1
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
3
|
Kumar J, Ahmed A, Khan M, Ahmed Y. There's More Than Meets the Eye: Wolfram Syndrome in a Type I Diabetic Patient. J Med Cases 2023; 14:265-269. [PMID: 37560547 PMCID: PMC10409535 DOI: 10.14740/jmc4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative and genetic disorder, also known by the synonym DIDMOAD, which stands for diabetes insipidus (DI), childhood-onset diabetes mellitus (DM), optic atrophy (OA), and deafness (D). We present a case of a 25-year-old diabetic patient, using insulin for 15 years, who had increasing polyuria and polydipsia, along with progressive hearing and vision loss. Laboratory tests revealed elevated hemoglobin A1c (HbA1c) and blood sugar levels. Optic nerve, optic chiasm, pons, and brain stem atrophy was seen on magnetic resonance imaging (MRI) of brain. After workup, a diagnosis of DI was made. Once the diagnosis was reached, treatment with subcutaneous insulin and nasal desmopressin improved patient's symptoms. In juvenile diabetic patients presenting with new onset or worsening polyuria and polydipsia, the possibility of WS should be considered. Early diagnosis and initiation of appropriate management leads to improved outcomes and the quality of life.
Collapse
Affiliation(s)
- Jasvindar Kumar
- Internal Medicine at Basset Medical Center, Cooperstown, NY, USA
| | - Atif Ahmed
- Department of Psychiatry, Khyber Medical University, Peshawar, Pakistan
| | - Mashal Khan
- Khyber Medical University, Peshawar, Pakistan
- Department of Internal Medicine, United Health Services Hospitals, Binghamton, NY, USA
| | - Yasir Ahmed
- Department of Internal Medicine, United Health Services Hospitals, Binghamton, NY, USA
| |
Collapse
|
4
|
Frontino G, Di Tonno R, Stancampiano MR, Arrigoni F, Rigamonti A, Morotti E, Canarutto D, Bonfanti R, Russo G, Barera G, Piemonti L. Paediatric Wolfram syndrome Type 1: should gonadal dysfunction be part of the diagnostic criteria? Front Endocrinol (Lausanne) 2023; 14:1155644. [PMID: 37383390 PMCID: PMC10294676 DOI: 10.3389/fendo.2023.1155644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Aims Wolfram Syndrome Spectrum Disorder (WFS1-SD), in its "classic" form, is a rare autosomal recessive disease with poor prognosis and wide phenotypic spectrum. Insulin dependent diabetes mellitus (DM), optic atrophy (OA) diabetes insipidus (DI) and sensorineural deafness (D) are the main features of WFS1-SD. Gonadal dysfunction (GD) has been described mainly in adults with variable prevalence and referred to as a minor clinical feature. This is the first case series investigating gonadal function in a small cohort of paediatric patients affected by WFS1-SD. Methods Gonadal function was investigated in eight patients (3 male and 5 female) between 3 and 16 years of age. Seven patients have been diagnosed with classic WFS1-SD and one with non-classic WFS1-SD. Gonadotropin and sex hormone levels were monitored, as well as markers of gonadal reserve (inhibin-B and anti-Mullerian hormone). Pubertal progression was assessed according to Tanner staging. Results Primary hypogonadism was diagnosed in 50% of patients (n=4), more specifically 67% (n=2) of males and 40% of females (n=2). Pubertal delay was observed in one female patient. These data confirm that gonadal dysfunction may be a frequent and underdiagnosed clinical feature in WFS1-SD. Conclusions GD may represent a frequent and earlier than previously described feature in WFS1-SD with repercussions on morbidity and quality of life. Consequently, we suggest that GD should be included amongst clinical diagnostic criteria for WFS1-SD, as has already been proposed for urinary dysfunction. Considering the heterogeneous and elusive presentation of WFS1-SD, this clinical feature may assist in an earlier diagnosis and timely follow-up and care of treatable associated diseases (i.e. insulin and sex hormone replacement) in these young patients.
