Copyright
©The Author(s) 2025.
World J Radiol. Jun 28, 2025; 17(6): 106682
Published online Jun 28, 2025. doi: 10.4329/wjr.v17.i6.106682
Published online Jun 28, 2025. doi: 10.4329/wjr.v17.i6.106682
Table 1 Multi-cohort comparison of thyroid lobes characteristics, n (%)
Characteristics | Training cohort | Validation cohort | Temporal test cohort | External test cohort | P valuea | P valueb | P valuec |
Grouped | n = 264 | n = 112 | n = 97 | n = 81 | 0.203 | 0.605 | 0.053 |
Benign | 80 (30) | 26 (23) | 26 (27) | 15 (19) | |||
Malignant | 184 (70) | 86 (77) | 71 (73) | 66 (81) | |||
Gender | 0.355 | 0.415 | 0.463 | ||||
Female | 211 (80) | 84 (75) | 73 (75) | 61 (75) | |||
Male | 53 (20) | 28 (25) | 24 (25) | 20 (25) | |||
Age (years), median | 51.00 (38.75-60.00) | 48.50 (35.75-58.00) | 50.00 (41.00-57.00) | 52.00 (41.00-60.00) | 0.100 | 0.944 | 0.413 |
BMI, median (P25-P75) | 24.46 (22.04-26.30) | 24.73 (22.18-27.05) | 24.77 (23.11-26.9) | 25.01 (24.29-25.78) | 0.288 | 0.161 | 0.042 |
Multiple nodules | 0.517 | 0.519 | 0.036 | ||||
No | 148 (56) | 58 (52) | 50 (52) | 34 (42) | |||
Yes | 116 (44) | 54 (48) | 47 (48) | 47 (58) | |||
Tumor size group | 0.095 | 0.001 | 0.007 | ||||
Small (≤ 5 mm) | 43 (16) | 29 (26) | 21 (22) | 24 (30) | |||
Medium (5-10 mm) | 99 (38) | 38 (34) | 52 (54) | 33 (41) | |||
Large (> 10 mm) | 122 (46) | 45 (40) | 24 (25) | 24 (30) | |||
Calcify | 0.629 | 0.344 | < 0.001 | ||||
No | 192 (73) | 78 (70) | 76 (78) | 42 (52) | |||
Yes | 72 (27) | 34 (30) | 21 (22) | 39 (48) | |||
Cystic | 0.741 | 0.399 | < 0.001 | ||||
No | 229 (87) | 95 (85) | 88 (91) | 38 (47) | |||
Yes | 35 (13) | 17 (15) | 9 (9) | 43 (53) | |||
FT3 (pmol/L), median | 4.76 (4.39-5.09) | 4.76 (4.44-4.99) | 4.71 (4.46-5.03) | 4.79 (4.32-5.45) | 0.891 | 0.918 | 0.299 |
FT4 (pmol/L), median | 16.20 (14.88-17.90) | 16.20 (14.57-18.30) | 17.40 (15.70-19.00) | 16.80 (14.50-19.60) | 0.976 | 0.002 | 0.204 |
TSH (mU/L), median | 1.73 (1.37-2.44) | 1.62 (1.13-2.59) | 2.16 (1.38-2.67) | 1.68 (1.04-3.01) | 0.098 | 0.153 | 0.665 |
TGAb (IU/mL), median | 16.70 (15.4-21.45) | 16.70 (15.3-17.72) | 17.00 (15.81-17.90) | 17.80 (17.30-18.10) | 0.173 | 0.789 | 0.001 |
TPOAb (IU/mL), median | 13.00 (12.35-13.22) | 13.00 (11.35-15.10) | 15.00 (14.20-15.74) | 12.60 (12.10-13.50) | 0.707 | < 0.001 | < 0.001 |
Table 2 Comparison between the benign and malignant thyroid lobes in the training cohort, n (%)
Characteristics | Benign (n = 80) | Malignant (n = 184) | P value |
Gender | 0.234 | ||
Female | 68 (85) | 143 (78) | |
Male | 12 (15) | 41 (22) | |
Age (years), median (P25-P75) | 54.50 (49.00-64.25) | 49.00 (35.00-57.25) | < 0.001 |
