1
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
2
|
Zhang Y, Li X, Yu Q, Lv X, Li C, Wang L, Liu Y, Wang Q, Yang Z, Fu X, Xiao R. Using network pharmacology to discover potential drugs for hypertrophic scars. Br J Dermatol 2024; 191:592-604. [PMID: 38820210 DOI: 10.1093/bjd/ljae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypertrophic scarring is a disease of abnormal skin fibrosis caused by excessive fibroblast proliferation. Existing drugs have not achieved satisfactory therapeutic effects. OBJECTIVES To explore the molecular pathogenesis of hypertrophic scars and screen effective drugs for their treatment. METHODS Existing human hypertrophic scar RNA sequencing data were utilized to search for hypertrophic scar-related gene modules and key genes through weighted gene co-expression network analysis (WGCNA). Candidate compounds were screened in a compound library. Potential drugs were screened by molecular docking and verified in human hypertrophic scar fibroblasts and a mouse mechanical force hypertrophic scar model. RESULTS WGCNA showed that hypertrophic scar-associated gene modules influence focal adhesion, the transforming growth factor (TGF)-β signalling pathway and other biologic pathways. Integrin β1 (ITGB1) is the hub protein. Among the candidate compounds obtained by computer virtual screening and molecular docking, crizotinib, sorafenib and SU11274 can inhibit the proliferation and migration of human hypertrophic scar fibroblasts and profibrotic gene expression. Crizotinib had the best effect on hypertrophic scar attenuation in mouse models. At the same time, mouse ITGB1 small interfering RNA can also inhibit mouse scar hyperplasia. CONCLUSIONS ITGB1 and TGF-β signalling pathways are important for hypertrophic scar formation. Crizotinib could be a potential treatment drug for hypertrophic scars.
Collapse
Affiliation(s)
- Yi Zhang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiu Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qian Yu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoyan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lianzhao Wang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
3
|
Wang R, Shu RR, Seldin L. Noncanonical functions of adhesion proteins in inflammation. Am J Physiol Cell Physiol 2024; 327:C505-C515. [PMID: 38981610 PMCID: PMC11427013 DOI: 10.1152/ajpcell.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cell adhesion proteins localize to epithelial and endothelial cell membranes to form junctional complexes between neighboring cells or between cells and the underlying basement membrane. The structural and functional integrities of these junctions are critical to establish cell polarity and maintain tissue barrier function, while also facilitating leukocyte migration and adhesion to sites of inflammation. In addition to their adhesive properties, however, junctional proteins can also serve important noncanonical functions in inflammatory signaling and transcriptional regulation. Intriguingly, recent work has unveiled novel roles for cell adhesion proteins as both signaling initiators and downstream targets during inflammation. In this review, we discuss both the traditional functions of junction proteins in cell adhesion and tissue barrier function as well as their noncanonical signaling roles that have been implicated in facilitating diverse inflammatory pathologies.
Collapse
Affiliation(s)
- Ruochong Wang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Raphael R Shu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| |
Collapse
|
4
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
5
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
6
|
Targeted depletion of monocyte/macrophage suppresses aortic dissection with the spatial regulation of MMP-9 in the aorta. Life Sci 2020; 254:116927. [DOI: 10.1016/j.lfs.2019.116927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
|
7
|
Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, Yuan L, Ye J. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol 2020; 56:139-150. [PMID: 31789389 PMCID: PMC6910211 DOI: 10.3892/ijo.2019.4931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Unc‑5 Netrin Receptor C (UNC5C) is a netrin‑1 dependence receptor that mediates the induction of apoptosis in the absence of netrin‑1. The present study found that UNC5C is heterogeneously expressed in breast cancer cell lines. By knocking down UNC5C in SK‑BR‑3 and ZR‑75‑30 cells and overexpressing UNC5c in MDA‑MB‑231 cells, it was demonstrated that UNC5C exerts an inhibitory effect on the growth and metastasis of breast cancer cells. The mechanism involved a UNC5C‑knockdown‑induced enhancement of matrix metalloproteinase (MMP)3, MMP7, MMP9 and MMP10 expression via activation of the PI3K/AKT, ERK and p38 MAPK signaling pathways. Notably, UNC5C directly interacted with integrin α6, which is involved in the growth and metastasis of breast cancer cells. Additionally, UNC5C‑knockdown enhanced the phosphorylation of FAK and SRC, which are key kinases in the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. This suggests that netrin‑1 functions as an integrator for both the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. UNC5C‑knockdown potentiated netrin‑1/integrin α6/β4 signaling. Given that UNC5C‑knockdown inhibited integrin‑liked protein kinase phosphorylation at Thr‑173, at least in SK‑BR‑3 cells, this may be an inhibitory phosphorylation site rather than activating phosphorylation site for relaying integrin signaling.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102
| | - Xianyuan Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Kai Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361102
| | - Shihui Zhang
- School of Life Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| |
Collapse
|
8
|
Integrin-Mediated TGFβ Activation Modulates the Tumour Microenvironment. Cancers (Basel) 2019; 11:cancers11091221. [PMID: 31438626 PMCID: PMC6769837 DOI: 10.3390/cancers11091221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022] Open
Abstract
TGFβ (transforming growth factor-beta) is a pleotropic cytokine with contrasting effects in cancer. In normal tissue and early tumours, TGFβ acts as a tumour suppressor, limiting proliferation and inducing apoptosis. However, these effects are eventually abrogated by the loss or inactivation of downstream signalling within the TGFβ pathway, and in established tumours, TGFβ then acts as a tumour promotor through multiple mechanisms including inducing epithelial-to-mesenchymal transition (EMT), promoting formation of cancer-associated fibroblasts (CAFs) and increasing angiogenesis. TGFβ is secrereted as a large latent complex and is embedded in the extracellular matrix or held on the surface of cells and must be activated before mediating its multiple functions. Thus, whilst TGFβ is abundant in the tumour microenvironment (TME), its functionality is regulated by local activation. The αv-integrins are major activators of latent-TGFβ. The potential benefits of manipulating the immune TME have been highlighted by the clinical success of immune-checkpoint inhibitors in a number of solid tumour types. TGFβ is a potent suppressor of T-cell-mediated immune surveillance and a key cause of resistance to checkpoint inhibitors. Therefore, as certain integrins locally activate TGFβ, they are likely to have a role in the immunosuppressive TME, although this remains to be confirmed. In this review, we discussed the role of TGFβ in cancer, the role of integrins in activating TGFβ in the TME, and the potential benefits of targeting integrins to augment immunotherapies.
