1
|
Zhou X, Chen S, Savitz B, Yu N, Perdikis G, Duckworth K, Dean Y, Long X, Lineaweaver W. Comparative efficacy of different functional hydrogel dressings in healing diabetic foot ulcer: A systematic review and network meta-analysis. Diabetes Obes Metab 2025; 27:3431-3441. [PMID: 40197692 DOI: 10.1111/dom.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
AIMS Functional hydrogel dressings offer a promising therapeutic approach, and optimizing their formulations is crucial for improving diabetic foot ulcers (DFUs) outcomes. This study explores the comparative efficacy of different functional hydrogel dressings in DFUs treatment. MATERIALS AND METHODS We conducted a systematic review and Bayesian network meta-analysis of randomized controlled trials evaluating functional hydrogel dressings for DFUs treatment. A comprehensive search was performed across PubMed, Embase, CENTRAL, CNKI and Web of Science from inception to June 2024. Bayesian network meta-analysis was employed to synthesize and compare the relative efficacy of hydrogel interventions, defined as the number of patients with complete wound closure. RESULTS In total, 23 studies involving 1671 patients with DFUs were included. The analysis revealed that immuno-regulating hydrogels (IRHs) had the highest effect estimate (2.2, 95% CI: 1.6, 3.2), compared with anti-bacterial hydrogels (ABHs) ranked last (1.3, 95% CI: 0.78, 2.3). Multi-functional hydrogels (MFHs) and proliferation-promoting hydrogels (PPHs) displayed intermediate effects (1.7, 95% CI: 1.2, 2.4). The relative efficacy ranking was IRH > MFH/PPH > ABH > placebo. The risk of adverse events was lower in functional hydrogel groups relative to placebo (0.75, 95% CI: 0.56, 0.96). Node-splitting analysis confirmed the consistency between direct and indirect evidence for IRH versus ABH. A funnel plot analysis indicated no significant publication bias, affirming the robustness of our findings. CONCLUSION This study provides a comprehensive evaluation of functional hydrogel dressings for DFUs treatment, highlighting the potential of IRH as the most effective option. These insights will guide future research and clinical applications to improve DFUs management.
Collapse
Affiliation(s)
- Xiaozhen Zhou
- Peking Union Medical College Hospital, Beijing, China
| | - Shida Chen
- Peking Union Medical College Hospital, Beijing, China
| | - Benjamin Savitz
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nanze Yu
- Peking Union Medical College Hospital, Beijing, China
| | - Galen Perdikis
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kylie Duckworth
- Medical University of South Carolina College of Medicine, Charleston, South Carolina, USA
| | - Yomna Dean
- Alexandria University, Alexandria, Egypt
| | - Xiao Long
- Peking Union Medical College Hospital, Beijing, China
| | | |
Collapse
|
2
|
Valsami EA, Chu G, Guan M, Gilman J, Theocharidis G, Veves A. The Role of Omics Techniques in Diabetic Wound Healing: Recent Insights into the Application of Single-Cell RNA Sequencing, Bulk RNA Sequencing, Spatial Transcriptomics, and Proteomics. Adv Ther 2025:10.1007/s12325-025-03212-9. [PMID: 40381157 DOI: 10.1007/s12325-025-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 05/19/2025]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication of diabetes mellitus (DM) that affect millions of people worldwide every year. They have a long-term impact on patients' quality of life and pose a significant challenge for both patients and clinicians, alongside negative economic implications on affected individuals. The current therapeutic approaches are costly and, in many cases, ineffective, highlighting the urgent need to develop novel, affordable, more efficient, and personalized treatments. Recent advances in high-throughput omics technologies, including proteomics, bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and spatial transcriptomics in both preclinical animal and human clinical studies, have enhanced our understanding of the molecular function and mechanisms of DFUs, thereby offering potential for targeted therapies. Additionally, these technologies provide valuable insights behind the mechanism of action of novel wound dressings and treatments. In this review, we outline the latest application of omics technologies in DFU preclinical animal and human clinical research on diabetic wound healing, and spotlight recent findings.A graphical abstract is available with this article.
Collapse
Affiliation(s)
- Eleftheria-Angeliki Valsami
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Guangyu Chu
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Ming Guan
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Jessica Gilman
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Georgios Theocharidis
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Aristidis Veves
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
He L, Li Z, Wang J, Wu Z, Li X, Li Z, Hu Z. Innovative Self-Powered Electrically Stimulated Fabric Dressing for Enhanced Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377115 DOI: 10.1021/acsami.5c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Electrical stimulation (ES) therapy has emerged as a promising method for improving wound healing by mimicking the body's natural electric fields. However, traditional ES devices often fall short in practical applications due to their bulkiness and inefficiency. Current tools for electrical stimulation are hindered by issues such as poor sustainability, limited flexibility, and inadequate biocompatibility. To address these challenges, we have developed a novel self-powered electrical stimulation fabric dressing (SESFD). This innovative dressing employs advanced electrochemical deposition technology to integrate fiber electrodes seamlessly into the fabric using standard textile manufacturing methods. Additionally, we incorporated a gel electrolyte infused with antimicrobial agents to enhance protection against bacterial infections during electrical stimulation. To evaluate the effectiveness of the SESFD in promoting healing for chronic diabetic wounds, we conducted rigorous in vivo studies. The results demonstrated that the SESFD significantly improved cell proliferation and migration within the wound tissue while effectively reducing bacterial growth. These enhancements contributed to faster wound closure, decreased inflammatory response, increased collagen deposition, and improved angiogenesis. Furthermore, the SESFD displayed excellent mechanical properties, extended discharge durability, and stable voltage output even under mechanical deformation. These attributes greatly enhance user experience and comfort for patients throughout the healing process. This study positions the SESFD as a groundbreaking solution that combines electrical stimulation with antimicrobial treatment for diabetic wound care. It represents a sustainable, flexible, and biocompatible approach to accelerating wound healing and improving treatment outcomes.
Collapse
Affiliation(s)
- Lin He
- College of Textiles and Clothing, XinJiang University, Urumqi, Xinjiang 830046, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junping Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Mechanical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xinyu Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
4
|
Mahmoudi N, Sharifi S, Leshchiner D, Horibata S, Lin Z, Ghazali N, Shahbazi MA, Priyam A, Williams RJ, Pastar I, Gould L, Matoori S, Nisbet DR, Mahmoudi M. Tailored bioengineering and nanomedicine strategies for sex-specific healing of chronic wounds. Br J Dermatol 2025; 192:390-401. [PMID: 39565404 DOI: 10.1093/bjd/ljae457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Chronic wounds, defined by their prolonged healing process, significantly impair patients' quality of life and impose a hefty financial burden on healthcare systems worldwide. Sex- and gender-specific mechanisms regulate inflammation and infection, angiogenesis, matrix synthesis and cell recruitment. All of these processes contribute to cutaneous wound healing but remain largely understudied. This review aims to spotlight the innovative realm of bioengineering and nanomedicine, which is at the helm of revolutionizing complex chronic wound care. It underscores the significance of integrating patient sex into the development and (pre)clinical testing of these avant-garde treatment modalities, in order to enhance healing prospects for all patients regardless of sex. Moreover, we explore the representation of male and female patients in clinical trials of bioengineered and nanomedicine products. Finally, we examine the primary reasons for the historical neglect in translating sex-specific wound healing research into clinical practice and propose strategic solutions. By tackling these issues, the article advocates advanced treatment frameworks that could significantly improve healing outcomes for individuals of all sexes, thereby optimizing both efficacy and inclusivity in chronic wound management.