Collapse
Affiliation(s)
- Giulio Frontino
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Diabetes Research Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Raffaella Di Tonno
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Marianna Rita Stancampiano
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Arrigoni
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Rigamonti
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Diabetes Research Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Elisa Morotti
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Riccardo Bonfanti
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Diabetes Research Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Gianni Russo
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Graziano Barera
- Department of Pediatrics, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Hospital, Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Png D, Yeoh E, Tan C, Lim SC. A Pair of Siblings With Wolfram Syndrome: A Review of the Literature and Treatment Options. J Investig Med High Impact Case Rep 2023; 11:23247096221150631. [PMID: 36644884 PMCID: PMC9846294 DOI: 10.1177/23247096221150631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Wolfram syndrome (WS) is a rare genetic disorder typically characterized by juvenile onset diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, and neurodegeneration. There would be a high index of clinical suspicion for WS when clinical manifestations of type 1 diabetes and optic atrophy present together. Genetic analysis is often required to confirm the diagnosis. We describe a pair of Chinese siblings diagnosed with WS at ages 20 and 24 years, respectively. DNA sequencing of the WFS1 gene which encodes for Wolframin ER Transmembrane Glycoprotein identified a heterozygous nonsense variant NM_006005.3: c.1999C>T p.(Gln667*) and a heterozygous missense variant c.2170C>T p.(Pro724Ser) in exon 8 of the gene for both siblings. There is no curative treatment for WS and management of this debilitating disease is aimed at treating individual clinical manifestations, slowing disease progression, and improving quality of life. Treatment with liraglutide, a glucagon-like-peptide-1 receptor agonist, and tauroursodeoxycholic acid was started for the younger sibling, the proband. There was reduction in insulin requirements and improvement in glycemic control. The other sibling was not offered liraglutide due to her complex treatment regimen for end-organ failure. Genetic testing is a valuable tool to detect WS early to allow precise and prompt diagnosis, thereby facilitating the coordinated care from a multidisciplinary team of clinicians.
Collapse
Affiliation(s)
| | | | | | - Su Chi Lim
- Admiralty Medical Centre, Singapore.,Khoo Teck Puat Hospital, Singapore.,National University of Singapore, Singapore.,Nanyang Technological University, Singapore
| |
Collapse
|
6
|
Kitamura RA, Maxwell KG, Ye W, Kries K, Brown CM, Augsornworawat P, Hirsch Y, Johansson MM, Weiden T, Ekstein J, Cohen J, Klee J, Leslie K, Simeonov A, Henderson MJ, Millman JR, Urano F. Multidimensional analysis and therapeutic development using patient iPSC-derived disease models of Wolfram syndrome. JCI Insight 2022; 7:156549. [PMID: 36134655 PMCID: PMC9675478 DOI: 10.1172/jci.insight.156549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant, which is highly prevalent in the Ashkenazi Jewish population. Clinical investigation indicated that patients carrying the homozygous WFS1 c.1672C>T, p.R558C variant showed mild forms of Wolfram syndrome phenotypes. Expression of WFS1 p.R558C was more stable compared with the other known recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent stem cell-derived (iPSC-derived) islets (SC-islets) homozygous for WFS1 c.1672C>T variant recapitulated genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function through a combination treatment of chemical chaperones mitigated detrimental effects caused by the WFS1 c.1672C>T, p.R558C variant and increased insulin secretion in SC-islets. Thus, the WFS1 c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be remitted with a combination treatment of chemical chaperones. We demonstrate that our patient iPSC-derived disease model provides a valuable platform for further genotype-phenotype analysis and therapeutic development for Wolfram syndrome.
Collapse
Affiliation(s)
- Rie Asada Kitamura
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kristina G Maxwell
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wenjuan Ye
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Kelly Kries
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Cris M Brown
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Punn Augsornworawat
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Martin M Johansson
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Tzvi Weiden
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, Israel
| | - Joseph Ekstein
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Joshua Cohen
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Justin Klee
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Kent Leslie
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Jeffrey R Millman
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Rotsos T, Papakonstantinou E, Symeonidis C, Krassas A, Kamakari S. Wolfram Syndrome: A case report of two sisters Wolfram Syndrome: Case report of two sisters. Am J Ophthalmol Case Rep 2022; 26:101452. [PMID: 35252627 PMCID: PMC8892096 DOI: 10.1016/j.ajoc.2022.101452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To present a case of two siblings with optic atrophy associated with Wolfram Syndrome. OBSERVATIONS Two young adult siblings presented with serious bilateral loss of vision and dyschromatopsia established in early adolescence. They were referred with a presumed diagnosis of Leber's Hereditary Optic Neuropathy. At baseline, visual acuity was 20/400 in the right eye and 20/200 in the left eye in patient A and 20/200 in both eyes in patient B, color perception tested with pseudo-isochromatic plates was 0/17 in each eye, optic discs were pale, visual field testing revealed diffuse scotomas bilaterally while electrophysiology showed delayed prominent positive deflection (P100) values in both patients. Personal history revealed Type 1 diabetes mellitus since early childhood. Patients were lost to follow-up and presented 4 years later with significant VA decrease (<20/400) and suspected hearing loss. At that point, genetic testing revealed a pathogenic variation in the WFS1 gene thus confirming the diagnosis of Wolfram syndrome. Treatment with idebenone was proposed, to which only one of the siblings agreed. The other patient remained under observation, as no known treatment for optic atrophy in Wolfram syndrome exists to date. CONCLUSIONS AND IMPORTANCE Wolfram syndrome is a rare neurodegenerative genetic disease associated with diabetes mellitus, optic atrophy and deafness. Careful and detailed medical and family history led to appropriate testing that confirmed the diagnosis of Wolfram syndrome. To this day, there is no definite treatment for this disease, but the experimental use of idebenone has been suggested to improve visual function. Genetic testing of family members and offspring of patients is strongly recommended.
