Minireviews
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Cardiol. Jun 26, 2015; 7(6): 315-325
Published online Jun 26, 2015. doi: 10.4330/wjc.v7.i6.315
Nomenclature, categorization and usage of formulae to adjust QT interval for heart rate
Simon W Rabkin, Xin Bo Cheng
Simon W Rabkin, Xin Bo Cheng, Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver V5Z 1M9, Canada
Author contributions: Rabkin SW and Cheng XB solely contributed to this paper.
Conflict-of-interest: The authors confirm that there are no conflicts of interest.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Dr. Simon W Rabkin, MD, FRCPC, FACC, Department of Medicine, Division of Cardiology, University of British Columbia, Level 9 2775 Laurel St, Vancouver V5Z 1M9, Canada. rabkin@mail.ubc.ca
Telephone: +1-604-8755847 Fax: +1-604-8755849
Received: August 26, 2014
Peer-review started: August 27, 2014
First decision: October 14, 2014
Revised: February 4, 2015
Accepted: April 1, 2015
Article in press: April 7, 2015
Published online: June 26, 2015
Core Tip

Core tip: We propose a nomenclature for QT-heart rate adjustment formulae consisting of the first letter of the first author’s name followed by the next two consonance with subscripts if the author develops more than one equation. Twenty different QT-heart rate formulae produced discordant calculations of adjusted QT interval. Formulae were categorization into predictive or corrective (QTc) and into linear, rational, exponential, logarithmic, or power based. QTc equations are the most suitable for clinical application. Based on the ability to minimize the slope of a best fit linear relationship between QTc and heart rate, the new formulae QTcDMT and QTcRTHa warrant introduction into clinical practice.