Collapse
Affiliation(s)
- Negar Mahmoudi
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Dmitry Leshchiner
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Sachi Horibata
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Noor Ghazali
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ayushi Priyam
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Irena Pastar
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lisa Gould
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- South Shore Health Center for Wound Healing, Weymouth, MA, USA
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Miron RJ, Moraschini V, Estrin N, Shibli JA, Cosgarea R, Jepsen K, Jervøe‐Storm P, Wang H, Sculean A, Jepsen S. Autogenous platelet concentrates for treatment of intrabony defects-A systematic review with meta-analysis. Periodontol 2000 2025; 97:153-190. [PMID: 39425513 PMCID: PMC11808470 DOI: 10.1111/prd.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 10/21/2024]
Abstract
To provide an overview of the use of autogenous platelet concentrates (APCs) in periodontal regeneration and to conduct a systematic review (SR) of the treatment outcomes of periodontal intrabony defects by using platelet-rich fibrin (PRF) compared with other commonly utilized modalities. The eligibility criteria comprised randomized controlled trials (RCTs) comparing the clinical outcomes of PRF with that of other modalities. Studies were classified into 21 categories and into five different groups as follows: Group I (1) open flap debridement (OFD) alone versus OFD/PRF, (2) OFD versus Titanium-PRF (T-PRF) Group II, (3) Comparative PRF protocols (PRF vs. T-PRF), Group III (Comparative Studies to PRF): (4) OFD/PRP versus OFD/PRF, (5) OFD/bone graft(BG)/PRGF versus OFD/BG/PRF, (6) OFD/EMD versus OFD/PRF, (7) OFD/BG/EMD versus OFD/BG/PRF, (8) OFD/collagen membrane (CM) versus OFD/PRF, (9) OFD/BG/BM versus OFD/BG/PRF, (10) OFD/BG versus OFD/PRF, Group IV (Addition of PRF to treatment groups) (11) OFD/BG versus OFD/BG/PRF, (12) OFD/GTR versus OFD/GTR + PRF (13) OFD/EMD versus OFD/EMD/PRF (14) OFD/BG/BM versus OFD/BG/BM/PRF, Group V (Addition of Biomaterial/Biomolecule to PRF): OFD/PRF versus … (15) OFD/PRF/BG, (16) OFD/PRF/antibiotic, (17) OFD/PRF/Metformin, (18) OFD/PRF/Bisphosphonates, (19) OFD/PRF/Statins, (20) OFD/BG/PRF versus OFD/BG/PRF/Statins, and (21) OFD/PRF/low-level laser therapy (LLLT). Weighted means and forest plots were calculated for probing pocket depth (PPD), clinical attachment level (CAL), and radiographic bone fill (RBF). From 596 records identified, 55 RCTs were included. Group I: The use of OFD/PRF statistically significantly reduced PPD and improved CAL and RBF when compared to OFD. Group II: A significant difference between various PRF protocols was only observed for PPD. Group III: No significant advantage was found when comparing OFD/PRF to the following groups: OFD/PRP, OFD/EMD, OFD/BM, or OFD/BG. Group IV: The addition of PRF to OFD/BG led to significant improvements in PPD, CAL and RBF compared with OFD/BG alone. Group V: The addition of either a BG as well as three of the following biomolecules (metformin, bisphosphonates, and statins) to OFD/PRF led to statistically significant improvements in PPD, CAL, and/or RBF when compared to OFD/PRF alone. The use of PRF significantly improved clinical outcomes in intrabony defects when compared to OFD alone. Similar results were observed when OFD/PRF was compared with OFD/BG, OFD/EMD, OFD/PRP, and OFD/BM. The addition of PRF to a bone grafting material as well as the addition of various small biomolecules to PRF may offer additional clinical advantages, thus warranting further investigations. Future research investigating various protocols of PRF, longer-term outcomes, as well as PRF at the human histological level remains needed.
Collapse
Affiliation(s)
| | - Vittorio Moraschini
- Department of Oral Surgery, School of Dentistry, Fluminense Federal UniversityNiteróiRio de JaneiroBrazil
| | - Nathan Estrin
- School of Dental MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| | - Jamil Awad Shibli
- Department of Implant Dentistry, School of DentistryGuarulhos UniversityGuarulhosBrazil
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
- Department of PeriodontologyUniversity of MarburgGermany
- Faculty of DentistryUniversity Iuliu Hatieganu Cluj‐NapocaRomania
| | - Karin Jepsen
- Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
| | - Pia‐Merete Jervøe‐Storm
- Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
| | - Hom‐Lay Wang
- Department of Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Anton Sculean
- Department of PeriodontologyUniversity of BernBernSwitzerland
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
| |
Collapse
|
6
|
Szunerits S, Chuang EY, Yang JC, Boukherroub R, Burnouf T. Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Trends Biotechnol 2025:S0167-7799(24)00393-7. [PMID: 39863439 DOI: 10.1016/j.tibtech.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate. Hydrogel-based bandages are effective carriers that stabilize pEVs for optimal personalized wound care. These bandages can be tailored for easy removal to minimize damage to regenerated tissue and can incorporate antibacterial or moisture-retaining properties. Furthermore, the possibility of integrating sensors in the wound bed will enable a theragnostic approach to healing. This review explores advancements in pEV-loaded hydrogels and their potential for personalized clinical applications.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France; Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan
| | - Jen-Chang Yang
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
7
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Theocharidis G, Sumpio B, Wang E, Mezghani I, Giurini JM, Kalavros N, Valsami EA, Vlachos I, Heydarpour M, Veves A. Use of Serum Protein Measurements as Biomarkers that Can Predict the Outcome of Diabetic Foot Ulceration. Adv Wound Care (New Rochelle) 2024; 13:426-434. [PMID: 38258750 DOI: 10.1089/wound.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Objectives: To identify proteins that are prognostic for diabetic foot ulcer (DFU) healing and may serve as biomarkers for its management, serum samples were analyzed from diabetic mellitus (DM) patients. Approach: The serum specimens that were evaluated in this study were obtained from DM patients with DFU who participated in a prospective study and were seen biweekly until they healed their ulcer or the exit visit at 12 weeks. The group was divided into Healers (who healed their DFU during the study) and Non-Healers. Results: Interleukin (IL)-10, IL-4, IL-5, IL-6, and IL-13 and interferon-gamma were higher in the Healers while Fractalkine, IL-8, and TNFα were higher in the Non-Healers. The trajectory of IL-10 levels remained stable over time within and across groups, resulting in a strong prognostic ability for the prospective DFU healing course. Classification and Regression Tree analysis created an 11-node decision tree with healing status as the categorical response. Innovation: Consecutive measurements of proteins associated with wound healing can identify biomarkers that can predict DFU healing over a 12-week period. IL-10 was the strongest candidate for prediction. Conclusion: Measurement of serum proteins can serve as a successful strategy in guiding clinical management of DFU. The data also indicate likely superior performance of building a multiprotein biomarker score instead of relying on single biomarkers.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Enya Wang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John M Giurini
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nikolaos Kalavros
- Department of Pathology, Cancer Research Institute, HMS Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eleftheria-Angeliki Valsami
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ioannis Vlachos
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Cancer Research Institute, HMS Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mahyar Heydarpour
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Mass General Brigham, Boston, Massachusetts, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Tricou LP, Al-Hawat ML, Cherifi K, Manrique G, Freedman BR, Matoori S. Wound pH-Modulating Strategies for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2024; 13:446-462. [PMID: 38149883 PMCID: PMC11535470 DOI: 10.1089/wound.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023] Open
Abstract
Significance: Chronic diabetic wounds on the lower extremities (diabetic foot ulcers, DFU) are one of the most prevalent and life-threatening complications of diabetes, responsible for significant loss of quality of life and cost to the health care system. Available pharmacologic treatments fail to achieve complete healing in many patients. Recent studies and investigational treatments have highlighted the potential of modulating wound pH in DFU. Recent Advances: Data from in vitro, preclinical, and clinical studies highlight the role of pH in the pathophysiology of DFU, and topical administration of pH-lowering agents have shown promise as a therapeutic strategy for diabetic wounds. In this critical review, we describe the role of pH in DFU pathophysiology and present selected low-molecular-weight and hydrogel-based pH-modulating systems for wound healing and infection control in diabetic wounds. Critical Issues: The molecular mechanisms leading to pH alterations in diabetic wounds are complex and may differ between in vitro models, animal models of diabetes, and the human pathophysiology. Wound pH-lowering bandages for DFU therapy must be tested in established animal models of diabetic wound healing and patients with diabetes to establish a comprehensive benefit-risk profile. Future Directions: As our understanding of the role of pH in the pathophysiology of diabetic wounds is deepening, new treatments for this therapeutic target are being developed and will be tested in preclinical and clinical studies. These therapeutic systems will establish a target product profile for pH-lowering treatments such as an optimal pH profile for each wound healing stage. Thus, controlling wound bed pH could become a powerful tool to accelerate chronic diabetic wound healing.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Chemical Engineering Department, Polytechnique Montreal, Montréal, Canada
| | | | - Katia Cherifi
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Benjamin R. Freedman
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| |
Collapse
|
10
|
Kaveti R, Jakus MA, Chen H, Jain B, Kennedy DG, Caso EA, Mishra N, Sharma N, Uzunoğlu BE, Han WB, Jang TM, Hwang SW, Theocharidis G, Sumpio BJ, Veves A, Sia SK, Bandodkar AJ. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. SCIENCE ADVANCES 2024; 10:eado7538. [PMID: 39110791 PMCID: PMC11305378 DOI: 10.1126/sciadv.ado7538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds affect ~2% of the U.S. population and increase risks of amputation and mortality. Unfortunately, treatments for such wounds are often expensive, complex, and only moderately effective. Electrotherapy represents a cost-effective treatment; however, its reliance on bulky equipment limits its clinical use. Here, we introduce water-powered, electronics-free dressings (WPEDs) that offer a unique solution to this issue. The WPED performs even under harsh conditions-situations wherein many present treatments fail. It uses a flexible, biocompatible magnesium-silver/silver chloride battery and a pair of stimulation electrodes; upon the addition of water, the battery creates a radial electric field. Experiments in diabetic mice confirm the WPED's ability to accelerate wound closure and promote healing by increasing epidermal thickness, modulating inflammation, and promoting angiogenesis. Across preclinical wound models, the WPED-treated group heals faster than the control with wound closure rates comparable to treatments requiring expensive biologics and/or complex electronics. The results demonstrate the WPED's potential as an effective and more practical wound treatment dressing.
