1
|
Lyu Y, Li P, Bian Y, Hou W, Li B, Zhang L, Shan A. Antimicrobial peptide-chitosan nanoparticles combat ETEC-induced bacterial infection in mice. Int J Biol Macromol 2025; 311:144047. [PMID: 40345295 DOI: 10.1016/j.ijbiomac.2025.144047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to antibiotics. However, the disadvantage of AMPs in combating bacterial infections in vivo restricts their practical application. In this study, 3W-2-chitosan-nanoparticles (3W-2-CS-NPs) were successfully constructed by encapsulating the porcine-derived AMPs 3W-2 (WRLRWKTRWRLK-NH2), previously developed by our team, with chitosan (CS). This novel formulation aims to enhance the antibacterial activity and stability of AMPs in vivo, with the specific goal of mitigating the systemic organ impairments induced by Enterotoxigenic Escherichia coli (ETEC) infection. In vitro studies demonstrated that 3W-2-CS-NPs exhibited sustained-release properties and stronger antibacterial activity in comparison to chitosan-nanoparticles (CS-NPs). Additionally, 3W-2-CS-NPs maintained better antibacterial activity in gastric and intestinal fluid environments compared to 3W-2. In vivo studies showed that the gavage of 3W-2-CS-NPs alleviated weight loss, liver damage, systemic inflammation, and intestinal mucosal injury induced by ETEC infection in mice. Furthermore, 3W-2-CS-NPs were demonstrated to promote intestinal microecological balance, as evidenced by 16S rRNA sequencing analysis. Conclusively, this study suggests that the construction of AMPs-CS-NPs has the potential to enhance the in vivo therapeutic efficacy of AMPs and lays the theoretical foundation for the application of AMPs as additives in food and animal husbandry.
Collapse
Affiliation(s)
- Yinfeng Lyu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peiyang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yifeng Bian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Zhu M, Yang L, Li L, Bai Y, Zhao B. Administration of Bifidobacterium animalis Subsp. lactis BLa80 and Lactobacillus acidophilus LA85 Improved Hyperglycemia and Modulated Gut Microbiota in Type 2 Diabetic Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10567-6. [PMID: 40327313 DOI: 10.1007/s12602-025-10567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disorder and constitutes a significant threat to global public health. Increasing evidence has shown the therapeutic potential of probiotics in the management of T2DM. This study established a T2DM mouse model through high-fat diet combined with streptozotocin injection (HFD/STZ) and investigated the preventive effects of two probiotic strains: Bifidobacterium animalis subsp. lactis BLa80 and Lactobacillus acidophilus LA85. The results indicated that both probiotic strains significantly improved glucose homeostasis by reducing fasting blood glucose (FBG) levels, enhancing insulin sensitivity, and increasing glucagon-like peptide-1 (GLP-1) levels. Moreover, probiotics decreased blood lipid and pro-inflammatory mediator levels, enhanced the production of anti-inflammatory cytokines, and mitigated pathological alterations in ileal, hepatic, pancreatic, and renal tissues. Subsequent 16S rRNA amplicon sequencing analysis revealed that BLa80 and LA85 interventions effectively modulated gut microbiota composition, particularly by increasing the relative abundance of short-chain fatty acids (SCFAs)-producing bacterial taxa. Notably, the mechanisms of action were strain-specific: BLa80 primarily impacted glycemic control and promoted the proliferation of Bifidobacterium and Limosilactobacillus, whereas LA85 exhibited superior efficacy in regulating lipid metabolism and promoted the growth of Lactobacillus and Alistipes populations. These findings indicate that BLa80 and LA85 can ameliorate symptoms related to T2DM despite their distinct regulatory pathways, suggesting their potential as therapeutic agents in diabetes management.
Collapse
Affiliation(s)
- Mingming Zhu
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Lvzhu Yang
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - LuYao Li
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Yuyuan Bai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhao
- Wuhan Wecare Probiotic Research Institute, Wuhan, China.
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Fu L, Baranova A, Cao H, Zhang F. Gut microbiome links obesity to type 2 diabetes: insights from Mendelian randomization. BMC Microbiol 2025; 25:253. [PMID: 40289103 PMCID: PMC12034155 DOI: 10.1186/s12866-025-03968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Research has established links between the gut microbiome (GM) and both obesity and type 2 diabetes (T2D), which is much discussed, but underexplored. This study employed body mass index (BMI) as the measurement of obesity to delve deeper into the correlations from a genetic perspective. METHODS We performed the Mendelian randomization (MR) analysis to examine the causal effects of GM on T2D and BMI, and vice versa. Genome-wide association study (GWAS) summary datasets were utilized for the analysis, including T2D (N = 933,970), BMI (N = 806,834), and two GM datasets from the international consortium MiBioGen (211 taxa, N = 18,340) and the Dutch Microbiome Project (DMP) (207 taxa, N = 7,738). These datasets mainly cover European populations, with additional cohorts from Asia and other regions. To further explore the potential mediating role of GM in the connections between BMI and T2D, their interaction patterns were summarized into a network. RESULTS MR analysis identified 9 taxa that showed protective properties against T2D. Seven species were within the Firmicutes and Bacteroidales phyla in the DMP, and two were from the MiBioGen (Odds Ratio (OR): 0.94-0.95). Conversely, genetic components contributing to the abundance of 12 taxa were associated with increased risks of T2D (OR: 1.04-1.12). Furthermore, T2D may elevate the abundance of seven taxa (OR: 1.03-1.08) and reduce the abundance of six taxa (OR: 0.93-0.97). In the analysis of the influence of the genetic component of BMI on GM composition, BMI affected 52 bacterial taxa, with 28 decreasing (OR: 0.75-0.92) and 24 increasing (OR: 1.08-1.27). Besides, abundances of 25 taxa were negatively correlated with BMI (OR: 0.95-0.99), while positive correlations were detected for 14 taxa (OR: 1.01-1.05). Notably, we uncovered 11 taxa genetically associated with both BMI and T2D, which formed an interactive network. CONCLUSIONS Our findings provide evidence for the GM-mediated links between obesity and T2D. The identification of relevant GM taxa offers valuable insights into the potential role of the microbiome in these diseases.
Collapse
Affiliation(s)
- Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Qin L, Fan B, Zhou Y, Zheng J, Diao R, Wang F, Liu J. Targeted gut microbiome therapy: Applications and prospects of probiotics, fecal microbiota transplantation and natural products in the management of type 2 diabetes. Pharmacol Res 2025; 213:107625. [PMID: 39875017 DOI: 10.1016/j.phrs.2025.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is considered as one of the most pressing public health challenges worldwide. Studies have shown significant differences in the gut microbiota between healthy individuals and T2DM patients, suggesting that gut microorganisms may play a key role in the onset and progression of T2DM. This review systematically summarizes the relationship between gut microbiota and T2DM, and explores the mechanisms through which gut microorganisms may alleviate T2DM. Additionally, it evaluates the potential of probiotics, fecal microbiota transplantation (FMT)/virome transplantation (FVT), and natural products in modulating gut microbiota to treat T2DM. Although existing studies have suggested that these interventions may delay or even halt the progression of T2DM, most research remained limited to animal models and observational clinical studies, with a lack of high-quality clinical data. This has led to an imbalance between theoretical research and clinical application. Although some studies have explored the regulatory role of the gut virome on the gut microbiota, research in this area remains in its early stages. Based on these current studies, future research should be focused on large-scale, long-term clinical studies and further investigation on the potential role of the gut virome in T2DM. In conclusion, this review aims to summarize the current evidence and explore the applications of gut microbiota in T2DM treatment, as well as providing recommendations for further investigation in this field.