Collapse
Affiliation(s)
- Tryfon Rotsos
- 1st Department of Ophthalmology, University of Athens, G. Gennimatas General Hospital, 154 Mesogion Av., 115 27, Athens, Greece
| | - Evangelia Papakonstantinou
- 1st Department of Ophthalmology, University of Athens, G. Gennimatas General Hospital, 154 Mesogion Av., 115 27, Athens, Greece
| | - Chrysanthos Symeonidis
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki Ring Road, 546 03, Thessaloniki, Greece
- Corresponding author. 44 Tsimiski str., 546 23, Thessaloniki, Greece.
| | - Augoustinos Krassas
- 1st Department of Ophthalmology, University of Athens, G. Gennimatas General Hospital, 154 Mesogion Av., 115 27, Athens, Greece
| | - Smaragda Kamakari
- Ophthalmic Genetics Unit, OMMA Institute, 74 Katechaki Str., 115 25, Athens, Greece
| |
Collapse
|
8
|
Rigoli L, Caruso V, Salzano G, Lombardo F. Wolfram Syndrome 1: From Genetics to Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3225. [PMID: 35328914 PMCID: PMC8949990 DOI: 10.3390/ijerph19063225] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Valerio Caruso
- Psychiatry 2 Unit, Clinical and Experimental Medicine Department, University of Pisa, 56126 Pisa, Italy;
| | - Giuseppina Salzano
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Fortunato Lombardo
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| |
Collapse
|
9
|
Salzano G, Rigoli L, Valenzise M, Chimenz R, Passanisi S, Lombardo F. Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:520. [PMID: 35010780 PMCID: PMC8744633 DOI: 10.3390/ijerph19010520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 is a rare, autosomal recessive, neurodegenerative, progressive disorder. Insulin-dependent, non-autoimmune diabetes mellitus and bilateral progressive optic atrophy are both sensitive and specific criteria for clinical diagnosis. The leading cause of death is central respiratory failure resulting from brainstem atrophy. We describe the clinical features of fourteen patients from seven different families followed in our Diabetes Center. The mean age at Wolfram syndrome 1 diagnosis was 12.4 years. Diabetes mellitus was the first clinical manifestation, in all patients. Sensorineural hearing impairment and central diabetes insipidus were present in 85.7% of patients. Other endocrine findings included hypogonadotropic hypogonadism (7.1%), hypergonadotropic hypogonadism (7.1%), and Hashimoto's thyroiditis (21.4%). Neuropsychiatric disorders were detected in 35.7% of patients, and urogenital tract abnormalities were present in 21.4%. Finally, heart diseases were found in 14.2% of patients. Eight patients (57.1%) died at the mean age of 27.3 years. The most common cause of death was respiratory failure which occurred in six patients. The remaining two died due to end-stage renal failure and myocardial infarction. Our data are superimposable with those reported in the literature in terms of mean age of onset, the clinical course of the disease, and causes of death. The frequency of deafness and diabetes insipidus was higher in our patients. The incidence of urogenital diseases was lower although it led to the death of one patient. Long-term follow-up studies including large patient cohorts are necessary to establish potential genotype-phenotype correlation in order to personalize the most suitable clinical approach for each patient.