Collapse
Affiliation(s)
- Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Chen
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| | - Bhavya Jain
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Darragh G. Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth A. Caso
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Baha Erim Uzunoğlu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon J. Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| |
Collapse
|
11
|
Rodriguez M, Mayrovitz HN. The History and Current Status of Platelet-Rich Plasma Therapy in Dermatology. Cureus 2024; 16:e68306. [PMID: 39350861 PMCID: PMC11441414 DOI: 10.7759/cureus.68306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Since the 1800s, platelet-rich plasma (PRP) has been used as a treatment for a wide range of medical conditions with a concomitant effect of tending to reduce the need for some invasive procedures. The aim of this narrative review was to concisely document the history and current usage of PRP specifically in the field of dermatology. Four databases (PubMed, Google Scholar, CINAHL, and Web of Science) were searched for primary articles written in English that evaluated human subjects and focused on PRP use in dermatology. Initial search terms included "platelet rich plasma," "alopecia," "androgenic alopecia," "dermatology," "PDGF," "aging," "skin rejuvenation," "diabetic ulcers," "venous leg ulcers," "acne," "acne scars," "scars," "hyperpigmentation," "melasma," "hypopigmentation," "vitiligo," and "PRP." After review, articles were excluded if they were commentaries, editorials, animal studies, review articles, or were unrelated to dermatology. The bibliography of retrieved articles was also searched for relevant articles. The present review results describe the function of PRP from its first usage for thrombocytopenia to its usage for melasma. In this time frame, its use in dermatology has gone through many evolutions from using its healing factors for treating wounds to using it as the treatment for wrinkles, hair loss, scars, ulcers, and skin pigmentation disorders. Its anti-inflammatory and growth factors have been shown to initiate a healing cascade that promotes the growth and regeneration of tissues. It is hoped that this review will help educate patients and physicians about the efficacy of PRP therapy and thereby help avoid unnecessary invasive procedures for certain conditions.
Collapse
Affiliation(s)
- Melanie Rodriguez
- Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Harvey N Mayrovitz
- Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| |
Collapse
|
12
|
Wong AYW, Hooi NMF, Yeo BSY, Sultana R, Bee YM, Lee ARYB, Tay SM. Improving Diabetic Wound-Healing Outcomes With Topical Growth Factor Therapies. J Clin Endocrinol Metab 2024; 109:e1642-e1651. [PMID: 38477463 DOI: 10.1210/clinem/dgae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
CONTEXT Diabetes mellitus is associated with morbid complications such as diabetic foot ulcers (DFUs) that may lead to amputations or mortality if not managed adequately. OBJECTIVE New adjunctive interventions to treat diabetic wounds include topical biologics and growth factors. This study aims to evaluate their efficacy in improving wound-healing outcomes and safety. METHODS Comprehensive database searches of MEDLINE via PubMed, EMBASE, and Cochrane were performed from inception to December 2022. Three independent researchers selected the studies. Randomized controlled trials that compared the use of a topical biologic growth factor-containing regimen to other biologics or standard of care (SOC) were included. This review followed PRISMA guidelines. Risk of bias analysis was performed using the Jadad scale. Network meta-analysis was performed. Treatments were grouped into common nodes based on the type of biologic agent. Primary outcomes of interest were healing rate and time to wound closure. Secondary outcomes included wound infection, serious adverse events (AEs), and amputation rate. RESULTS Human umbilical cord (HUC) was associated with the highest cure, followed by recombinant human epidermal growth factor (hEGF). A significantly greater reduction in the time to cure DFUs was seen in HUC, hEGF, and fibroblast growth factor (FGF). There was a significantly lower risk of AEs when platelet-rich plasma (PRP) was administered. CONCLUSION HUC, hEGF, and FGF are promising topical biologics with statistically significant primary outcomes compared to SOC, while PRP is effective in reducing ulcer-related AEs. HUC has been found to be the most effective in terms of cure rate and a reduction in time to cure.
Collapse
Affiliation(s)
- Andrew Yew Wei Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Natalie Ming Foong Hooi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Brian Sheng Yep Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Rehena Sultana
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore 169608, Singapore
| | - Ainsley Ryan Yan Bin Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sook Muay Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgical Intensive Care, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
13
|
Ohura N, Kimura C, Ando H, Yuzuriha S, Furukawa M, Higashita R, Ayabe S, Tsuji Y, Fujii M, Terabe Y, Sakisaka M, Iwashina Y, Nakanishi A, Sasaki S, Hasegawa T, Kawauchi T, Hisamichi K. Efficacy of autologous platelet-rich plasma gel in patients with hard-to-heal diabetic foot ulcers: a multicentre study in Japan. J Wound Care 2024; 33:484-494. [PMID: 38967341 DOI: 10.12968/jowc.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To evaluate the healing outcome of a platelet-rich plasma (PRP) gel prepared using TKKT01 (a wound care device to prepare the PRP gel) in patients with hard-to-heal diabetic foot ulcers (DFUs) and who showed an inadequate response to ≥4 weeks of standard of care (SoC). METHOD This open-label, single-arm, multicentre study was conducted in 15 centres in Japan. Eligible patients received PRP gel treatment twice a week for eight weeks, followed by a final evaluation after the completion of week 8 (day 57). The primary endpoint was the percentage of patients who achieved ≥50% reduction in wound radius at the final evaluation (achievement criterion, ≥60% of patients). Secondary endpoints included: wound area and volume reduction rates; time to possible wound closure by secondary intention; time to possible wound closure using a relatively simple procedure (e.g., skin graft and suture); and safety at the final evaluation. RESULTS A total of 54 patients were included in the full analysis set, with 47 patients included in the per protocol set; the primary endpoint was met in 38/47 (80.9%) (95% confidence interval: 66.7-90.9%) patients who achieved ≥50% wound radius reduction at the final evaluation. High rates of wound area (72.8%) and volume (92.7%) reduction were observed at the final evaluation. The median time to possible wound closure by secondary intention and by use of a relatively simple procedure was 57 and 43 days, respectively. Complete wound closure at the final evaluation was achieved in 27 (57.4%) patients. No safety concerns were raised. CONCLUSION In this study, the efficacy and safety of PRP gel treatment with TKKT01 in patients with hard-to-heal DFUs in Japan were confirmed by our findings. DECLARATION OF INTEREST This study was funded by Rohto Pharmaceutical Co., Ltd., Japan. NO has been paid a consulting fee by Rohto Pharmaceutical Co., Ltd. KH is the Chief Medical Officer of Rohto Pharmaceutical. Co., Ltd. The other authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Norihiko Ohura
- Department of Plastic, Reconstructive Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Chu Kimura
- Department of Plastic and Reconstructive Surgery, Hakodate General Central Hospital, Hakodate, Japan
| | - Hiroshi Ando
- Limb Salvage Center, Kasukabe Chuo General Hospital, Kasukabe, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Ryuji Higashita
- Department of Cardiovascular Surgery, Yokohama General Hospital, Yokohama, Japan
| | - Shinobu Ayabe
- Department of Plastic Surgery, Yao Tokushukai General Hospital, Yao, Japan
| | - Yoriko Tsuji
- Department of Plastic Surgery, Shinsuma General Hospital, Kobe, Japan
| | - Miki Fujii
- Department of Plastic and Reconstructive Surgery, Kitaharima Medical Center, Ono, Japan
| | - Yuta Terabe
- Department of Plastic and Reconstructive Surgery, Tokyo Nishi Tokushukai Hospital, Akishima, Japan
| | - Masanobu Sakisaka
- Department of Plastic Surgery, Shizuoka Saiseikai General Hospital, Shizuoka, Japan
| | - Yuki Iwashina
- Department of Plastic, Reconstructive Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Arata Nakanishi
- Department of Plastic and Reconstructive Surgery, Ikoma City Hospital, Ikoma, Japan
| | - Shigeru Sasaki
- Department of Vascular Surgery, Sendai Social Insurance Hospital, Sendai, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | - Tsukasa Kawauchi
- Department of Plastic Surgery, Tomei Atsugi Hospital, Atsugi, Japan
| | | |
Collapse
|
14
|
Tang L, Cai S, Lu X, Wu D, Zhang Y, Li X, Qin X, Guo J, Zhang X, Liu C. Platelet-Derived Growth Factor Nanocapsules with Tunable Controlled Release for Chronic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310743. [PMID: 38263812 DOI: 10.1002/smll.202310743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Chronic wounds have emerged as an increasingly critical clinical challenge over the past few decades, due to their increasing incidence and socioeconomic burdens. Platelet-derived growth factor (PDGF) plays a pivotal role in regulating processes such as fibroblast migration, proliferation, and vascular formation during the wound healing process. The delivery of PDGF offers great potential for expediting the healing of chronic wounds. However, the clinical effectiveness of PDGF in chronic wound healing is significantly hampered by its inability to maintain a stable concentration at the wound site over an extended period. In this study, a controlled PDGF delivery system based on nanocapsules is proposed. In this system, PDGF is encapsulated within a degradable polymer shell. The release rate of PDGF from these nanocapsules can be precisely adjusted by controlling the ratios of two crosslinkers with different degradation rates within the shells. As demonstrated in a diabetic wound model, improved therapeutic outcomes with PDGF nanocapsules (nPDGF) treatment are observed. This research introduces a novel PDGF delivery platform that holds promise for enhancing the effectiveness of chronic wound healing.