Collapse
Affiliation(s)
- Luqi Qin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yixia Zhou
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jiahuan Zheng
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Rao Diao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
5
|
Ma X, Li M, Zhang Y, Xu T, Zhou X, Qian M, Yang Z, Han X. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. eLife 2025; 12:RP92906. [PMID: 39912727 PMCID: PMC11801796 DOI: 10.7554/elife.92906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Meng Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Xinchen Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| |
Collapse
|
6
|
Wang J, Wu Y, Yang J, Ying S, Luo H, Zha L, Li Q. Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice. Food Res Int 2025; 201:115634. [PMID: 39849761 DOI: 10.1016/j.foodres.2024.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206). After 4 weeks, HFD-fed mice were further allotted to HFD, GDM, GDM + XOS, GDM + Akk, GDM + XOS + Akk, GDM + PGF, GDM + PGF + XOS, GDM + PGF + Akk, and GDM + PGF + XOS + Akk groups (n ≥ 19). GDM was induced by intraperitoneally injecting streptozotocin and PGF was established by intragastrically administrating antibiotic cocktails. XOS (500 mg/kg·BW) or/and Akk (4 × 108 CFU) were gavaged once a day for 10 days. Fasting blood glucose (FBG), insulin, oral glucose tolerance test (OGTT) and insulin signaling pathway were determined. Gut microbiota were detected by 16S rRNA sequencing and absolute quantities of Akk by qRT-PCR. Intestinal tissues were stained by Hematoxylin-Eosin and Periodic acid-Schiff-Alcian blue staining. Occludin and Zonula occludens-1 (ZO-1) in intestine, Natural killer group 2 member D (NKG2D) on intestinal epithelial lymphocytes (IELs) and NKG2D ligands (NKG2DL) on intestinal epithelial cells (IECs) were detected by Western blotting. In GDM mice, XOS, Akk and XOS + Akk reduced (p < 0.05) the area under the curve of OGTT (AUC), insulin and homeostasis model assessment of insulin resistance (HOMA-IR), and increased (p < 0.05) protein kinase B (Akt) phosphorylation in liver and insulin receptor substrate 1 (IRS-1) phosphorylation in muscle. Furthermore, XOS + Akk reduced (p < 0.05) FBG and increased (p < 0.05) Akt phosphorylation in muscle and IRS-1 phosphorylation in liver. XOS, Akk and XOS + Akk reshaped gut microbiota with XOS + Akk exhibiting the greatest effectiveness. XOS increased (p < 0.05) Akk and clearance of gut microbiota abolished such effect. XOS, Akk and XOS + Akk reduced (p < 0.05) the small intestine Chiu's score and the colon Dieleman's scores, increased (p < 0.05) ZO-1 and Occludin, and reduced (p < 0.05) NKG2D on IELs and NKG2DLs (H60, MULT-1, Rae-1ε) on IECs. Moreover, XOS + Akk reduced (p < 0.05) MULT-1 in duodenum. Collectively, XOS and Akk synergistically ameliorate IR by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in GDM mice.
Collapse
Affiliation(s)
- Jiexian Wang
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Yanhua Wu
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Junyi Yang
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Shihao Ying
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Qing Li
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
7
|
Zhang L, Wang J, Xu Y, Wei K, Lin W, Hu H, Liu Y. Akkermansia muciniphila relieves inflammatory response in DSS-induced ulcerative colitis in mice through regulating macrophage polarization via SCFAs-SLC52A2/FFAR2 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03787-8. [PMID: 39841217 DOI: 10.1007/s00210-025-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Ulcerative colitis (UC) remains an intractable and relapsing disease featured by intestinal inflammation. The anti-UC activity of Akkermansia muciniphila (AKK), an intestinal microorganism, has been widely investigated. The current work is to explore the impacts of AKK on UC and its possible reaction mechanism. In vivo UC model was induced by dextran sulfate sodium (DSS) and phorbol-12-myristate-13-acetate (PMA)-induced THP-1-M0 and raw264.7 macrophages were treated by lipopolysaccharide (LPS). H&E staining evaluated tissue damage. Inflammatory and oxidative stress levels were assessed by relevant kits. The high-throughput analysis of fatty acids was performed by the LC/MS method. RT-qPCR and Western blot detected related gene expression. Flow cytometry measured cell apoptosis and macrophage polarization. Energy metabolism was detected by ELISA, related assay kits, JC-1 staining, and Western blot. AKK reduced the pathological damage of mice colon tissues, alleviated oxidative stress and inflammatory response, upregulated the expression of Occludin-1 and SCFAs receptors, and stimulated M1 to M2 macrophage polarization in vivo. After FFAR2 was silenced, the promoting role of AKK in the viability and M1 to M2 macrophage polarization and the inhibitory role in oxidative stress, inflammation, apoptosis, energy metabolism disorder, necroptosis, and pyroptosis were both reverted. Conclusively, AKK might mediate SCFAs-SLC52A2/FFAR2 pathways to exert protective activities against intestinal inflammatory response in UC, suggesting that AKK might represent a novel and promising candidate for UC therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Junxi Wang
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ye Xu
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Kaiyan Wei
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Wei Lin
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huixiang Hu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Yijuan Liu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China.
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
8
|
Wu XQ, Ying F, Chung KPS, Leung CON, Leung RWH, So KKH, Lei MML, Chau WK, Tong M, Yu J, Wei D, Tai WCS, Ma S, Lu YY, Lee TKW. Intestinal Akkermansia muciniphila complements the efficacy of PD1 therapy in MAFLD-related hepatocellular carcinoma. Cell Rep Med 2025; 6:101900. [PMID: 39798567 PMCID: PMC11866522 DOI: 10.1016/j.xcrm.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Immune checkpoint inhibitors are not effective for metabolic dysfunction-associated fatty liver disease (MAFLD)-hepatocellular carcinoma (HCC) patients, and identifying the key gut microbiota that contributes to immune resistance in these patients is crucial. Analysis using 16S rRNA sequencing reveals a decrease in Akkermansia muciniphila (Akk) during MAFLD-promoted HCC development. Administration of Akk ameliorates liver steatosis and effectively attenuates the tumor growth in orthotopic MAFLD-HCC mouse models. Akk repairs the intestinal lining, with a decrease in the serum lipopolysaccharide (LPS) and bile acid metabolites, along with decrease in the populations of monocytic myeloid-derived suppressor cells (m-MDSCs) and M2 macrophages. Akk in combination with PD1 treatment exerts maximal growth-suppressive effect in multiple MAFLD-HCC mouse models with increased infiltration and activation of T cells. Clinically, low Akk levels are correlated with PD1 resistance and poor progression-free survival. In conclusion, Akk is involved in the immune resistance of MAFLD-HCC and serves as a predictive biomarker for PD1 response in HCC.
Collapse
Affiliation(s)
- Xue Qian Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fan Ying
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Katherine Po Sin Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Karl Kam Hei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wing Ki Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Man Tong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Wei
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| | - Yin Ying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chong S, Lin M, Chong D, Jensen S, Lau NS. A systematic review on gut microbiota in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 15:1486793. [PMID: 39897957 PMCID: PMC11782031 DOI: 10.3389/fendo.2024.1486793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Aims/hypothesis The gut microbiota play crucial roles in the digestion and degradation of nutrients, synthesis of biological agents, development of the immune system, and maintenance of gastrointestinal integrity. Gut dysbiosis is thought to be associated with type 2 diabetes mellitus (T2DM), one of the world's fastest growing diseases. The aim of this systematic review is to identify differences in the composition and diversity of the gut microbiota in individuals with T2DM. Methods A systematic search was conducted to identify studies reporting on the difference in gut microbiota composition between individuals with T2DM and healthy controls. Relevant studies were evaluated, and their characteristics and results were extracted using a standardized data extraction form. The studies were assessed for risk of bias and their findings were reported narratively. Results 58 observational studies published between 2010 and 2024 were included. Beta diversity was commonly reported to be different between individuals with T2DM and healthy individuals. Genera Lactobacillus, Escherichia-Shigella, Enterococcus, Subdoligranulum and Fusobacteria were found to be positively associated; while Akkermansia, Bifidobacterium, Bacteroides, Roseburia, Faecalibacteirum and Prevotella were found to be negatively associated with T2DM. Conclusions This systematic review demonstrates a strong association between T2DM and gut dysbiosis, as evidenced by differential microbial abundances and altered diversity indices. Among these taxa, Escherichia-Shigella is consistently associated with T2DM, whereas Faecalibacterium prausnitzii appears to offer a protective effect against T2DM. However, the heterogeneity and observational nature of these studies preclude the establishment of causative relationships. Future research should incorporate age, diet and medication-matched controls, and include functional analysis of these gut microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023459937.