BMI, median (P25-P75) | 24.16 (21.93-25.98) | 24.80 (22.19-26.35) | 0.296 |
Multiple nodules | 0.716 | ||
No | 43 (54) | 105 (57) | |
Yes | 37 (46) | 79 (43) | |
Tumor size group | < 0.001 | ||
Small (≤ 5 mm) | 4 (5) | 39 (21) | |
Medium (5-10 mm) | 21 (26) | 78 (42) | |
Large (> 10 mm) | 55 (69) | 67 (36) | |
Calcify | 0.028 | ||
No | 66 (82) | 126 (68) | |
Yes | 14 (18) | 58 (32) | |
Cystic | < 0.001 | ||
No | 57 (71) | 172 (93) | |
Yes | 23 (29) | 12 (7) | |
FT3 (pmol/L), median (P25-P75) | 4.76 (4.43-5.01) | 4.76 (4.39-5.14) | 0.421 |
FT4 (pmol/L), median (P25-P75) | 16.20 (14.88-16.92) | 16.20 (14.95-18.05) | 0.142 |
TSH (mU/L), median (P25-P75) | 1.73 (1.40-2.03) | 1.73 (1.37-2.63) | 0.227 |
TGAb (IU/mL), median (P25-P75) | 16.70 (15.62-18.05) | 16.70 (15.4-25.85) | 0.164 |
TPOAb (IU/mL), median (P25-P75) | 13.00 (12.80-13.82) | 13.00 (12.35-13.00) | 0.671 |
Table 3 Weights of least absolute shrinkage and selection operator selected features and training set Z-score parameters
Feature names | Weight | Average | Variance |
Intercept | 0.250252 | - | - |
Original_shape_Elongation | 0.311096 | 0.524 | 0.104 |
Original_firstorder_10Percentile | 0.213349 | 50.029 | 15.014 |
Original_firstorder_interquartilerange | 0.157092 | 29.216 | 10.044 |
Original_glcm_maximumprobability | -0.10344 | 0.304 | 0.092 |
Original_gldm_dependenceentropy | 0.192143 | 6.133 | 0.351 |
Original_ngtdm_Contrast | -0.03429 | 0.009 | 0.006 |
Original_ngtdm_Strength | -0.00931 | 0.472 | 1.371 |
Log-sigma-1-mm-3D_glcm_InverseVariance | -0.44471 | 0.310 | 0.026 |
Log-sigma-1-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis | 0.326205 | 68429444.000 | 388518307.356 |
log-sigma-1-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis | -0.02438 | 10850.300 | 46169.980 |
Log -sigma-2-mm-3D_firstorder_Maximum | 0.173416 | 56.164 | 27.585 |
Log -sigma-2-mm-3D_glrlm_RunLengthNonUniformity | -0.11635 | 1356.938 | 450.535 |
Log -sigma-2-mm-3D_glszm_ZoneEntropy | -0.18766 | 5.256 | 0.371 |
Log -sigma-3-mm-3D_firstorder_TotalEnergy | -0.26768 | 57352644.000 | 20352814.000 |
Log -sigma-3-mm-3D_glcm_ClusterProminence | 0.123895 | 1173.183 | 544.414 |
Wavelet-LLH_firstorder_Mean | 0.15131 | 9.850 | 2.798 |
Wavelet-LLH_firstorder_Skewness | 0.088985 | -1.869 | 1.851 |
Wavelet-LHH_glcm_InverseVariance | -0.38886 | 0.503 | 0.005 |
Wavelet-LHH_gldm_LargeDependenceHighGrayLevelEmphasis | -0.25005 | 3423.815 | 3331.008 |
wavelet-HLL_glszm_GrayLevelNonUniformityNormalized | 0.104264 | 0.159 | 0.094 |
Wavelet-HLL_glszm_LargeAreaLowGrayLevelEmphasis | -0.05978 | 10742.590 | 83666.610 |
Wavelet-HLH_glcm_InverseVariance | -0.14526 | 0.501 | 0.005 |