Collapse
Affiliation(s)
- Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Susu Cai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Lu
- Beijing Institute of Biotechnology, Beijing, 100071, P. R. China
| | - Dingqi Wu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yahan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoming Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jimin Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaopeng Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
15
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
16
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
17
|
Witt E, Leach AJ, Bi J, Hatfield S, Cotoia AT, McGovern MK, Cafi AB, Rhodes AC, Cook AN, Uaroon S, Parajuli B, Kim J, Feig V, Scheiflinger A, Nwosu I, Jimenez M, Coleman MC, Buchakjian MR, Bosch DE, Tift MS, Traverso G, Otterbein LE, Byrne JD. Modulation of diabetic wound healing using carbon monoxide gas-entrapping materials. DEVICE 2024; 2:100320. [PMID: 38911126 PMCID: PMC11192243 DOI: 10.1016/j.device.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Diabetic wound healing is uniquely challenging to manage due to chronic inflammation and heightened microbial growth from elevated interstitial glucose. Carbon monoxide (CO), widely acknowledged as a toxic gas, is also known to provide unique therapeutic immune modulating effects. To facilitate delivery of CO, we have designed hyaluronic acid-based CO-gas-entrapping materials (CO-GEMs) for topical and prolonged gas delivery to the wound bed. We demonstrate that CO-GEMs promote the healing response in murine diabetic wound models (full-thickness wounds and pressure ulcers) compared to N2-GEMs and untreated controls.
Collapse
Affiliation(s)
- Emily Witt
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander J Leach
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jianling Bi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Samual Hatfield
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Megan K McGovern
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Arielle B Cafi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ashley C Rhodes
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Austin N Cook
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Slyn Uaroon
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Bishal Parajuli
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jinhee Kim
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Vivian Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexandra Scheiflinger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ikenna Nwosu
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Miguel Jimenez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Marisa R Buchakjian
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Dustin E Bosch
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael S Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - James D Byrne
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
18
|
Liu J, Huang X, Su H, Yu J, Nie X, Liu K, Qin W, Zhao Y, Su Y, Kuang X, Chen D, Lu WW, Chen Y, Hua Q. Tibial Cortex Transverse Transport Facilitates Severe Diabetic Foot Wound Healing via HIF-1α-Induced Angiogenesis. J Inflamm Res 2024; 17:2681-2696. [PMID: 38707956 PMCID: PMC11070162 DOI: 10.2147/jir.s456590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
PURPOSE Management of severe diabetic foot ulcers (DFUs) remains challenging. Tibial cortex transverse transport (TTT) facilitates healing and limb salvage in patients with recalcitrant DFUs. However, the underlying mechanism is largely unknown, necessitating the establishment of an animal model and mechanism exploration. METHODS Severe DFUs were induced in rats, then assigned to TTT, sham, or control groups (n=16/group). The TTT group underwent a tibial corticotomy, with 6 days each of medial and lateral transport; the sham group had a corticotomy without transport. Ulcer healing was assessed through Laser Doppler, CT angiography, histology, and immunohistochemistry. Serum HIF-1α, PDGF-BB, SDF-1, and VEGF levels were measured by ELISA. RESULTS The TTT group showed lower percentages of wound area, higher dermis thickness (all p < 0.001 expect for p = 0.001 for TTT vs Sham at day 6) and percentage of collagen content (all p < 0.001) than the other two groups. The TTT group had higher perfusion and vessel volume in the hindlimb (all p < 0.001). The number of CD31+ cells (all p < 0.001) and VEGFR2+ cells (at day 6, TTT vs Control, p = 0.001, TTT vs Sham, p = 0.006; at day 12, TTT vs Control, p = 0.003, TTT vs Sham, p = 0.01) were higher in the TTT group. The activity of HIF-1α, PDGF-BB, and SDF-1 was increased in the TTT group (all p < 0.001 except for SDF-1 at day 12, TTT vs Sham, p = 0.005). The TTT group had higher levels of HIF-1α, PDGF-BB, SDF-1, and VEGF in serum than the other groups (all p < 0.001). CONCLUSION TTT enhanced neovascularization and perfusion at the hindlimb and accelerated healing of the severe DFUs. The underlying mechanism is related to HIF-1α-induced angiogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiajie Huang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hongjie Su
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jie Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xinyu Nie
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Kaibing Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Wencong Qin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yongxin Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yongfeng Su
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaocong Kuang
- Yulin Campus of Guangxi Medical University, Yulin, Guangxi, People’s Republic of China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - William W Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Qikai Hua
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
19
|
Yaron JR, Gosangi M, Pallod S, Rege K. In situ light-activated materials for skin wound healing and repair: A narrative review. Bioeng Transl Med 2024; 9:e10637. [PMID: 38818119 PMCID: PMC11135152 DOI: 10.1002/btm2.10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 06/01/2024] Open
Abstract
Dermal wounds are a major global health burden made worse by common comorbidities such as diabetes and infection. Appropriate wound closure relies on a highly coordinated series of cellular events, ultimately bridging tissue gaps and regenerating normal physiological structures. Wound dressings are an important component of wound care management, providing a barrier against external insults while preserving the active reparative processes underway within the wound bed. The development of wound dressings with biomaterial constituents has become an attractive design strategy due to the varied functions intrinsic in biological polymers, such as cell instructiveness, growth factor binding, antimicrobial properties, and tissue integration. Using photosensitive agents to generate crosslinked or photopolymerized dressings in situ provides an opportunity to develop dressings rapidly within the wound bed, facilitating robust adhesion to the wound bed for greater barrier protection and adaptation to irregular wound shapes. Despite the popularity of this fabrication approach, relatively few experimental wound dressings have undergone preclinical translation into animal models, limiting the overall integrity of assessing their potential as effective wound dressings. Here, we provide an up-to-date narrative review of reported photoinitiator- and wavelength-guided design strategies for in situ light activation of biomaterial dressings that have been evaluated in preclinical wound healing models.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
| | - Mallikarjun Gosangi
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
- Chemical Engineering, Arizona State UniversityTempeArizonaUSA
| |
Collapse
|
20
|
Huelsboemer L, Knoedler L, Kochen A, Yu CT, Hosseini H, Hollmann KS, Choi AE, Stögner VA, Knoedler S, Hsia HC, Pomahac B, Kauke-Navarro M. Cellular therapeutics and immunotherapies in wound healing - on the pulse of time? Mil Med Res 2024; 11:23. [PMID: 38637905 PMCID: PMC11025282 DOI: 10.1186/s40779-024-00528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic, non-healing wounds represent a significant challenge for healthcare systems worldwide, often requiring significant human and financial resources. Chronic wounds arise from the complex interplay of underlying comorbidities, such as diabetes or vascular diseases, lifestyle factors, and genetic risk profiles which may predispose extremities to local ischemia. Injuries are further exacerbated by bacterial colonization and the formation of biofilms. Infection, consequently, perpetuates a chronic inflammatory microenvironment, preventing the progression and completion of normal wound healing. The current standard of care (SOC) for chronic wounds involves surgical debridement along with localized wound irrigation, which requires inpatient care under general anesthesia. This could be followed by, if necessary, defect coverage via a reconstructive ladder utilizing wound debridement along with skin graft, local, or free flap techniques once the wound conditions are stabilized and adequate blood supply is restored. To promote physiological wound healing, a variety of approaches have been subjected to translational research. Beyond conventional wound healing drugs and devices that currently supplement treatments, cellular and immunotherapies have emerged as promising therapeutics that can behave as tailored therapies with cell- or molecule-specific wound healing properties. However, in contrast to the clinical omnipresence of chronic wound healing disorders, there remains a shortage of studies condensing the current body of evidence on cellular therapies and immunotherapies for chronic wounds. This review provides a comprehensive exploration of current therapies, experimental approaches, and translational studies, offering insights into their efficacy and limitations. Ultimately, we hope this line of research may serve as an evidence-based foundation to guide further experimental and translational approaches and optimize patient care long-term.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Leonard Knoedler
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Catherine T Yu
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Helia Hosseini
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Katharina S Hollmann
- School of Medicine, University of Wuerzburg, 97070, Würzburg, Germany
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ashley E Choi
- California University of Science and Medicine, Colton, CA, 92324, USA
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Samuel Knoedler
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Henry C Hsia
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
21
|
Ghosh D, Yaron JR, Abedin MR, Godeshala S, Kumar S, Kilbourne J, Berthiaume F, Rege K. Bioactive nanomaterials kickstart early repair processes and potentiate temporally modulated healing of healthy and diabetic wounds. Biomaterials 2024; 306:122496. [PMID: 38373363 PMCID: PMC11658459 DOI: 10.1016/j.biomaterials.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
Slow-healing and chronic wounds represent a major global economic and medical burden, and there is significant unmet need for novel therapies which act to both accelerate wound closure and enhance biomechanical recovery of the skin. Here, we report a new approach in which bioactives that augment early stages of wound healing can kickstart and engender effective wound closure in healthy and diabetic, obese animals, and set the stage for subsequent tissue repair processes. We demonstrate that a nanomaterial dressing made of silk fibroin and gold nanorods (GNR) stimulates a pro-neutrophilic, innate immune, and controlled inflammatory wound transcriptomic response. Further, Silk-GNR, lasered into the wound bed, in combination with exogeneous histamine, accelerates early-stage processes in tissue repair leading to effective wound closure. Silk-GNR and histamine enhanced biomechanical recovery of skin, increased transient neoangiogenesis, myofibroblast activation, epithelial-to-mesenchymal transition (EMT) of keratinocytes and a pro-resolving neutrophilic immune response, which are hitherto unknown activities for these bioactives. Predictive and temporally coordinated delivery of growth factor nanoparticles that modulate later stages of tissue repair further accelerated wound closure in healthy and diabetic, obese animals. Our approach of kickstarting healing by delivering the "right bioactive at the right time" stimulates a multifactorial, pro-reparative response by augmenting endogenous healing and immunoregulatory mechanisms and highlights new targets to promote tissue repair.