Collapse
Affiliation(s)
- Serena Chong
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mike Lin
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Garvan Institute of Research, Sydney, NSW, Australia
| | - Deborah Chong
- Animal Health Laboratory, Department of Natural Resources and Environment Tasmania, Tasmania, TAS, Australia
| | - Slade Jensen
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Infectious Disease and Microbiology, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine Antibiotic Resistance and Mobile Elements Groups, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Namson S. Lau
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool Diabetes Collaboration, Ingham Institute of Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
10
|
Shen X, Zhao F, Zhao Z, Yu J, Sun Z. Probiotics: A potential strategy for improving diabetes mellitus complicated with cognitive impairment. Microbiol Res 2025; 290:127960. [PMID: 39515265 DOI: 10.1016/j.micres.2024.127960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus (DM) is a common metabolic disease and one of the diseases with the highest number of complications at present. As the disease progresses, patients will gradually develop diabetes-related cognitive decline, mild cognitive impairment (MCI) or even dementia. The occurrence of diabetes-combined cognitive impairment undoubtedly imposes a heavy burden on patients and their families. Current research suggests that risk factors such as blood glucose levels, insulin resistance, oxidative stress and neuroinflammation have an important role in the development of diabetic cognitive impairment (DCI). With the development of technology and in-depth research, the relationship between the two-way communication between the gut and the brain has been gradually revealed, and more studies have found that the gut microbiota plays an important role in the development of DCI. This review explores the feasibility of probiotics as a potential strategy to assist in the improvement of DCI and its potential mechanisms from the perspective of the factors affecting DCI.
Collapse
Affiliation(s)
- Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
11
|
He K, An F, Zhang H, Yan D, Li T, Wu J, Wu R. Akkermansia muciniphila: A Potential Target for the Prevention of Diabetes. Foods 2024; 14:23. [PMID: 39796314 PMCID: PMC11720440 DOI: 10.3390/foods14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Akkermansia muciniphila, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of A. muciniphila abundance. Thus, A. muciniphil and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus. Diabetes treatments that rely on altering changes in A. muciniphila abundance are also reviewed, including the identification of A. muciniphila active ingredients, and dietary and pharmacological interventions for A. mucinihila abundance. The potential and challenges of using A. muciniphila are also highlighted, and it is anticipated that this work will serve as a reference for more in-depth studies on A. muciniphila and diabetes development, as well as the creation of new therapeutic targets by colleagues domestically and internationally.
Collapse
Affiliation(s)
- Kairu He
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| |
Collapse
|
12
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
13
|
Liu E, Ji X, Zhou K. Akkermansia muciniphila for the Prevention of Type 2 Diabetes and Obesity: A Meta-Analysis of Animal Studies. Nutrients 2024; 16:3440. [PMID: 39458436 PMCID: PMC11510203 DOI: 10.3390/nu16203440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND More than half of the states in the U.S. report that over 30% of adults are obese. Obesity increases the risk of many chronic diseases, including type 2 diabetes, hypertension, and cardiovascular disease, and can even reduce one's lifespan. Similarly, the prevalence of type 2 diabetes follows a comparable trend. As a result, researchers are striving to find solutions to reduce obesity rates, with a particular focus on gut health, which has been previously linked to both obesity and type 2 diabetes. Recent studies suggest that Akkermansia muciniphila (Akk) may have a positive probiotic effect on preventing the onset of type 2 diabetes and obesity. METHODS We conducted a quantitative meta-analysis of 15 qualified animal studies investigating the effects of Akk administration as a probiotic. RESULTS The statistical analyses showed that Akk administration significantly reduced body weight gain by 10.4% and fasting blood glucose by 21.2%, while also significantly improving glucose tolerance by 22.1% and increasing blood insulin levels by 26.9%. However, our analysis revealed substantial heterogeneity between the control and experimental groups across all subgroups. CONCLUSIONS Overall, Akk appears to be effective at reducing the onset of type 2 diabetes and diet-induced obesity. Long-term studies with larger sample sizes are needed to confirm these beneficial effects, as the current animal studies were of short duration (less than 20 weeks).
Collapse
Affiliation(s)
- Ethan Liu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Xiangming Ji
- Department of Nutritional Sciences, The College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
14
|
Prapa I, Kompoura V, Pavlatou C, Nelios G, Mitropoulou G, Kostomitsopoulos N, Plessas S, Bezirtzoglou E, Karathanos VT, Yanni AE, Kourkoutas Y. Effects of Free or Immobilized Pediococcus acidilactici ORE5 on Corinthian Currants on Gut Microbiome of Streptozotocin-Induced Diabetic Rats. Microorganisms 2024; 12:2004. [PMID: 39458313 PMCID: PMC11509866 DOI: 10.3390/microorganisms12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to investigate the effect of a dietary intervention including free or immobilized cells of the presumptive probiotic Pediococcus acidilactici ORE5 on Corinthian currants, a food with beneficial impact in the condition of Type-1 Diabetes Mellitus (T1DM), on the microbiome composition of STZ-induced diabetic rats. Twenty four male Wistar rats were divided into four groups (n = 6 per group): healthy animals, which received the free (H_FP) or the immobilized Pediococcus acidilactici ORE5 cells (H_IPC), and diabetic animals, which received the free (D_FP) or the immobilized Pediococcus acidilactici ORE5 cells(D_IPC) for 4 weeks (109 cfu/day, in all groups). At the end of the dietary intervention, the D_IPC group exerted a lower concentration of the inflammatory cytokine IL-1 beta compared to D_FP. Consumption of immobilized P. acidilactici ORE5 cells on Corinthian currants by diabetic animals led to increased loads of fecal lactobacilli and lower Enterobacteriaceae, coliforms, and Escherichia coli levels, while Actinobacteria phylum, Akkermansia, and Bifidobacterium genera abundances were increased, and fecal lactic acid was elevated. Overall, the results of the present research demonstrated that functional ingredients could ameliorate gut dysbiosis present in T1DM and could be used to design dietary patterns aiming at T1DM management. However, well-designed clinical trials are necessary, in order to confirm the beneficial effects in humans.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Chrysoula Pavlatou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Grigorios Nelios
