A-AN 2007. [DOI: 10.1080/09064700801948851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|