Wavelet-HHL_glszm_GrayLevelNonUniformity | 0.087039 | 18.166 | 12.923 |
Wavelet-HHH_firstorder_InterquartileRange | 0.284918 | 6.497 | 1.234 |
Wavelet-LLL_glcm_InverseVariance | -0.45374 | 0.448 | 0.023 |
Wavelet-LLL_gldm_DependenceEntropy | -0.27325 | 7.039 | 0.328 |
Wavelet-LLL_glszm_GrayLevelNonUniformity | -0.23569 | 39.394 | 14.681 |
Table 4 Multi-cohort predictive performance of various models
Model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV | Precision | Recall | F1 | Brier |
Training cohort (benign = 80, malignant = 184), SMOTE (benign = 104) | ||||||||||
LR | 0.845 (0.794-0.896) | 0.799 | 0.832 | 0.725 | 0.874 | 0.652 | 0.874 | 0.832 | 0.852 | 0.140 |
DT | 0.806 (0.745-0.866) | 0.826 | 0.829 | 0.815 | 0.946 | 0.550 | 0.946 | 0.829 | 0.883 | 0.136 |
RF | 1.000 (1.000-1.000) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.027 |
XGB | 0.899 (0.845-0.932) | 0.845 | 0.783 | 0.875 | 0.935 | 0.636 | 0.935 | 0.783 | 0.852 | 0.125 |
SVM | 0.844 (0.791-0.896) | 0.814 | 0.864 | 0.700 | 0.869 | 0.691 | 0.869 | 0.864 | 0.866 | 0.141 |
KNN | 1.000 (1.000-1.000) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 |
LGBM | 0.692 (0.631-0.752) | 0.561 | 0.755 | 0.600 | 0.813 | 0.516 | 0.813 | 0.755 | 0.783 | 0.208 |
Senior radiologist | 0.596 (0.505-0.633) | 0.542 | 0.500 | 0.638 | 0.760 | 0.357 | 0.760 | 0.500 | 0.603 | 0.209 |
Junior radiologist | 0.529 (0.464-0.594) | 0.496 | 0.446 | 0.613 | 0.736 | 0.324 | 0.726 | 0.446 | 0.552 | 0.211 |
Validation cohort (benign = 26, malignant = 86) | ||||||||||
LR | 0.834 (0.750-0.917) | 0.768 | 0.837 | 0.538 | 0.857 | 0.500 | 0.857 | 0.837 | 0.847 | 0.128 |
DT | 0.646 (0.529-0.762) | 0.696 | 0.802 | 0.346 | 0.802 | 0.346 | 0.802 | 0.802 | 0.802 | 0.218 |
RF | 0.729 (0.620-0.838) | 0.759 | 0.860 | 0.423 | 0.831 | 0.478 | 0.831 | 0.860 | 0.846 | 0.166 |
XGB | 0.803 (0.715-0.890) | 0.696 | 0.744 | 0.538 | 0.842 | 0.389 | 0.842 | 0.744 | 0.790 | 0.144 |
SVM | 0.820 (0.728-0.912) | 0.795 | 0.860 | 0.577 | 0.871 | 0.556 | 0.871 | 0.860 | 0.865 | 0.130 |
KNN | 0.793 (0.697-0.890) | 0.741 | 0.779 | 0.615 | 0.870 | 0.457 | 0.870 | 0.779 | 0.822 | 0.180 |
LGBM | 0.724 (0.628-0.820) | 0.545 | 0.430 | 0.923 | 0.949 | 0.329 | 0.949 | 0.430 | 0.592 | 0.182 |
Senior radiologist | 0.558 (0.449-0.667) | 0.527 | 0.500 | 0.615 | 0.811 | 0.271 | 0.811 | 0.500 | 0.619 | 0.182 |
Junior radiologist | 0.538 (0.428-0.649) | 0.518 | 0.500 | 0.577 | 0.796 | 0.259 | 0.796 | 0.500 | 0.614 | 0.182 |
Temporal test cohort (benign = 26, malignant = 71) | ||||||||||
LR | 0.814 (0.717-0.912) | 0.825 | 0.930 | 0.538 | 0.846 | 0.737 | 0.846 | 0.930 | 0.886 | 0.137 |