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
- Agricultural Cooperatives’ Union of Aeghion, Corinthou 201, 25100 Aeghion, Greece
| | - Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| |
Collapse
|
15
|
Jeyaraman M, Mariappan T, Jeyaraman N, Muthu S, Ramasubramanian S, Santos GS, da Fonseca LF, Lana JF. Gut microbiome: A revolution in type II diabetes mellitus. World J Diabetes 2024; 15:1874-1888. [PMID: 39280189 PMCID: PMC11372632 DOI: 10.4239/wjd.v15.i9.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Type II diabetes mellitus (T2DM) has experienced a dramatic increase globally across countries of various income levels over the past three decades. The persistent prevalence of T2DM is attributed to a complex interplay of genetic and environmental factors. While numerous pharmaceutical therapies have been developed, there remains an urgent need for innovative treatment approaches that offer effectiveness without significant adverse effects. In this context, the exploration of the gut microbiome presents a promising avenue. Research has increasingly shown that the gut microbiome of individuals with T2DM exhibits distinct differences compared to healthy individuals, suggesting its potential role in the disease's pathogenesis and progression. This emerging field offers diverse applications, particularly in modifying the gut environment through the administration of prebiotics, probiotics, and fecal microbiome transfer. These inter-ventions aim to restore a healthy microbiome balance, which could potentially alleviate or even reverse the metabolic dysfunctions associated with T2DM. Although current results from clinical trials have not yet shown dramatic effects on diabetes management, the groundwork has been laid for deeper investigation. Ongoing and future clinical trials are critical to advancing our understanding of the microbiome's impact on diabetes. By further elucidating the mechanisms through which microbiome alterations influence insulin resistance and glucose metabolism, researchers can develop more targeted interventions. The potential to harness the gut microbiome in developing new therapeutic strategies offers a compelling prospect to transform the treatment landscape of T2DM, potentially reducing the disease's burden significantly with approaches that are less reliant on traditional pharmaceuticals and more focused on holistic, systemic health improvements.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
16
|
Liu R, Wang J, Zhao Y, Zhou Q, Yang X, Gao Y, Li Q, Bai M, Liu J, Liang Y, Zhu X. Study on the mechanism of modified Gegen Qinlian decoction in regulating the intestinal flora-bile acid-TGR5 axis for the treatment of type 2 diabetes mellitus based on macro genome sequencing and targeted metabonomics integration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155329. [PMID: 38853123 DOI: 10.1016/j.phymed.2023.155329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 06/11/2024]
Abstract
BACKGROUND Currently, there are many drugs available for the treatment of type 2 diabetes mellitus (T2DM), but most of them cause various side effects due to the need for long-term use. As a traditional Chinese medicine, Gegen Qinlian Decoction (GQD) has shown good efficacy and low side effects in the treatment of T2DM in both clinical and basic research. Based on relevant traditional Chinese medicine theories, dried ginger is innovatively added the formula of traditional GQD to create a modified GQD. This modification reduces the side effects of traditional GQD while exerting its therapeutic effect on T2DM. Previous studies have found that the modified GQD can regulate endoplasmic reticulum stress in the liver, inhibit hepatic gluconeogenesis, protect pancreatic islet β cells, and control blood sugar levels by inhibiting the FXR/neuronal ceramide signaling pathway. GQD can also regulate the intestinal microbiota to achieve therapeutic and protective effects in various gastrointestinal diseases. However, there is no research exploring whether the modified GQD achieves its therapeutic mechanism for T2DM by regulating the intestinal microbiota. PURPOSE To explore the mechanism of modified GQD in the treatment of T2DM based on multi-omics, focusing on its effect on the "intestinal flora bile acid TGR5'' axis. METHODS The T2DM model was established using db/db mice, which were randomly divided into a model group, metformin group, high-dose GQD group, medium-dose GQD group, low-dose GQD group, while m/m mice were used as blank control. The drug intervention lasted for 12 weeks, during which the general conditions, oral glucose tolerance (OGT), blood glucose, and lipid-related indexes were recorded. Additionally, the fasting insulin (FINS), c-peptide, GLP-1 in serum, and cAMP in the ileum were measured by ELISA assay. Furthermore, the composition, abundance, and function of the intestinal microbiota were determined by macro genome sequencing, while bile acid was detected by targeted metabonomics. For histological evaluation, HE staining was used to observe the pathological changes of the ileum and pancreas, and the ultrastructure of the ileum and pancreas was observed by transmission electron microscopy. Apoptosis in the ileum tissue was detected by Tunel staining. Moreover, the mRNA and protein expressions of TGR5, PKA, CREB, PC1/3, GLP-1, and their phosphorylation levels in the ileum were detected by qPCR, immunohistochemistry, and Western blot; The expression of INS in the pancreas was also evaluated using immunohistochemistry. Finally, double immunofluorescence staining was used to detect the co-localization expression of TGR5 and GLP-1, NeuroD1, and GLP-1 in the ileum. RESULTS The modified GQD was found to significantly reduce blood glucose, improve oral glucose tolerance, and blood lipid levels, as well as alleviate the injury of the ileum and pancreas in T2DM mice. Furthermore, modified GQD was found to effectively regulate intestinal flora, improve bile acid metabolism, activate the TRG5/cAMP/PKA/CREB signal pathway, and stimulate GLP-1 secretion. CONCLUSION GQD can regulate the "intestinal flora-bile acid-TGR5" axis and has a therapeutic effect on T2DM in mice.
Collapse
Affiliation(s)
- Rong Liu
- Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, PR China; Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine, Gansu Province, Lanzhou 730000, Gansu, PR China
| | - Jiahui Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Yikun Zhao
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Qi Zhou
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Xia Yang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Yankui Gao
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Qin Li
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Gansu Health Vocational College, Gansu Province, Lanzhou 730000, Gansu, PR China
| | - Min Bai
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jiahui Liu
- Research Center of Traditional Chinese Medicine, Gansu Province, Lanzhou 730000, Gansu, PR China
| | - Yonglin Liang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine, Gansu Province, Lanzhou 730000, Gansu, PR China.
| | - Xiangdong Zhu
- Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, PR China.