Collapse
Affiliation(s)
- Deepanjan Ghosh
- Biological Design Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Jordan R Yaron
- Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Muhammad Raisul Abedin
- Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sudhakar Godeshala
- Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaushal Rege
- Biological Design Graduate Program, Arizona State University, Tempe, AZ 85287, USA; Center for Biomaterials Innovation and Translation (CBIT), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
22
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Effectiveness of interventions to enhance healing of chronic foot ulcers in diabetes: A systematic review. Diabetes Metab Res Rev 2024; 40:e3786. [PMID: 38507616 DOI: 10.1002/dmrr.3786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND It is critical that interventions used to enhance the healing of chronic foot ulcers in diabetes are backed by high-quality evidence and cost-effectiveness. In previous years, the systematic review accompanying guidelines published by the International Working Group of the Diabetic Foot performed 4-yearly updates of previous searches, including trials of prospective, cross-sectional and case-control design. AIMS Due to a need to re-evaluate older studies against newer standards of reporting and assessment of risk of bias, we performed a whole new search from conception, but limiting studies to randomised control trials only. MATERIALS AND METHODS For this systematic review, we searched PubMed, Scopus and Web of Science databases for published studies on randomised control trials of interventions to enhance healing of diabetes-related foot ulcers. We only included trials comparing interventions to standard of care. Two independent reviewers selected articles for inclusion and assessed relevant outcomes as well as methodological quality. RESULTS The literature search identified 22,250 articles, of which 262 were selected for full text review across 10 categories of interventions. Overall, the certainty of evidence for a majority of wound healing interventions was low or very low, with moderate evidence existing for two interventions (sucrose-octasulfate and leucocyte, platelet and fibrin patch) and low quality evidence for a further four (hyperbaric oxygen, topical oxygen, placental derived products and negative pressure wound therapy). The majority of interventions had insufficient evidence. CONCLUSION Overall, the evidence to support any other intervention to enhance wound healing is lacking and further high-quality randomised control trials are encouraged.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
23
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev 2024; 40:e3644. [PMID: 37232034 DOI: 10.1002/dmrr.3644] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS Principles of wound management, including debridement, wound bed preparation, and newer technologies involving alternation of wound physiology to facilitate healing, are of utmost importance when attempting to heal a chronic diabetes-related foot ulcer. However, the rising incidence and costs of diabetes-related foot ulcer management necessitate that interventions to enhance wound healing of chronic diabetes-related foot ulcers are supported by high-quality evidence of efficacy and cost effectiveness when used in conjunction with established aspects of gold-standard multidisciplinary care. This is the 2023 International Working Group on the Diabetic Foot (IWGDF) evidence-based guideline on wound healing interventions to promote healing of foot ulcers in persons with diabetes. It serves as an update of the 2019 IWGDF guideline. MATERIALS AND METHODS We followed the GRADE approach by devising clinical questions and important outcomes in the Patient-Intervention-Control-Outcome (PICO) format, undertaking a systematic review, developing summary of judgements tables, and writing recommendations and rationale for each question. Each recommendation is based on the evidence found in the systematic review and, using the GRADE summary of judgement items, including desirable and undesirable effects, certainty of evidence, patient values, resources required, cost effectiveness, equity, feasibility, and acceptability, we formulated recommendations that were agreed by the authors and reviewed by independent experts and stakeholders. RESULTS From the results of the systematic review and evidence-to-decision making process, we were able to make 29 separate recommendations. We made a number of conditional supportive recommendations for the use of interventions to improve healing of foot ulcers in people with diabetes. These include the use of sucrose octasulfate dressings, the use of negative pressure wound therapies for post-operative wounds, the use of placental-derived products, the use of the autologous leucocyte/platelet/fibrin patch, the use of topical oxygen therapy, and the use of hyperbaric oxygen. Although in all cases it was stressed that these should be used where best standard of care was not able to heal the wound alone and where resources were available for the interventions. CONCLUSIONS These wound healing recommendations should support improved outcomes for people with diabetes and ulcers of the foot, and we hope that widescale implementation will follow. However, although the certainty of much of the evidence on which to base the recommendations is improving, it remains poor overall. We encourage not more, but better quality trials including those with a health economic analysis, into this area.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | - Caroline McIntosh
- Podiatric Medicine, School of Health Sciences, University of Galway, Galway, Ireland
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Georgetown, Washington DC, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
24
|
Serena T, Cole W, King E. A model for diabetic foot ulcer clinical trials on advanced therapies. J Wound Care 2024; 33:S39-S43. [PMID: 38457305 DOI: 10.12968/jowc.2024.33.sup3.s39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
DECLARATION OF INTEREST TS is a consultant for Inotec AMD Ltd., UK. The authors have no other conflicts of interest to declare.
Collapse
Affiliation(s)
| | - Windy Cole
- Wound Care Research, Kent State University College of Podiatric Medicine, Independence, OH, US
- Natrox Wound Care, Cambridge, UK
| | - Emily King
- SerenaGroup Research Foundation, Cambridge, MA US
| |
Collapse
|
25
|
Tejedor S, Wågberg M, Correia C, Åvall K, Hölttä M, Hultin L, Lerche M, Davies N, Bergenhem N, Snijder A, Marlow T, Dönnes P, Fritsche-Danielson R, Synnergren J, Jennbacken K, Hansson K. The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice: An Ex Vivo and In Vivo Investigation. Cells 2024; 13:414. [PMID: 38474378 PMCID: PMC10930761 DOI: 10.3390/cells13050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.
Collapse
Affiliation(s)
- Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
| | - Maria Wågberg
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Karin Åvall
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Mikko Hölttä
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Leif Hultin
- Imaging and Data Analytics, Clinical and Pharmacological Safety Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nils Bergenhem
- Alliance Management, Business Development and Licensing, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Tom Marlow
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- SciCross AB, 541 35 Skövde, Sweden
| | - Regina Fritsche-Danielson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Kenny Hansson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| |
Collapse
|
26
|
Blitsman Y, Hollander E, Benafsha C, Yegodayev KM, Hadad U, Goldbart R, Traitel T, Rudich A, Elkabets M, Kost J. The Potential of PIP3 in Enhancing Wound Healing. Int J Mol Sci 2024; 25:1780. [PMID: 38339058 PMCID: PMC10855400 DOI: 10.3390/ijms25031780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a complex with cationic starch (Q-starch) as a carrier. The intracellular bioactivity and localization of free PIP3 and the Q-starch/PIP3 complexes were examined. Our results present the capability of Q-starch to form complexes with PIP3, facilitate its cellular membrane internalization, and activate intracellular paths leading to enhanced wound healing. Both free PIP3 and Q-starch/PIP3 complexes enhanced monolayer gap closure in scratch assays and induced amplified collagen production within HaCAT and BJ fibroblast cells. Western blot presented enhanced AKT activation by free or complexed PIP3 in BJ fibroblasts in which endogenous PIP3 production was pharmacologically inhibited. Furthermore, both free PIP3 and Q-starch/PIP3 complexes expedited wound closure in mice, after single or daily dermal injections into the wound margins. Free PIP3 and the Q-starch/PIP3 complexes inherently activated the AKT signaling pathway, which is responsible for crucial wound healing processes such as migration; this was also observed in wound assays in mice. PIP3 was identified as a promising molecule for enhancing wound healing, and its ability to circumvent PI3K inhibition suggests possible implications for chronic wound healing.
Collapse
Affiliation(s)
- Yossi Blitsman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Etili Hollander
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.M.Y.); (M.E.)
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.M.Y.); (M.E.)