Collapse
Affiliation(s)
- Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Luciana Rigoli
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Mariella Valenzise
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Dialysis, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| |
Collapse
|
10
|
Pourtoy-Brasselet S, Sciauvaud A, Boza-Moran MG, Cailleret M, Jarrige M, Polvèche H, Polentes J, Chevet E, Martinat C, Peschanski M, Aubry L. Human iPSC-derived neurons reveal early developmental alteration of neurite outgrowth in the late-occurring neurodegenerative Wolfram syndrome. Am J Hum Genet 2021; 108:2171-2185. [PMID: 34699745 DOI: 10.1016/j.ajhg.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.
Collapse
Affiliation(s)
| | - Axel Sciauvaud
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Maria-Gabriela Boza-Moran
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Michel Cailleret
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Margot Jarrige
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France; CECS/AFM, I-STEM, Corbeil-Essonnes 91100, France
| | | | | | - Eric Chevet
- INSERM U1242, Université Rennes 1, Rennes 35000, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes 35000, France
| | - Cécile Martinat
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Marc Peschanski
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France; CECS/AFM, I-STEM, Corbeil-Essonnes 91100, France
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France.
| |
Collapse
|
11
|
Abreu D, Asada R, Revilla JMP, Lavagnino Z, Kries K, Piston DW, Urano F. Wolfram syndrome 1 gene regulates pathways maintaining beta-cell health and survival. J Transl Med 2020; 100:849-862. [PMID: 32060407 PMCID: PMC7286786 DOI: 10.1038/s41374-020-0408-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Wolfram Syndrome 1 (WFS1) protein is an endoplasmic reticulum (ER) factor whose deficiency results in juvenile-onset diabetes secondary to cellular dysfunction and apoptosis. The mechanisms guiding β-cell outcomes secondary to WFS1 function, however, remain unclear. Here, we show that WFS1 preserves normal β-cell physiology by promoting insulin biosynthesis and negatively regulating ER stress. Depletion of Wfs1 in vivo and in vitro causes functional defects in glucose-stimulated insulin secretion and insulin content, triggering Chop-mediated apoptotic pathways. Genetic proof of concept studies coupled with RNA-seq reveal that increasing WFS1 confers a functional and a survival advantage to β-cells under ER stress by increasing insulin gene expression and downregulating the Chop-Trib3 axis, thereby activating Akt pathways. Remarkably, WFS1 and INS levels are reduced in type-2 diabetic (T2DM) islets, suggesting that WFS1 may contribute to T2DM β-cell pathology. Taken together, this work reveals essential pathways regulated by WFS1 to control β-cell survival and function primarily through preservation of ER homeostasis.
Collapse
Affiliation(s)
- Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA,Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - Rie Asada
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Biochemistry, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima 734-8553, Japan
| | - John M. P. Revilla
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Experimental Imaging Center DIBIT, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Kelly Kries
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Mahadevan J, Morikawa S, Yagi T, Abreu D, Lu S, Kanekura K, Brown CM, Urano F. A soluble endoplasmic reticulum factor as regenerative therapy for Wolfram syndrome. J Transl Med 2020; 100:1197-1207. [PMID: 32366942 PMCID: PMC7438202 DOI: 10.1038/s41374-020-0436-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-mediated cell death is an emerging target for human chronic disorders, including neurodegeneration and diabetes. However, there is currently no treatment for preventing ER stress-mediated cell death. Here, we show that mesencephalic astrocyte-derived neurotrophic factor (MANF), a neurotrophic factor secreted from ER stressed cells, prevents ER stress-mediated β cell death and enhances β cell proliferation in cell and mouse models of Wolfram syndrome, a prototype of ER disorders. Our results indicate that molecular pathways regulated by MANF are promising therapeutic targets for regenerative therapy of ER stress-related disorders, including diabetes, retinal degeneration, neurodegeneration, and Wolfram syndrome.
Collapse
Affiliation(s)
- Jana Mahadevan
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Shuntaro Morikawa
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Takuya Yagi
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Damien Abreu
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Simin Lu
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kohsuke Kanekura
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.410793.80000 0001 0663 3325Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Cris M. Brown
- grid.4367.60000 0001 2355 7002Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Abreu D, Urano F. Current Landscape of Treatments for Wolfram Syndrome. Trends Pharmacol Sci 2019; 40:711-714. [PMID: 31420094 DOI: 10.1016/j.tips.2019.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023]
Abstract
Wolfram syndrome is a rare genetic spectrum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration, and ranges from mild to severe clinical symptoms. There is currently no treatment to delay, halt, or reverse the progression of Wolfram syndrome, raising the urgency for innovative therapeutics for this disease. Here, we summarize our vision for developing novel treatment strategies and achieving a cure for Wolfram-syndrome-spectrum disorder.