| |
Collapse
|
17
|
Olarinoye ZY, Kim CW, Kim JY, Jang S, Kim I. Differential gene expression in the kidneys of SHR and WKY rats after intravenous administration of Akkermansia muciniphila-derived extracellular vesicles. Sci Rep 2024; 14:20056. [PMID: 39209875 PMCID: PMC11362604 DOI: 10.1038/s41598-024-69757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Although Akkermansia muciniphila (Am) plays a beneficial role as a probiotic in the treatment of metabolic syndrome, the mechanisms remain elusive. We tested the hypothesis that Am extracellular vesicles (AmEVs) protect against hypertension through modulation of gene expression in the kidneys of spontaneously hypertensive rats (SHRs). Extracellular vesicles purified from anaerobically cultured Am (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and SHRs weekly for 4 weeks. Renal cortical tissues isolated from both rat strains were analyzed by trichrome stain and RT-qPCR. AmEVs protect against the development of hypertension in SHRs without a serious adverse reaction. AmEVs increased the expression of vasocontracting Agt and At1ar as well as vasodilating At2r, Mas1 and Nos2 in the kidneys of both strains. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
18
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
19
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
20
|
Li X, Xia Y, Song X, Xiong Z, Ai L, Wang G. Probiotics intervention for type 2 diabetes mellitus therapy: a review from proposed mechanisms to future prospects. Crit Rev Food Sci Nutr 2024:1-19. [DOI: 10.1080/10408398.2024.2387765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Du Y, An Y, Song Y, Li N, Zheng J, Lu Y. Live and pasteurized Akkermansia muciniphila ameliorates diabetic cognitive impairment by modulating gut microbiota and metabolites in db/db mice. Exp Neurol 2024; 378:114823. [PMID: 38782351 DOI: 10.1016/j.expneurol.2024.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The established role of disturbances in the microbiota-gut-brain axis in the development of diabetic cognitive impairment (DCI) has long been recognized. It has shown the potential of Akkermansia muciniphila (A. muciniphila) in improving metabolic disorders and exerting anti-inflammatory effects. However, there remains a lack of comprehensive understanding regarding the specific effects and mechanisms underlying the treatment of DCI with A. muciniphila. This study aimed to evaluate the potential of A. muciniphila in alleviating DCI in db/db mice. Eleven-week-old db/db mice were administered either live or pasteurized A. muciniphila (5 × 109 CFU/200 μL) for a duration of eight weeks. Administering live A. muciniphila significantly ameliorated cognitive impairments, improved the synaptic ultrastructure, and inhibited hippocampal neuron loss in the CA1 and CA3 subregions in db/db mice. Both live and pasteurized A. muciniphila effectively mitigated neuroinflammation. Moreover, live A. muciniphila increased the relative abundance of Lactococcus and Staphylococcus, whereas pasteurized A. muciniphila increased the relative abundance of Lactobacillus, Prevotellaceae_UCG_001, and Alistipes. Supplementation of A. muciniphila also induced alterations in serum and brain metabolites, with a particular enrichment observed in tryptophan metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and pentose and glucuronate interconversions. Correlation analysis further demonstrated a direct and substantial correlation between the altered gut microbiota and the metabolites in the serum and brain tissue. In conclusion, the results indicate that live A. muciniphila demonstrated greater efficacy compared to pasteurized A. muciniphila. The observed protective effects of A. muciniphila against DCI are likely mediated through the neuroinflammation and microbiota-metabolites-brain axis.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing 100191, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Song
- School of Nursing, Peking University, Beijing 100191, China
| | - Nan Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
23
|
Magnusson A, Jabbari Shiadeh SM, Ardalan M, Swolin-Eide D, Elfvin A. Gut microbiota differences in five-year-old children that were born preterm with a history of necrotizing enterocolitis: A pilot trial. iScience 2024; 27:110325. [PMID: 39055941 PMCID: PMC11269947 DOI: 10.1016/j.isci.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The study explores the long-term effects of necrotizing enterocolitis (NEC) on gut microbiota in preterm infants by analyzing stool samples from 5-year-old children using shotgun metagenomic sequencing. It compares children with a history of NEC, treated surgically or medically, to preterm controls without NEC. Findings reveal persistent gut microbiota dysbiosis in NEC children, with reduced species diversity and evenness, especially in those treated surgically. The surgical NEC group had a lower Shannon index, indicating less microbial diversity. Significant differences in taxonomic profiles were observed, mainly influenced by surgical treatment. These results underscore the lasting impact of NEC and its treatment on gut microbiota, suggesting a need for strategies addressing long-term dysbiosis.
Collapse
Affiliation(s)
- Amanda Magnusson
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Diana Swolin-Eide
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Niu H, Zhou M, Ji A, Zogona D, Wu T, Xu X. Molecular Mechanism of Pasteurized Akkermansia muciniphila in Alleviating Type 2 Diabetes Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13083-13098. [PMID: 38829529 DOI: 10.1021/acs.jafc.4c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2DM) significantly diminishes people's quality of life and imposes a substantial economic burden. This pathological progression is intimately linked with specific gut microbiota, such as Akkermansia muciniphila. Pasteurized A. muciniphila (P-AKK) has been defined as a novel food by the European Food Safety Authority and exhibited significant hypoglycemic activity. However, current research on the hypoglycemic activity of P-AKK is limited to the metabolic level, neglecting systematic exploration at the pathological level. Consequently, its material basis and mechanism of action for hypoglycemia remain unclear. Drawing upon this foundation, we utilized high-temperature killed A. muciniphila (H-K-AKK) with insignificant hypoglycemic activity as the control research object. Assessments were conducted at pathological levels to evaluate the hypoglycemic functions of both P-AKK and H-K-AKK separately. Our study unveiled for the first time that P-AKK ameliorated symptoms of T2DM by enhancing the generation of glucagon-Like Peptide 1 (GLP-1), with pasteurized A. muciniphila total proteins (PP) being a pivotal component responsible for this activity. Utilizing SDS-PAGE, proteomics, and molecular docking techniques, we deeply analyzed the material foundation of PP. We scientifically screened and identified a protein weighing 77.85 kDa, designated as P5. P5 enhanced GLP-1 synthesis and secretion by activating the G protein-coupled receptor (GPCR) signaling pathway, with free fatty acid receptor 2 (FFAR-2) being identified as the pivotal target protein for P5's physiological activity. These findings further promote the widespread application of P-AKK in the food industry, laying a solid theoretical foundation for its utilization as a beneficial food ingredient or functional component.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Daniel Zogona
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
25
|
Ekpruke CD, Alford R, Parker E, Silveyra P. Gonadal sex and chromosome complement influence the gut microbiome in a mouse model of allergic airway inflammation. Physiol Genomics 2024; 56:417-425. [PMID: 38640403 PMCID: PMC11368565 DOI: 10.1152/physiolgenomics.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Evidence abounds that gut microbiome components are associated with sex disparities in the immune system. However, it remains unclear whether the observed sex disparity in asthma incidence is associated with sex-dependent differences in immune-modulating gut microbiota, and/or its influence on allergic airway inflammatory processes. Using a mouse model of house dust mite (HDM)-induced allergic inflammation and the four core genotypes (FCGs) model, we have previously reported sex differences in lung inflammatory phenotypes. Here, we investigated associations of gut microbiomes with these phenotypes by challenging FCG mice [mouse with female sex chromosome and male gonad (XXM), mouse with female sex chromosome and female gonad (XXF), mouse with male sex chromosome and male gonad (XYM), and mouse with male sex chromosome and female gonad (XYF); n = 7/group] with HDM (25 μg) or PBS intranasally for 5 wk and collecting fecal samples. We extracted fecal DNA and analyzed the 16S microbiome via Targeted Metagenomic Sequencing. We compared α and β diversity across genotypes and assessed the Firmicutes/Bacteroidetes (F/B) ratio. When comparing baseline and after exposure for the FCG, we found that the gut F/B ratio was only increased in the XXM genotype. We also found that α diversity was significantly increased in all FCG mice upon HDM challenge, with the highest increase in the XXF, and the lowest in the XXM genotypes. Similarly, β diversity of the microbial community was also affected by challenge in a gonad- and chromosome-dependent manner. In summary, our results indicated that HDM treatment, gonads, and sex chromosomes significantly influence the gut microbial community composition. We concluded that allergic lung inflammation may be affected by the gut microbiome in a sex-dependent manner involving both hormonal and genetic influences.NEW & NOTEWORTHY Recently, the gut microbiome and its role in chronic respiratory disease have been the subject of extensive research and the establishment of its involvement in immune functions. Using the FCG mouse model, our findings revealed the influence of gonads and sex chromosomes on the microbial community structure before and after exposure to HDM. Our data provide a potential new avenue to better understand mediators of sex disparities associated with allergic airway inflammation.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
- School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
26
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
27
|