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| |
Collapse
|
27
|
Sadeghi-Ardebili M, Hasannia S, Dabirmanesh B, Khavari-Nejad RA. Functional characterization of the dimeric form of PDGF-derived fusion peptide fabricated based on theoretical arguments. Sci Rep 2024; 14:1003. [PMID: 38200288 PMCID: PMC10781716 DOI: 10.1038/s41598-024-51707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024] Open
Abstract
A skin wound leads to the loss of skin integrity and the influx of pathogens into the tissue. Platelet-derived growth factors (PDGFs) are cytokines released from alpha granules during wound healing and interact with their cell surface receptors and activate signals involved in chemotaxis, growth, proliferation, and differentiation pathways. Due to the low stability of growth factors (GFs), a new peptide-derived PDGF-BB was designed, expressed in the Shuffle strain of E. coli, and purified by Ni-NTA agarose affinity column chromatography. The effect of fusion peptide was then evaluated on L929 fibroblast cells and animal models with skin lesions. In vitro, studies showed that the peptide led to an increase in the migration of fibroblast cells in the scratch assay. Its positive effect on wound healing was also observed in the skin-injured rats after 3, 7, and 12 days. A significant rise in neutrophils and granular tissue formation, re-epithelialization, angiogenesis, and collagen formation was exhibited on the third day of treatment when compared to the control group. The results showed that, despite reducing PDGF size, the fusion peptide was able to maintain at least some of the known functions attributed to full-length PDGF and showed positive results in wound healing.
Collapse
Affiliation(s)
- Maryam Sadeghi-Ardebili
- Department of Biology, Science and Research Branch, Islamic Azad University, PO BoX 14515-775, Tehran, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| | - Ramazan Ali Khavari-Nejad
- Department of Biology, Science and Research Branch, Islamic Azad University, PO BoX 14515-775, Tehran, Iran
| |
Collapse
|
28
|
Wang H, Duan C, Keate RL, Ameer GA. Panthenol Citrate Biomaterials Accelerate Wound Healing and Restore Tissue Integrity. Adv Healthc Mater 2023; 12:e2301683. [PMID: 37327023 PMCID: PMC11468745 DOI: 10.1002/adhm.202301683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti-inflammatory, and pro-angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re-epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Chongwen Duan
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rebecca L. Keate
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Guillermo A. Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- International Institute for NanotechnologyNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
29
|
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med 2023; 18:839-856. [PMID: 37671699 DOI: 10.2217/rme-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
Collapse
Affiliation(s)
- Lihui Tai
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Sze Piaw Chin
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine & Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman Sungai Long City Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
30
|
Chen M, Chang C, Levian B, Woodley DT, Li W. Why Are There So Few FDA-Approved Therapeutics for Wound Healing? Int J Mol Sci 2023; 24:15109. [PMID: 37894789 PMCID: PMC10606455 DOI: 10.3390/ijms242015109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Since the only and the milestone FDA approval of becaplermin gel (RegranexTM, 0.01% human recombinant PDGF-BB) as a (diabetic) wound healing therapeutic more than 25 years ago, no new therapeutic (excluding physical therapies, devices, dressings, anti-microbial agents, or other preventive treatments) for any type of wound healing has advanced to clinical applications. During the same period of time, the FDA has approved additional 250 new drugs for various human tumors, which were famously described as "wounds that do not heal". Two similar pathological conditions have experienced such a dramatic difference in therapeutics. More surprisingly, few in the wound healing community seem to be alarmed by this mysterious deficit. As it is often said, "damaging is far easier than re-building". In contrast to the primary duty of a cancer drug to damage a single molecule of the signaling network, a wound healing drug must be able to re-build the multi-level damages in the wound. No known single molecule alone is capable of repairing multi-cell-type and multi-pathway damages all at once. We argue that the previous single molecule-based strategy for developing wound healing therapeutics is profoundly flawed in theory. The future success of effective wound healing therapeutics requires a fundamental change in the paradigm.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Department of Dermatology, USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA; (M.C.); (B.L.)
| |
Collapse
|
31
|
Davis M, Hom D. Current and Future Developments in Wound Healing. Facial Plast Surg 2023; 39:477-488. [PMID: 37308128 PMCID: PMC11121504 DOI: 10.1055/s-0043-1769936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Poor wound healing on the face and neck can lead to significant morbidity and dissatisfaction in facial plastic surgery. With current advances in wound healing management and commercially available biologic and tissue-engineered products, there are several options available to optimize acute wound healing and treat delayed or chronic wounds. This article summarizes some of the key principals and recent developments in wound healing research in addition to potential future advancements in the field of soft tissue wound healing.
Collapse
Affiliation(s)
- Morgan Davis
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
| | - David Hom
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
32
|
Lauterbach AL, Slezak AJ, Wang R, Cao S, Raczy MM, Watkins EA, Jimenez CJM, Hubbell JA. Mannose-Decorated Co-Polymer Facilitates Controlled Release of Butyrate to Accelerate Chronic Wound Healing. Adv Healthc Mater 2023; 12:e2300515. [PMID: 37503634 PMCID: PMC11468131 DOI: 10.1002/adhm.202300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.
Collapse
Affiliation(s)
| | - Anna J. Slezak
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Ruyi Wang
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Shijie Cao
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Michal M. Raczy
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Elyse A. Watkins
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | | | - Jeffrey A. Hubbell
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
33
|
Berger AG, Deiss-Yehiely E, Vo C, McCoy MG, Almofty S, Feinberg MW, Hammond PT. Electrostatically assembled wound dressings deliver pro-angiogenic anti-miRs preferentially to endothelial cells. Biomaterials 2023; 300:122188. [PMID: 37329684 PMCID: PMC10424785 DOI: 10.1016/j.biomaterials.2023.122188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Chronic non-healing wounds occur frequently in individuals affected by diabetes, yet standard-of-care treatment leaves many patients inadequately treated or with recurring wounds. MicroRNA (miR) expression is dysregulated in diabetic wounds and drives an anti-angiogenic phenotype, but miRs can be inhibited with short, chemically-modified RNA oligonucleotides (anti-miRs). Clinical translation of anti-miRs is hindered by delivery challenges such as rapid clearance and uptake by off-target cells, requiring repeated injections, excessively large doses, and bolus dosing mismatched to the dynamics of the wound healing process. To address these limitations, we engineered electrostatically assembled wound dressings that locally release anti-miR-92a, as miR-92a is implicated in angiogenesis and wound repair. In vitro, anti-miR-92a released from these dressings was taken up by cells and inhibited its target. An in vivo cellular biodistribution study in murine diabetic wounds revealed that endothelial cells, which play a critical role in angiogenesis, exhibit higher uptake of anti-miR eluted from coated dressings than other cell types involved in the wound healing process. In a proof-of-concept efficacy study in the same wound model, anti-miR targeting anti-angiogenic miR-92a de-repressed target genes, increased gross wound closure, and induced a sex-dependent increase in vascularization. Overall, this proof-of-concept study demonstrates a facile, translational materials approach for modulating gene expression in ulcer endothelial cells to promote angiogenesis and wound healing. Furthermore, we highlight the importance of probing cellular interactions between the drug delivery system and the target cells to drive therapeutic efficacy.
Collapse
Affiliation(s)
- Adam G Berger
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elad Deiss-Yehiely
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chau Vo
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael G McCoy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Almofty
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
34
|
Zhou Z, Deng T, Tao M, Lin L, Sun L, Song X, Gao D, Li J, Wang Z, Wang X, Li J, Jiang Z, Luo L, Yang L, Wu M. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization. Biomaterials 2023; 299:122141. [PMID: 37167893 DOI: 10.1016/j.biomaterials.2023.122141] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Diabetic foot ulcers (DFUs) are a severe and rapidly growing diabetic complication, but treating DFUs remains a challenge for the existing therapies are expensive and highly non-responsive. Recently, we discovered that a natural adhesive from snail mucus can promote skin wound healing. Herein, inspired by the finding, we developed a double-network hydrogel biomaterial that composed of snail glycosaminoglycan (AFG) and methacrylated gelatin (GelMA), in which AFG is the main bioactive component of snail mucus and GelMA provides a scaffold mimicking the proteins in snail mucus. The biomimetic hydrogel exhibited strong tissue adhesion, potent anti-inflammatory activity, and excellent biocompatibility. The biodegradable AFG/GelMA hydrogel markedly promoted chronic wound healing in both STZ-induced type 1 diabetic rat and db/db mouse models after a single treatment. Further mechanistic research showed that the hydrogel significantly attenuated inflammation by sequestrating pro-inflammatory cytokines, as well as downregulated their expression by inhibiting NF-ĸB signaling pathway, and it can also promote macrophage polarization to M2 phenotype. Taken together, the bioinspired hydrogel can effectively promote the transition of chronic wounds from inflammation to proliferation stage. These data suggest that the AFG/GelMA hydrogel is a promising therapeutic biomaterial for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tuo Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maixian Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Luyun Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuemei Song
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongxiu Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jixing Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhongjuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingzi Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinpeng Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zexiu Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Thanigaimani S, Jin H, Ahmad U, Anbalagan R, Golledge J. Comparative efficacy of growth factor therapy in healing diabetes-related foot ulcers: A network meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2023; 39:e3670. [PMID: 37277960 PMCID: PMC10909411 DOI: 10.1002/dmrr.3670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/01/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION This study examined the relative efficacy of growth factor therapies in healing diabetes-related foot ulcers (DFU). METHODS PubMed and Cochrane databases were searched for randomized controlled trials testing growth factor therapies for treating DFU. The primary outcome was complete wound closure. Results were reported as relative risk (RR) ± 95% credible intervals (CrI). The risk of bias was assessed using Cochrane's RoB-2 tool. RESULTS A total of 31 RCTs involving 2174 participants were included. Only 13 of the trials (n = 924) reported on the aetiology of the ulcers (85.4% neuropathic and 14.6% ischaemic). Epidermal growth factor (RR 3.83; 95% CrI 1.81, 9.10), plasma-rich protein (PRP) (RR 3.36; 95% CrI 1.66, 8.03) and platelet-derived growth factor (PDGF) (RR 2.47; 95% CrI 1.23, 5.17) significantly improved the likelihood of complete ulcer healing compared to control. Sub-analyses suggested that PRP (3 trials - RR 9.69; 95% CrI 1.37, 103.37) and PDGF (6 trials - RR 2.22; 95% CrI 1.12, 5.19) significantly improved the likelihood of wound closure amongst trial mainly recruiting participants with neuropathic ulcers. Eleven trials had a low risk of bias, 9 had some concerns and 11 had a high risk of bias. Sub-analysis of trials with a low risk of bias suggested that none of the growth factors significantly improved ulcer healing compared with control. DISCUSSION This network meta-analysis found low-quality evidence that Epidermal growth factor, PRP and PDGF therapy improved DFU healing likelihood compared with control. Larger well-designed trials are needed.