Collapse
Affiliation(s)
- Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Asanad S, Wu J, Nassisi M, Ross-Cisneros FN, Sadun AA. Optical coherence tomography-angiography in Wolfram syndrome: a mitochondrial etiology in disease pathophysiology. Can J Ophthalmol 2019; 54:e27-e30. [PMID: 30851792 DOI: 10.1016/j.jcjo.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Samuel Asanad
- Doheny Eye Center, Department of Neuro-ophthalmology, Los Angeles, CA; Doheny Eye Institute, Los Angeles, CA; Department of Ophthalmology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA.
| | - Jessica Wu
- Doheny Eye Institute, Los Angeles, CA; Department of Ophthalmology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Marco Nassisi
- Doheny Eye Center, Department of Neuro-ophthalmology, Los Angeles, CA; Doheny Eye Institute, Los Angeles, CA
| | | | - Alfredo A Sadun
- Doheny Eye Center, Department of Neuro-ophthalmology, Los Angeles, CA; Doheny Eye Institute, Los Angeles, CA; Department of Ophthalmology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW We provide a review of monogenic diabetes in young children and adolescents with a focus on recognition, management, and pharmacological treatment. RECENT FINDINGS Monogenic forms of diabetes account for approximately 1-2% of diabetes in children and adolescents, and its incidence has increased in recent years due to greater awareness and wider availability of genetic testing. Monogenic diabetes is due to single gene defects that primarily affect beta cell function with more than 30 different genes reported. Children with antibody-negative, C-peptide-positive diabetes should be evaluated and genetically tested for monogenic diabetes. Accurate genetic diagnosis impacts treatment in the most common types of monogenic diabetes, including the use of sulfonylureas in place of insulin or other glucose-lowering agents or discontinuing pharmacologic treatment altogether. Diagnosis of monogenic diabetes can significantly improve patient care by enabling prediction of the disease course and guiding appropriate management and treatment.
Collapse
Affiliation(s)
- May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL, 60637, USA
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL, 60637, USA
| | - Rochelle Naylor
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Rigoli L, Bramanti P, Di Bella C, De Luca F. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res 2018; 83:921-929. [PMID: 29774890 DOI: 10.1038/pr.2018.17] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022]
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other abnormalities. WS1 usually results in death before the age of 50 years. The pathogenesis of WS1 is ascribed to mutations of human WFS1 gene on chromosome 4p encoding a transmembrane protein called wolframin, which has physiological functions in membrane trafficking, secretion, processing, and/or regulation of ER calcium homeostasis. Different types of WFS1 mutations have been identified, and some of these have been associated with a dominant, severe type of WS. Mutations of CISD2 gene cause autosomal recessive Wolfram syndrome 2 (WS2) characterized by the absence of diabetes insipidus and psychiatric disorders, and by bleeding upper intestinal ulcer and defective platelet aggregation. Other WFS1-related disorders such as DFNA6/14/38 nonsyndromic low-frequency sensorineural hearing loss and Wolfram syndrome-like disease with autosomal dominant transmission have been described. WS1 is a devastating disease for the patients and their families. Thus, early diagnosis is imperative to enable proper prognostication, prevent complications, and reduce the transmission to further progeny. Although there is currently no effective therapy, potential new drugs have been introduced, attempting to improve the progression of this fatal disease.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Pediatrics, University Hospital, Messina, Italy
| | | | - Chiara Di Bella
- Department of Pediatrics, University Hospital, Messina, Italy
| | - Filippo De Luca
- Department of Pediatrics, University Hospital, Messina, Italy
| |
Collapse
|
17
|
La Spada A, Ntai A, Genovese S, Rondinelli M, De Blasio P, Biunno I. Generation of Human-Induced Pluripotent Stem Cells from Wolfram Syndrome Type 2 Patients Bearing the c.103 + 1G>A CISD2 Mutation for Disease Modeling. Stem Cells Dev 2018; 27:287-295. [PMID: 29239282 DOI: 10.1089/scd.2017.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wolfram syndrome (WFS) is a rare autosomal premature aging syndrome that shows signs of diabetes mellitus, optic atrophy, and deafness in addition to central nervous system and endocrine complications. The frequent form of WFS type 1 (WFS1) harbors causative mutations in the WFS1 gene, whereas the rare form or WFS type 2 (WFS2) involves CISD2. Mutations in these two genes are recognized by a subset of variable clinical symptoms and a set of overlapping features. In this study, we report on the generation of stable human-induced pluripotent stem cells (hiPSCs) derived from primary fibroblasts of a previously reported Italian family with CISD2 mutation (c.103 + 1G>A), occurring in the consensus intron 1 splicing site in two sisters, deleting the first exon of the transcript. The generated hiPSCs provide a cell model system to study the mutation's role in the multisystemic clinical disorders previously described and test eventual drug effects on the specific and associated clinical phenotype.