DT | 0.757 (0.652-0.851) | 0.742 | 0.780 | 0.533 | 0.901 | 0.308 | 0.901 | 0.780 | 0.837 | 0.178 |
RF | 0.795 (0.696-0.894) | 0.763 | 0.901 | 0.385 | 0.800 | 0.588 | 0.800 | 0.901 | 0.848 | 0.152 |
XGB | 0.855 (0.775-0.935) | 0.773 | 0.831 | 0.615 | 0.855 | 0.571 | 0.855 | 0.831 | 0.843 | 0.139 |
SVM | 0.816 (0.719-0.913) | 0.845 | 0.972 | 0.500 | 0.841 | 0.867 | 0.841 | 0.972 | 0.902 | 0.141 |
KNN | 0.719 (0.607-0.832) | 0.711 | 0.803 | 0.462 | 0.803 | 0.462 | 0.803 | 0.803 | 0.803 | 0.208 |
LGBM | 0.800 (0.697-0.904) | 0.835 | 0.873 | 0.731 | 0.899 | 0.679 | 0.899 | 0.873 | 0.886 | 0.193 |
External test cohort (benign = 15, malignant = 66) | ||||||||||
LR | 0.782 (0.607-0.907) | 0.765 | 0.848 | 0.400 | 0.862 | 0.375 | 0.862 | 0.848 | 0.855 | 0.127 |
DT | 0.715 (0.566-0.863) | 0.778 | 0.887 | 0.421 | 0.833 | 0.533 | 0.833 | 0.887 | 0.859 | 0.166 |
RF | 0.751 (0.589-0.913) | 0.815 | 0.879 | 0.533 | 0.892 | 0.500 | 0.892 | 0.879 | 0.885 | 0.143 |
XGB | 0.802 (0.644-0.939) | 0.728 | 0.727 | 0.733 | 0.923 | 0.379 | 0.923 | 0.727 | 0.814 | 0.121 |
SVM | 0.800 (0.674-0.926) | 0.815 | 0.909 | 0.400 | 0.870 | 0.500 | 0.870 | 0.909 | 0.889 | 0.120 |
KNN | 0.813 (0.697-0.928) | 0.803 | 0.848 | 0.600 | 0.903 | 0.474 | 0.903 | 0.848 | 0.875 | 0.158 |
LGBM | 0.728 (0.668-0.789) | 0.753 | 0.848 | 0.333 | 0.848 | 0.333 | 0.848 | 0.848 | 0.848 | 0.163 |
Table 5 DeLong test for different models and human radiologists in the validation cohort
Models | DT | LR | RF | XGB | SVM | KNN | LGBM | Senior radiologist | Junior radiologist |
DT | - | 0.011 | 0.118 | < 0.001 | < 0.001 | 0.022 | 0.309 | 0.235 | 0.179 |
LR | 0.011 | - | 0.137 | 0.615 | 0.833 | 0.537 | 0.093 | < 0.001 | < 0.001 |
RF | 0.118 | 0.137 | - | 0.038 | 0.016 | 0.100 | 0.950 | 0.031 | 0.017 |
XGB | < 0.001 | 0.615 | 0.038 | - | 0.469 | 0.825 | 0.239 | < 0.001 | < 0.001 |
SVM | < 0.001 | 0.833 | 0.016 | 0.469 | - | 0.535 | 0.159 | < 0.001 | < 0.001 |
KNN | 0.022 | 0.537 | 0.100 | 0.825 | 0.535 | - | 0.321 | 0.002 | < 0.001 |
LGBM | 0.309 | 0.093 | 0.950 | 0.239 | 0.159 | 0.321 | - | 0.017 | 0.008 |
Senior radiologist | 0.235 | < 0.001 | 0.031 | < 0.001 | < 0.001 | 0.002 | 0.017 | - | 0.810 |
Junior radiologist | 0.179 | < 0.001 | 0.017 | < 0.001 | < 0.001 | < 0.001 | 0.008 | 0.810 | - |
- Citation: Wang H, Wang X, Du YS, Wang Y, Bai ZJ, Wu D, Tang WL, Zeng HL, Tao J, He J. Non-contrast computed tomography radiomics model to predict benign and malignant thyroid nodules with lobe segmentation: A dual-center study. World J Radiol 2025; 17(6): 106682
- URL: https://www.wjgnet.com/1949-8470/full/v17/i6/106682.htm
- DOI: https://dx.doi.org/10.4329/wjr.v17.i6.106682