Collapse
Affiliation(s)
- Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular DiseaseCollege of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
- The Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
| | - Harry Jin
- Queensland Research Centre for Peripheral Vascular DiseaseCollege of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Usama Ahmad
- Queensland Research Centre for Peripheral Vascular DiseaseCollege of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Raghuveeran Anbalagan
- Queensland Research Centre for Peripheral Vascular DiseaseCollege of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
- The Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular DiseaseCollege of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
- The Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
- The Department of Vascular and Endovascular SurgeryTownsville University HospitalTownsvilleQueenslandAustralia
| |
Collapse
|
36
|
Pan Y, Yang D, Zhou M, Liu Y, Pan J, Wu Y, Huang L, Li H. Advance in topical biomaterials and mechanisms for the intervention of pressure injury. iScience 2023; 26:106956. [PMID: 37378311 PMCID: PMC10291478 DOI: 10.1016/j.isci.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pressure injuries (PIs) are localized tissue damage resulting from prolonged compression or shear forces on the skin or underlying tissue, or both. Different stages of PIs share common features include intense oxidative stress, abnormal inflammatory response, cell death, and subdued tissue remodeling. Despite various clinical interventions, stage 1 or stage 2 PIs are hard to monitor for the changes of skin or identify from other disease, whereas stage 3 or stage 4 PIs are challenging to heal, painful, expensive to manage, and have a negative impact on quality of life. Here, we review the underlying pathogenesis and the current advances of biochemicals in PIs. We first discuss the crucial events involved in the pathogenesis of PIs and key biochemical pathways lead to wound delay. Then, we examine the recent progress of biomaterials-assisted wound prevention and healing and their prospects.
Collapse
Affiliation(s)
- Yingying Pan
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Min Zhou
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jiandan Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunlong Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| |
Collapse
|
37
|
Berlanga-Acosta J, Garcia-Ojalvo A, Guillen-Nieto G, Ayala-Avila M. Endogenous Biological Drivers in Diabetic Lower Limb Wounds Recurrence: Hypothetical Reflections. Int J Mol Sci 2023; 24:10170. [PMID: 37373317 DOI: 10.3390/ijms241210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
An impaired healing response underlies diabetic foot wound chronicity, frequently translating to amputation, disability, and mortality. Diabetics suffer from underappreciated episodes of post-epithelization ulcer recurrence. Recurrence epidemiological data are alarmingly high, so the ulcer is considered in "remission" and not healed from the time it remains epithelialized. Recurrence may result from the combined effects of behavioral and endogenous biological factors. Although the damaging role of behavioral, clinical predisposing factors is undebatable, it still remains elusive in the identification of endogenous biological culprits that may prime the residual scar tissue for recurrence. Furthermore, the event of ulcer recurrence still waits for the identification of a molecular predictor. We propose that ulcer recurrence is deeply impinged by chronic hyperglycemia and its downstream biological effectors, which originate epigenetic drivers that enforce abnormal pathologic phenotypes to dermal fibroblasts and keratinocytes as memory cells. Hyperglycemia-derived cytotoxic reactants accumulate and modify dermal proteins, reduce scar tissue mechanical tolerance, and disrupt fibroblast-secretory activity. Accordingly, the combination of epigenetic and local and systemic cytotoxic signalers induce the onset of "at-risk phenotypes" such as premature skin cell aging, dysmetabolism, inflammatory, pro-degradative, and oxidative programs that may ultimately converge to scar cell demise. Post-epithelialization recurrence rate data are missing in clinical studies of reputed ulcer healing therapies during follow-up periods. Intra-ulcer infiltration of epidermal growth factor exhibits the most consistent remission data with the lowest recurrences during 12-month follow-up. Recurrence data should be regarded as a valuable clinical endpoint during the investigational period for each emergent healing candidate.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Ariana Garcia-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Gerardo Guillen-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Marta Ayala-Avila
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| |
Collapse
|
38
|
Ziaian B, Khezri S, Amirian A, Ranjbar K, Shahriarirad R, Eskandari Kohnaki M. Hypertonic saline solution 5% as an effective cost-beneficial alternative to normal saline for wound healing in patients with diabetic lower-extremity ulcers: a randomized controlled trial. J Diabetes Metab Disord 2023; 22:479-485. [PMID: 37255840 PMCID: PMC10225384 DOI: 10.1007/s40200-022-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Background Diabetic foot ulcer is among the most common complications and causes of mortality and morbidity in patients with diabetes. Herein, we propose using 5% Hypertonic Solution as an alternative to Normal Saline in treating patients with diabetic foot ulcers as an effective cost-benefit therapeutic approach. Methods In this clinical trial, 100 patients with diabetic foot ulcers were divided into two groups. Foot ulcer was washed and treated three times a day with the 5% hypertonic saline solution in the first group, while the second group was treated with normal saline 0.9% and normal washing. Patients were examined for the size and depth of the wound weekly, and the results were recorded after six weeks. Results The mean length and width of the wound in the experimental group significantly decreased six weeks after the start of treatment with hypertonic saline (p < 0.05). The wound healing rate was lower after treatment in both groups of patients who had a longer disease duration and higher HbA1c. Conclusion Treating diabetic foot ulcers with hypertonic saline solution may help improve wound healing. Therefore, rinsing with hypertonic saline is a cheap, safe, simple, and non-invasive treatment protocol for these patients.
Collapse
Affiliation(s)
- Bizhan Ziaian
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samad Khezri
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Armin Amirian
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Ranjbar
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mariye Eskandari Kohnaki
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
39
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
40
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
41
|
Kounas K, Dinh T, Riemer K, Rosenblum BI, Veves A, Giurini JM. Use of hyperspectral imaging to predict healing of diabetic foot ulceration. Wound Repair Regen 2023; 31:199-204. [PMID: 36633904 DOI: 10.1111/wrr.13071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Our main objective was to validate that hyperspectral imaging via a new portable camera carries the potential to provide a reliable clinical biomarker that can predict DFU healing. We recruited patients with diabetic foot ulceration (DFU) without peripheral arterial disease, infection or other serious illness. Using an hyperspectral imaging (HSI) apparatus, post-debridement hyperspectral images were taken evaluating the ulcer size, periwound oxyhemoglobin (OxyHb), deoxyhemoglobin level (DeoxyHb) and oxygen saturation (O2 Sat) for four consecutive visits. Twenty-seven patients were followed, out of whom seven healed their DFU while the remaining 20 failed to heal their DFU. The average time between each visit was 3 weeks. Binary logistic regression of healers versus non-healers on Visit 1 oxyHb and on Visit 2 showed a significant inverse association, OR = 0.85 (95% CI: 0.73-0.98, p < 0.001). An inverse correlation was observed between the Visit 1 oxyHb and the percentage of ulcer size reduction between Visit 1 and Visit 4 (r = -0.46, p = 0.02) and between the Visit 2 oxyHb and the percentage of ulcer size reduction between Visits 2 and 4 (r = -0.65, p = 0.001). Using oxyHb 50 as the cut-off point to predict DFU complete healing, Visit 1 oxyHb measurement provided 85% sensitivity, 70% specificity, 50% positive predictive value and 93% negative predictive value. For Visit 2, oxyHb had 85% sensitivity, 85% specificity, 66% positive predictive value and 94% negative predictive value. We conclude that this preliminary study, which involved a relatively small number of patients, indicates that hyperspectral imaging is a simple exam that can easily be added to daily clinical practice and has the potential to provide useful information regarding the healing potential of DFU over a short period of time.