Yan S, Chen L, Li N, Wei X, Wang J, Dong W, Wang Y, Shi J, Ding X, Peng Y. Effect of Akkermansia muciniphila on pancreatic islet β-cell function in rats with prediabetes mellitus induced by a high-fat diet. BIORESOUR BIOPROCESS 2024; 11:51. [PMID: 38763955 PMCID: PMC11102893 DOI: 10.1186/s40643-024-00766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Prediabetes is an important stage in the development of diabetes. It is necessary to find a safe, effective and sustainable way to delay and reverse the progression of prediabetes. Akkermansia muciniphila (A. muciniphila) is one of the key bacteria associated with glucose metabolism. Recent studies mainly focus on the effect of A. muciniphila on obesity and insulin resistance, but there is no research on the effect of A. muciniphila on pancreatic β-cell function and its mechanism in prediabetes. In this study, we investigated the effects of A. muciniphila on β-cell function, apoptosis and differentiation, as well as its effects on the gut microbiome, intestinal barrier, metaflammation and the expression of Toll-like receptors (TLRs) in a high-fat diet (HFD)-induced prediabetic rat model. The effect of A. muciniphila was compared with dietary intervention. The results showed both A. muciniphila treatment and dietary intervention can reduce metaflammation by repairing the intestinal barrier in rats with prediabetes induced by an HFD and improve β-cell secretory function, apoptosis and differentiation through signaling pathways mediated by TLR2 and TLR4. Additionally, A. muciniphila can further elevate β-cell secretion, attenuate apoptosis and improve differentiation and the TLR signaling pathway on the basis of diet.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Chen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jingjing Wang
- Shanghai Key Laboratory for Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Weiping Dong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianxia Shi
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
28
|
Zhou X, Chen R, Cai Y, Chen Q. Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:647-659. [PMID: 38347911 PMCID: PMC10860394 DOI: 10.2147/dmso.s447784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose of Review The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM. Recent Findings T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized. Summary Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
29
|
Hernandez-Baixauli J, Chomiciute G, Tracey H, Mora I, Cortés-Espinar AJ, Ávila-Román J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Alcaide-Hidalgo JM, Baselga-Escudero L, del Bas JM, Mulero M. Exploring Metabolic and Gut Microbiome Responses to Paraquat Administration in Male Wistar Rats: Implications for Oxidative Stress. Antioxidants (Basel) 2024; 13:67. [PMID: 38247491 PMCID: PMC10812659 DOI: 10.3390/antiox13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Harry Tracey
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
- Department of Medical Sciences, School of Medicine, University of Girona, 17004 Girona, Spain
- School of Science, RMIT University, Bundoora, VIC 3000, Australia
| | - Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain;
| | - Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Àrea Biotecnologia, 43204 Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| |
Collapse
|
30
|
Song H, Xue H, Zhang Z, Wang J, Li A, Zhang J, Luo P, Zhan M, Zhou X, Chen L, Fang Y. Amelioration of Type 2 Diabetes Using Four Strains of Lactobacillus Probiotics: Effects on Gut Microbiota Reconstitution-Mediated Regulation of Glucose Homeostasis, Inflammation, and Oxidative Stress in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20801-20814. [PMID: 37991826 DOI: 10.1021/acs.jafc.3c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study aims to explore the preventive effects and underlying mechanisms of Lactobacillus fermentum CKCC1858 (CKCC1), L. fermentum CKCC1369 (CKCC2), Lactobacillus plantarum CKCC1312 (CKCC3), and Lactobacillus gasseri CKCC1913 (CKCC4) on high-fat diet combined with streptozotocin (HFD/STZ)-stimulated type 2 diabetes (T2D) in mice. Generally, the results indicated that most of the four probiotics reduced weight loss and liver and pancreas damage, significantly (p < 0.05) improved glucose metabolism by regulating glucagon-like peptide-1 (GLP-1), fasting glucose and insulin levels, and increasing expression of glucose transporters. Probiotics improved hyperlipemia, inflammation, and oxidative stress by reducing the secretion of blood lipids and proinflammatory cytokines, increasing antioxidant enzymes. Metagenomic results revealed that probiotics restored gut microbiota via enhancing (reducing) the relative abundance of beneficial bacteria (harmful bacteria) and altered specific metabolic pathways in T2D mice. CKCC1, CKCC3, and CKCC4 showed excellent effects compared to CKCC2. These results indicated that probiotics potentially prevented T2D, which is strain-specific.
Collapse
Affiliation(s)
- Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Pengfei Luo
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Xiaoli Zhou
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
31
|
Wang T, Wang P, Yin L, Wang X, Shan Y, Yi Y, Zhou Y, Liu B, Wang X, Lü X. Dietary Lactiplantibacillus plantarum KX041 attenuates colitis-associated tumorigenesis and modulates gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
32
|
Yang G, Jiang A, Cai H, You F, Wu S, Zhang Y, Zhang X, Shen Y, Chang X, Hu W, Li K, Meng X. Supplementation with Akkermansia muciniphila improved glucose metabolism disorder in common carp (Cyprinus carpio L.). AQUACULTURE 2023; 572:739465. [DOI: 10.1016/j.aquaculture.2023.739465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
|
33
|
Ojeda ML, Nogales F, Carrasco López JA, Gallego-López MDC, Carreras O, Alcudia A, Pajuelo E. Microbiota-Liver-Bile Salts Axis, a Novel Mechanism Involved in the Contrasting Effects of Sodium Selenite and Selenium-Nanoparticle Supplementation on Adipose Tissue Development in Adolescent Rats. Antioxidants (Basel) 2023; 12:antiox12051123. [PMID: 37237989 DOI: 10.3390/antiox12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adolescence is a period during which body composition changes deeply. Selenium (Se) is an excellent antioxidant trace element related to cell growth and endocrine function. In adolescent rats, low Se supplementation affects adipocyte development differently depending on its form of administration (selenite or Se nanoparticles (SeNPs). Despite this effect being related to oxidative, insulin-signaling and autophagy processes, the whole mechanism is not elucidated. The microbiota-liver-bile salts secretion axis is related to lipid homeostasis and adipose tissue development. Therefore, the colonic microbiota and total bile salts homeostasis were explored in four experimental groups of male adolescent rats: control, low-sodium selenite supplementation, low SeNP supplementation and moderate SeNPs supplementation. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. Supplementation was received orally through water intake; low-Se rats received twice more Se than control animals and moderate-Se rats tenfold more. Supplementation with low doses of Se clearly affected anaerobic colonic microbiota profile and bile salts homeostasis. However, these effects were different depending on the Se administration form. Selenite supplementation primarily affected liver by decreasing farnesoid X receptor hepatic function, leading to the accumulation of hepatic bile salts together to increase in the ratio Firmicutes/Bacteroidetes and glucagon-like peptide-1 (GLP-1) secretion. In contrast, low SeNP levels mainly affected microbiota, moving them towards a more prominent Gram-negative profile in which the relative abundance of Akkermansia and Muribaculaceae was clearly enhanced and the Firmicutes/Bacteroidetes ratio decreased. This bacterial profile is directly related to lower adipose tissue mass. Moreover, low SeNP administration did not modify bile salts pool in serum circulation. In addition, specific gut microbiota was regulated upon administration of low levels of Se in the forms of selenite or SeNPs, which are properly discussed. On its side, moderate-SeNPs administration led to great dysbiosis and enhanced the abundance of pathogenic bacteria, being considered toxic. These results strongly correlate with the deep change in adipose mass previously found in these animals, indicating that the microbiota-liver-bile salts axis is also mechanistically involved in these changes.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fátima Nogales
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Olimpia Carreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
34
|
Zhu Q, Qi N, Shen L, Lo CC, Xu M, Duan Q, Ollberding NJ, Wu Z, Hui DY, Tso P, Liu M. Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:2175. [PMID: 37432375 PMCID: PMC10180580 DOI: 10.3390/nu15092175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Zhe Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| |
Collapse
|
35
|
Pellegrino A, Coppola G, Santopaolo F, Gasbarrini A, Ponziani FR. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023; 15:nu15081815. [PMID: 37111034 PMCID: PMC10142179 DOI: 10.3390/nu15081815] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota plays a critical role in the modulation of host metabolism and immune response, and its impairment has been implicated in many gastrointestinal and extraintestinal diseases. Current evidence shows the well-documented role of A. muciniphila in maintaining the integrity of the intestinal barrier, modulating the host immune response, and improving several metabolic pathways, making it a key element in the pathogenesis of several human diseases. In this scenario, A. muciniphila is the most promising next-generation probiotic and one of the first microbial species suitable for specific clinical use when compared with traditional probiotics. Further studies are needed to provide more accurate insight into its mechanisms of action and to better elucidate its properties in several major areas, paving the way for a more integrated and personalized therapeutic approach that finally makes the most of our knowledge of the gut microbiota.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
36
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Wu ZQ, Chen XM, Ma HQ, Li K, Wang YL, Li ZJ. Akkermansia muciniphila Cell-Free Supernatant Improves Glucose and Lipid Metabolisms in Caenorhabditis elegans. Nutrients 2023; 15:1725. [PMID: 37049564 PMCID: PMC10097305 DOI: 10.3390/nu15071725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.