Collapse
Affiliation(s)
- Alberto La Spada
- 1 Institute of Genetic and Biomedical Research , National Research Council (IRGB-CNR), Department of Biomedicine, Milan, Italy
| | - Aikaterini Ntai
- 2 Integrated Systems Engineering S.r.l. (ISENET) , Milan, Italy
| | - Stefano Genovese
- 3 Diabetes Endocrine and Metabolic Diseases Unit, IRCCS MultiMedica , Milan, Italy
| | - Maurizio Rondinelli
- 3 Diabetes Endocrine and Metabolic Diseases Unit, IRCCS MultiMedica , Milan, Italy
| | | | - Ida Biunno
- 1 Institute of Genetic and Biomedical Research , National Research Council (IRGB-CNR), Department of Biomedicine, Milan, Italy .,4 IRCCS MultiMedica, Department of Stem Cell Research, Milan, Italy
| |
Collapse
|
18
|
Porosk R, Kilk K, Mahlapuu R, Terasmaa A, Soomets U. Glutathione system in Wolfram syndrome 1‑deficient mice. Mol Med Rep 2017; 16:7092-7097. [PMID: 28901522 DOI: 10.3892/mmr.2017.7419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well‑defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1‑deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.
Collapse
Affiliation(s)
- Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Riina Mahlapuu
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anton Terasmaa
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
19
|
Althari S, Gloyn AL. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes. Rev Diabet Stud 2016; 12:330-48. [PMID: 27111119 DOI: 10.1900/rds.2015.12.330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY?
Collapse
Affiliation(s)
- Sara Althari
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, UK
| |
Collapse
|
20
|
Abstract
Wolfram syndrome is a rare genetic disorder characterized by juvenile-onset diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing loss, and neurodegeneration. Although there are currently no effective treatments that can delay or reverse the progression of Wolfram syndrome, the use of careful clinical monitoring and supportive care can help relieve the suffering of patients and improve their quality of life. The prognosis of this syndrome is currently poor, and many patients die prematurely with severe neurological disabilities, raising the urgency for developing novel treatments for Wolfram syndrome. In this article, we describe natural history and etiology, provide recommendations for diagnosis and clinical management, and introduce new treatments for Wolfram syndrome.
Collapse
Affiliation(s)
- Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Papadimitriou DT, Manolakos E, Bothou C, Zoupanos G, Papoulidis I, Orru S, Skarmoutsos F, Delides A, Bakoula C, Papadimitriou A, Urano F. Maternal uniparental disomy of chromosome 4 and homozygous novel mutation in the WFS1 gene in a paediatric patient with Wolfram syndrome. DIABETES & METABOLISM 2015; 41:433-435. [PMID: 26169481 DOI: 10.1016/j.diabet.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Affiliation(s)
- D T Papadimitriou
- Department of Pediatric Endocrinology and Diabetes, Athens Medical Center, 58, av. Kifissias, 15125 Maroussi, Athens, Greece; Pediatric Endocrine Unit, Attikon University Hospital, Athens, Greece.
| | - E Manolakos
- Access to Genome, Athens-Thessaloniki, Greece; Department of Medical Genetics, University of Cagliari, Binaghi hospital, Cagliari, Italy
| | - C Bothou
- Medical School, Athens University, Athens, Greece
| | - G Zoupanos
- Department of Pediatric Urology, Athens Medical Center, Athens, Greece
| | | | - S Orru
- Department of Medical Genetics, University of Cagliari, Binaghi hospital, Cagliari, Italy
| | - F Skarmoutsos
- Department of Pediatric Opthalmology, Athens Medical center, Athens, Greece
| | - A Delides
- Department of Pediatric Otorhinolaryngology, Athens Medical center, Athens, Greece
| | - C Bakoula
- Department of Pediatrics, Athens Medical Center, Athens, Greece
| | - A Papadimitriou
- Pediatric Endocrine Unit, Attikon University Hospital, Athens, Greece
| | - F Urano
- Washington University School of Medicine, Saint-Louis, MO, USA
| |
Collapse
|