Collapse
Affiliation(s)
- Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thanh Dinh
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Riemer
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry I Rosenblum
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - John M Giurini
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Prado TP, Zanchetta FC, Barbieri B, Aparecido C, Melo Lima MH, Araujo EP. Photobiomodulation with Blue Light on Wound Healing: A Scoping Review. Life (Basel) 2023; 13:575. [PMID: 36836932 PMCID: PMC9959862 DOI: 10.3390/life13020575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Photobiomodulation consists of inducing healing by irradiating light. This scoping review investigates the effect of blue light on the healing process. METHODS The MEDLINE, Web of Science, Scopus, and CINAHL databases were searched. Two reviewers independently examined the search results and extracted data from the included studies. A descriptive analysis was performed. RESULTS Twenty-two articles were included. Studies were categorized as in vitro/mixed, preclinical, and clinical. The power density used was 10-680 mW/cm2 in most of the in vitro/preclinical studies, the irradiation time ranged from 5 s to 10 min, and different wavelengths and energy densities were used. In clinical studies, the wavelength ranged from 405 to 470 nm, and the energy density varied from 1.5 to 30 J/cm2. CONCLUSIONS A low energy density (<20 J/cm2) was able to stimulate the different cell types and proteins involved in healing, while a high energy density, 20.6-50 J/cm2, significantly reduced cell proliferation, migration, and metabolism. There is a great variety of device parameters among studies, and this makes it difficult to conclude what the best technical specifications are. Thus, further studies should be performed in order to define the appropriate parameters of light to be used.
Collapse
Affiliation(s)
- Thais P. Prado
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Flávia Cristina Zanchetta
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Beatriz Barbieri
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Caroline Aparecido
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Eliana P. Araujo
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| |
Collapse
|
43
|
Li Y, Liu Z, Zhao C, Xu C, Shin A, Wu J, Li D, Lin K, Liu J. A sustained-release PDGF-BB nanocomposite hydrogel for DM-associated bone regeneration. J Mater Chem B 2023; 11:974-984. [PMID: 36594257 DOI: 10.1039/d2tb02037h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regeneration of bone tissue in the environment of diabetes mellitus (DM) remains one of the clinical challenges, with malfunction of stem cells in a high-glucose microenvironment being the primary obstacle. We designed an injectable sustained-release PDGF-BB nanocomposite hydrogel. PDGF-BB, a star molecule for treating various complications of DM, was used for the first time for DM-associated bone regeneration, and we showed that it restored stem cell proliferation and migration and facilitated osteogenesis inhibition under high glucose stimulation by activating ERK and AKT pathways. To address the requirements for continuous PDGF-BB release in GelMA while also increasing mechanical strength, nanoclay LAPONITE® was added, which may still exhibit pro-osteogenic activity in diabetic environments by releasing bioactive ions (Si4+, Mg2+, and Li+). This injectable hydrogel heals calvarial lesions successfully in diabetic rats and has the potential to be used as a direct and effective tool for treating diabetic patients.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Ziyang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chenci Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Airi Shin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jiaqing Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Dejian Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China. .,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jiaqiang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
44
|
Aronowitz JA, Winterhalter B. Adipose-Derived Regenerative Cellular Therapy of Chronic Wounds. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Zhu Y, Lu J, Wang S, Xu D, Wu M, Xian S, Zhang W, Tong X, Liu Y, Huang J, Jiang L, Guo X, Xie S, Gu M, Jin S, Ma Y, Huang R, Xiao S, Ji S. Mapping intellectual structure and research hotspots in the field of fibroblast-associated DFUs: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1109456. [PMID: 37124747 PMCID: PMC10140415 DOI: 10.3389/fendo.2023.1109456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background Diabetic foot ulcers (DFUs) are one of the most popular and severe complications of diabetes. The persistent non-healing of DFUs may eventually contribute to severe complications such as amputation, which presents patients with significant physical and psychological challenges. Fibroblasts are critical cells in wound healing and perform essential roles in all phases of wound healing. In diabetic foot patients, the disruption of fibroblast function exacerbates the non-healing of the wound. This study aimed to summarize the hotspots and evaluate the global research trends on fibroblast-related DFUs through bibliometric analysis. Methods Scientific publications on the study of fibroblast-related DFUs from January 1, 2000 to April 27, 2022 were retrieved from the Web of Science Core Collection (WoSCC). Biblioshiny software was primarily performed for the visual analysis of the literature, CiteSpace software and VOSviewer software were used to validate the results. Results A total of 479 articles on fibroblast-related DFUs were retrieved. The most published countries, institutions, journals, and authors in this field were the USA, The Chinese University of Hong Kong, Wound Repair and Regeneration, and Seung-Kyu Han. In addition, keyword co-occurrence networks, historical direct citation networks, thematic map, and the trend topics map summarize the research hotspots and trends in this field. Conclusion Current studies indicated that research on fibroblast-related DFUs is attracting increasing concern and have clinical implications. The cellular and molecular mechanisms of the DFU pathophysiological process, the molecular mechanisms and therapeutic targets associated with DFUs angiogenesis, and the measures to promote DFUs wound healing are three worthy research hotspots in this field.
Collapse
Affiliation(s)
- Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Siqiao Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuxin Jin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yicheng Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| |
Collapse
|
46
|
Sumpio BJ, Li Z, Wang E, Mezghani I, Theocharidis G, Veves A. Future Directions in Research in Transcriptomics in the Healing of Diabetic Foot Ulcers. Adv Ther 2023; 40:67-75. [PMID: 36264535 DOI: 10.1007/s12325-022-02348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023]
Abstract
Diabetic foot ulcers are a health crisis that affect millions of individuals worldwide. Current standard of care involves diligent wound care with adjunctive antibiotics and surgical debridement. However, despite this, the majority will still become infected and fail to heal. Recent efforts using bioengineered skin initially appeared promising, but randomized clinical trials have disappointed. Scientists have now begun to understand that the normal wound healing physiology does not apply to diabetic foot ulcers as they maintain a chronic state of inflammation and fail to progress in a linear pathway. Using transcriptomics, research over the past decade has started identifying master genes and protein pathways that are dysregulated in patients with diabetes. This review paper discusses those genes involved and how novel advancements are using this information to create new biologically based compounds to accelerate wound healing in patients with diabetic foot ulcers.
Collapse
Affiliation(s)
- Brandon J Sumpio
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Zhuqing Li
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Enya Wang
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Ikram Mezghani
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Georgios Theocharidis
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Aristidis Veves
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Mazumdar E, Gwilym BL, Harding K, Bosanquet DC. Percent area reduction as a surrogate to inform revascularization in chronic limb-threatening ischemia. J Vasc Surg 2022; 76:1760-1761. [DOI: 10.1016/j.jvs.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
|
48
|
A strain-programmed patch for the healing of diabetic wounds. Nat Biomed Eng 2022; 6:1118-1133. [PMID: 35788686 DOI: 10.1038/s41551-022-00905-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Diabetic foot ulcers and other chronic wounds with impaired healing can be treated with bioengineered skin or with growth factors. However, most patients do not benefit from these treatments. Here we report the development and preclinical therapeutic performance of a strain-programmed patch that rapidly and robustly adheres to diabetic wounds, and promotes wound closure and re-epithelialization. The patch consists of a dried adhesive layer of crosslinked polymer networks bound to a pre-stretched hydrophilic elastomer backing, and implements a hydration-based shape-memory mechanism to mechanically contract diabetic wounds in a programmable manner on the basis of analytical and finite-element modelling. In mouse and human skin, and in mini-pigs and humanized mice, the patch enhanced the healing of diabetic wounds by promoting faster re-epithelialization and angiogenesis, and the enrichment of fibroblast populations with a pro-regenerative phenotype. Strain-programmed patches might also be effective for the treatment of other forms of acute and chronic wounds.
Collapse
|
49
|
Zhou L, Min T, Bian X, Dong Y, Zhang P, Wen Y. Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:4055-4085. [PMID: 35980356 DOI: 10.1021/acsabm.2c00500] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the clinic's treatment of acute/chronic wounds is still unsatisfactory due to the lack of functional and appropriate wound dressings. Intelligent and multifunctional dressings are considered the most advanced wound treatment modalities. It is essential to design and develop wound dressings with required functions according to the wound microenvironment in the clinical treatment. This work summarizes microenvironment characteristics of various common wounds, such as acute wound, diabetic wound, burns wound, scalded wound, mucosal wound, and ulcers wound. Furthermore, the factors of transformation from acute wounds to chronic wounds were analyzed. Then we focused on summarizing how researchers fully and thoroughly combined the complex microenvironment with modern advanced technology to ensure the usability and value of the dressing, such as photothermal-sensitive dressings, microenvironment dressing (pH-sensitive dressings, ROS-sensitive dressings, and osmotic pressure dressings), hemostatic dressing, guiding tissue regeneration dressing, microneedle dressings, and 3D/4D printing dressings. Finally, the revolutionary development of wound dressings and how to transform the existing advanced functional dressings into clinical needs as soon as possible have carried out a reasonable and meaningful outlook.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
50
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|