Collapse
Affiliation(s)
- Zhong-Qin Wu
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Xin-Ming Chen
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
| | - Hui-Qin Ma
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Ke Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Yuan-Liang Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zong-Jun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| |
Collapse
|
38
|
Kirundi J, Moghadamrad S, Urbaniak C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease. World J Gastroenterol 2023; 29:1651-1668. [PMID: 37077519 PMCID: PMC10107210 DOI: 10.3748/wjg.v29.i11.1651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Liver disease has become a leading cause of death, particularly in the West, where it is attributed to more than two million deaths annually. The correlation between gut microbiota and liver disease is still not fully understood. However, it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation, which in turn evoke massive hepatic inflammation promoting liver cirrhosis. Microbial dysbiosis also leads to poor bile acid metabolism and low short-chain fatty acids, all of which exacerbate the inflammatory response of liver cells. Gut microbial homeostasis is maintained through intricate processes that ensure that commensal microbes adapt to the low oxygen potential of the gut and that they rapidly occupy all the intestinal niches, thus outcompeting any potential pathogens for available nutrients. The crosstalk between the gut microbiota and its metabolites also guarantee an intact gut barrier. These processes that protect against destabilization of gut microbes by potential entry of pathogenic bacteria are collectively called colonization resistance and are equally essential for liver health. In this review, we shall investigate how the mechanisms of colonization resistance influence the liver in health and disease and the microbial-liver crosstalk potential as therapeutic target areas.
Collapse
Affiliation(s)
- Jorum Kirundi
- Department of Biomedical Research, University of Bern, Bern 3014, Switzerland
| | - Sheida Moghadamrad
- Department of Gastroenterology/Hepatology, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona and Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland
| | | |
Collapse
|
39
|
Sun M, Li D, Hua M, Miao X, Su Y, Chi Y, Li Y, Sun R, Niu H, Wang J. Analysis of the alleviating effect of black bean peel anthocyanins on type 2 diabetes based on gut microbiota and serum metabolome. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
40
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
41
|
Jian H, Liu Y, Wang X, Dong X, Zou X. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut-Liver-Brain Axes? Int J Mol Sci 2023; 24:ijms24043900. [PMID: 36835309 PMCID: PMC9959343 DOI: 10.3390/ijms24043900] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Appreciation of the importance of Akkermansia muciniphila is growing, and it is becoming increasingly relevant to identify preventive and/or therapeutic solutions targeting gut-liver-brain axes for multiple diseases via Akkermansia muciniphila. In recent years, Akkermansia muciniphila and its components such as outer membrane proteins and extracellular vesicles have been known to ameliorate host metabolic health and intestinal homeostasis. However, the impacts of Akkermansia muciniphila on host health and disease are complex, as both potentially beneficial and adverse effects are mediated by Akkermansia muciniphila and its derivatives, and in some cases, these effects are dependent upon the host physiology microenvironment and the forms, genotypes, and strain sources of Akkermansia muciniphila. Therefore, this review aims to summarize the current knowledge of how Akkermansia muciniphila interacts with the host and influences host metabolic homeostasis and disease progression. Details of Akkermansia muciniphila will be discussed including its biological and genetic characteristics; biological functions including anti-obesity, anti-diabetes, anti-metabolic-syndrome, anti-inflammation, anti-aging, anti-neurodegenerative disease, and anti-cancer therapy functions; and strategies to elevate its abundance. Key events will be referred to in some specific disease states, and this knowledge should facilitate the identification of Akkermansia muciniphila-based probiotic therapy targeting multiple diseases via gut-liver-brain axes.
Collapse
|
42
|
Barlow GM, Celly S, Mathur R. Changes in the Gut Microbiome as Seen in Diabetes and Obesity. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:61-81. [DOI: 10.1007/978-3-031-46712-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Zhao L, Qiu Y, Zhang P, Wu X, Zhao Z, Deng X, Yang L, Wang D, Yuan G. Gut microbiota mediates positive effects of liraglutide on dyslipidemia in mice fed a high-fat diet. Front Nutr 2022; 9:1048693. [PMID: 36643973 PMCID: PMC9835552 DOI: 10.3389/fnut.2022.1048693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 12/30/2022] Open
Abstract
Except for improving glycemic control, liraglutide, one of the glucagon-like peptide-1 receptor agonists, has exerted promising therapeutic effects for dyslipidemia. It has been proved that gut microbiota plays a dramatic role in regulating lipid metabolism. This study aims to explore whether liraglutide could improve dyslipidemia by modulating the gut microbiota in mice fed a high-fat diet (HFD). The C57BL/6 mice were fed a HFD to establish an animal model of dyslipidemia, and then administered with liraglutide or normal saline (NS) for 12 weeks. Indices of glucolipid metabolism were evaluated. Gut microbiota of the mice was analyzed by 16S rRNA gene sequencing. Compared with HFD group, liraglutide significantly alleviated weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels, meanwhile elevating high-density lipoprotein cholesterol (HDL) levels (all p < 0.05). The gut microbiota analysis revealed that liraglutide greatly reduced the relative abundance of Firmicutes and augmented that of Bacteroidetes, with a concomitant drop in the Firmicutes/Bacteroidetes ratio. Meanwhile, liraglutide dramatically changed the overall composition, promoted the growth of beneficial microbes (Akkermansia, Lactobacillus, Parabacteroides, Oscillospira, etc.), and inhibited the growth of harmful microbes (AF12, Shigella, Proteobacteria, Xenorhabdus, etc.). Especially, the relative abundance of Akkermansia increased the most after liraglutide treatment. Correlation analysis suggested that TC and LDL were positively correlated with some harmful bacteria, and negatively associated with beneficial bacteria. This study confirmed that liraglutide had a certain therapeutic effect on dyslipidemia in HFD-fed mice and could regulate the composition of the gut microbiota associated with lipid metabolism, especially Akkermansia. Thus, affecting gut microbiota might be a potential mechanism of liraglutide in attenuating dyslipidemia.
Collapse
Affiliation(s)
- Li Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China,*Correspondence: Li Zhao,
| | - Yue Qiu
- Department of Endocrinology and Metabolism, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Panpan Zhang
- Department of Endocrinology, Taicang Hospital of Traditional Chinese Medicine, Taicang, Jiangsu, China
| | - Xunan Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhicong Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China,Guoyue Yuan,
| |
Collapse
|
44
|
Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel) 2022; 11:1584. [PMID: 36358236 PMCID: PMC9686891 DOI: 10.3390/antibiotics11111584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2023] Open
Abstract
Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host.
Collapse
Affiliation(s)
- Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Dan Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiyang Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Qi Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Fan Xiao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zhaoyi Liang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Sijia Zheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yongning Wu
- Food Safety Research Unit (2019RU014), Chinese Academy of Medical Science, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
45
|
Paul P, Kaul R, Harfouche M, Arabi M, Al-Najjar Y, Sarkar A, Saliba R, Chaari A. The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacol Res 2022; 185:106520. [DOI: 10.1016/j.phrs.2022.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
46
|
Silva DF, Empadinhas N, Cardoso SM, Esteves AR. Neurodegenerative Microbially-Shaped Diseases: Oxidative Stress Meets Neuroinflammation. Antioxidants (Basel) 2022; 11:2141. [PMID: 36358513 PMCID: PMC9686748 DOI: 10.3390/antiox11112141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 04/18/2025] Open
Abstract
Inflammation and oxidative stress characterize a number of chronic conditions including neurodegenerative diseases and aging. Inflammation is a key component of the innate immune response in Alzheimer's disease and Parkinson's disease of which oxidative stress is an important hallmark. Immune dysregulation and mitochondrial dysfunction with concomitant reactive oxygen species accumulation have also been implicated in both diseases, both systemically and within the Central Nervous System. Mitochondria are a centrally positioned signalling hub for inflammatory responses and inflammatory cells can release reactive species at the site of inflammation often leading to exaggerated oxidative stress. A growing body of evidence suggests that disruption of normal gut microbiota composition may induce increased permeability of the gut barrier leading to chronic systemic inflammation, which may, in turn, impair the blood-brain barrier function and promote neuroinflammation and neurodegeneration. The gastrointestinal tract is constantly exposed to myriad exogenous substances and microbial pathogens, which are abundant sources of reactive oxygen species, oxidative damage and pro-inflammatory events. Several studies have demonstrated that microbial infections may also affect the balance in gut microbiota composition (involving oxidant and inflammatory processes by the host and indigenous microbiota) and influence downstream Alzheimer's disease and Parkinson's disease pathogenesis, in which blood-brain barrier damage ultimately occurs. Therefore, the oxidant/inflammatory insults triggered by a disrupted gut microbiota and chronic dysbiosis often lead to compromised gut barrier function, allowing inflammation to "escape" as well as uncontrolled immune responses that may ultimately disrupt mitochondrial function upwards the brain. Future therapeutic strategies should be designed to "restrain" gut inflammation, a goal that could ideally be attained by microbiota modulation strategies, in alternative to classic anti-inflammatory agents with unpredictable effects on the microbiota architecture itself.
Collapse
Affiliation(s)
- Diana Filipa Silva
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Empadinhas
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
47
|
Torres-Sánchez A, Ruiz-Rodríguez A, Ortiz P, Moreno MA, Ampatzoglou A, Gruszecka-Kosowska A, Monteoliva-Sánchez M, Aguilera M. Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach. Int J Mol Sci 2022; 23:12917. [PMID: 36361709 PMCID: PMC9655105 DOI: 10.3390/ijms232112917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Variation of gut microbiota in metabolic diseases seems to be related to dysbiosis induced by exposure to multiple substances called Microbiota Disrupting Chemicals (MDCs), which are present as environmental and dietary contaminants. Some recent studies have focused on elucidating the alterations of gut microbiota taxa and their metabolites as a consequence of xenobiotic exposures to find possible key targets involved in the severity of the host disease triggered. Compilation of data supporting the triad of xenobiotic-microbiota-metabolic diseases would subsequently allow such health misbalances to be prevented or treated by identifying beneficial microbe taxa that could be Next Generation Probiotics (NGPs) with metabolic enzymes for MDC neutralisation and mitigation strategies. In this review, we aim to compile the available information and reports focused on variations of the main gut microbiota taxa in metabolic diseases associated with xenobiotic exposure and related microbial metabolite profiles impacting the host health status. We performed an extensive literature search using SCOPUS, Web of Science, and PubMed databases. The data retrieval and thorough analyses highlight the need for more combined metagenomic and metabolomic studies revealing signatures for xenobiotics and triggered metabolic diseases. Moreover, metabolome and microbiome compositional taxa analyses allow further exploration of how to target beneficial NGP candidates according to their alleged variability abundance and potential therapeutic significance. Furthermore, this holistic approach has identified limitations and the need of future directions to expand and integrate key knowledge to design appropriate clinical and interventional studies with NGPs. Apart from human health, the beneficial microbes and metabolites identified could also be proposed for various applications under One Health, such as probiotics for animals, plants and environmental bioremediation.
Collapse
Affiliation(s)
- Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Pilar Ortiz
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - María Alejandra Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18012 Granada, Spain
| |
Collapse
|
48
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
49
|
Du Y, Li X, An Y, Song Y, Lu Y. Association of gut microbiota with sort-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: A cross-sectional, non-controlled study. Front Nutr 2022; 9:930626. [PMID: 35938126 PMCID: PMC9355148 DOI: 10.3389/fnut.2022.930626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that gut microbiota, short-chain fatty acids (SCFAs), and inflammatory cytokines play important roles in the pathogenesis of diabetic cognitive impairment (DCI). However, little is known about alterations of gut microbiota and SCFA levels as well as the relationships between inflammatory cytokines and cognitive function in Chinese DCI patients. Herein, the differences in the gut microbiota, plasma SCFAs, and inflammatory cytokines in DCI patients and type 2 diabetes mellitus (T2DM) patients were explored. A cross-sectional study of 30 DCI patients and 30 T2DM patients without mild cognitive impairment (MCI) was conducted in Tianjin city, China. The gut microbiota, plasma SCFAs, and inflammatory cytokines were determined using 16S ribosomal RNA (rRNA) gene sequencing, gas chromatography-mass spectrometry (GC-MS), and Luminex immunofluorescence assays, respectively. In addition, the correlation between gut microbiota and DCI clinical characteristics, SCFAs, and inflammatory cytokines was investigated. According to the results, at the genus level, DCI patients presented a greater abundance of Gemmiger, Bacteroides, Roseburia, Prevotella, and Bifidobacterium and a poorer abundance of Escherichia and Akkermansia than T2DM patients. The plasma concentrations of acetic acid, propionic acid, isobutyric acid, and butyric acid plummeted in DCI patients compared to those in T2DM patients. TNF-α and IL-8 concentrations in plasma were significantly higher in DCI patients than in T2DM patients. Moreover, the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in plasma were negatively correlated with TNF-α, while those of acetic acid and butyric acid were negatively correlated with IL-8. Furthermore, the abundance of the genus Alloprevotella was negatively correlated with butyric acid, while that of Holdemanella was negatively correlated with propanoic acid and isobutyric acid. Fusobacterium abundance was negatively correlated with propanoic acid. Clostridium XlVb abundance was negatively correlated with TNF-α, while Shuttleworthia abundance was positively correlated with TNF-α. It was demonstrated that the gut microbiota alterations were accompanied by a change in SCFAs and inflammatory cytokines in DCI in Chinese patients, potentially causing DCI development. These findings might help to identify more effective microbiota-based therapies for DCI in the future.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing, China
| | - Xiaoying Li
- Geriatrics Department, Beijing Jishuitan Hospital, Beijing, China
| | - Yu An
- Endocrinology Department, Beijing Chaoyang Hospital, Beijing, China
| | - Ying Song
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing, China
- *Correspondence: Yanhui Lu
| |
Collapse
|
50
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Carlos D. Akkermansia muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Front Immunol 2022; 13:934695. [PMID: 35874661 PMCID: PMC9300896 DOI: 10.3389/fimmu.2022.934695] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023] Open
Abstract
Akkermansia muciniphila is a Gram-negative anaerobic mucus-layer-degrading bacterium that colonizes the intestinal mucosa of humans and rodents. Metagenomic data have shown an inverse correlation between the abundance of A. muciniphila and diseases such as inflammatory bowel disease (IBD), obesity, and diabetes. Thus, in recent decades, the potential of this bacterium as an immunomodulatory probiotic for autoimmune and chronic inflammatory diseases has been explored in experimental models. Corroborating these human correlation data, it has been reported that A. muciniphila slows down the development and progression of diabetes, obesity, and IBD in mice. Consequently, clinical studies with obese and diabetic patients are being performed, and the preliminary results are very promising. Therefore, this mini review highlights the main findings regarding the beneficial roles of A. muciniphila and its action mechanisms in autoimmune and chronic inflammatory diseases.
Collapse
|