Collapse
|
9
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
10
|
Longmate WM, Lyons SP, Chittur SV, Pumiglia KM, Van De Water L, DiPersio CM. Suppression of integrin α3β1 by α9β1 in the epidermis controls the paracrine resolution of wound angiogenesis. J Cell Biol 2017; 216:1473-1488. [PMID: 28416479 PMCID: PMC5412555 DOI: 10.1083/jcb.201510042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
The development of novel therapies to promote wound healing is hindered by our poor understanding of how different integrins function together in the epidermis. Longmate et al. show that cross-suppression by integrins within the epidermis controls paracrine signals that regulate wound angiogenesis. Integrin α9β1 suppresses the proangiogenic functions of α3β1 during late-stage wound healing, leading to the normalization of blood vessel density in the wound bed. Development of wound therapies is hindered by poor understanding of combinatorial integrin function in the epidermis. In this study, we generated mice with epidermis-specific deletion of α3β1, α9β1, or both integrins as well as keratinocyte lines expressing these integrin combinations. Consistent with proangiogenic roles for α3β1, α3-null keratinocytes showed reduced paracrine stimulation of endothelial cell migration and survival, and wounds of epidermis-specific α3 knockout mice displayed impaired angiogenesis. Interestingly, α9β1 in keratinocytes suppressed α3β1-mediated stimulation of endothelial cells, and wounds of epidermis-specific α9 knockout mice displayed delayed vascular normalization and reduced endothelial apoptosis, indicating that α9β1 cross-suppresses α3β1 proangiogenic functions. Moreover, α9β1 inhibited α3β1 signaling downstream of focal adhesion kinase (FAK) autoactivation at the point of Src-mediated phosphorylation of FAK Y861/Y925. Finally, α9β1 cross-suppressed many α3β1-dependent genes, including the gene that encodes MMP-9, which we implicated as a regulator of integrin-dependent cross talk to endothelial cells. Our findings identify a novel physiological context for combinatorial integrin signaling, laying the foundation for therapeutic strategies that manipulate α9β1 and/or α3β1 during wound healing.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Scott P Lyons
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, NY 12144
| | - Kevin M Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Livingston Van De Water
- Department of Surgery, Albany Medical College, Albany, NY 12208.,Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, NY 12208 .,Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| |
Collapse
|
11
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
12
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
13
|
Hino M, Kamo M, Saito D, Kyakumoto S, Shibata T, Mizuki H, Ishisaki A. Transforming growth factor-β1 induces invasion ability of HSC-4 human oral squamous cell carcinoma cells through the Slug/Wnt-5b/MMP-10 signalling axis. J Biochem 2016; 159:631-40. [PMID: 26861993 DOI: 10.1093/jb/mvw007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
Molecular mechanism underlying the invasion of oral cancer cells remains to be clarified. We previously demonstrated that transforming growth factor-β1 (TGF-β1) induces the expression of mesenchymal markers in human oral squamous cell carcinoma HSC-4 cells. Intriguingly, the expression of the epithelial-mesenchymal transition-related transcription factor Slug was also significantly upregulated upon TGF-β1 stimulation. However, the mechanism by which Slug transduces the TGF-β1-induced signal to enhance the invasiveness of HSC-4 cells is poorly understood. Proteomic analysis revealed that the expression of matrix metalloproteinase (MMP)-10 was upregulated in TGF-β1-stimulated cells. Additionally, a Boyden chamber assay revealed that the TGF-β1-induced increase in invasiveness of HSC-4 cells was significantly inhibited by MMP-10 small interfering RNA (siRNA). Intriguingly, Slug siRNA suppressed TGF-β1-induced expression of MMP-10. These results suggest that TGF-β1 induces invasion in HSC-4 cells through the upregulation of MMP-10 expression in a Slug-dependent manner. On the other hand, Slug siRNA suppressed TGF-β1-induced Wnt-5b expression. Wnt-5b significantly induced MMP-10 expression, whereas Wnt-5b siRNA suppressed the TGF-β1-induced increase in invasiveness, suggesting that TGF-β1-induced expression of MMP-10 and the resulting upregulation of invasiveness are mediated by Wnt-5b. Overall, these results suggest that TGF-β1 stimulates HSC-4 cell invasion through the Slug/Wnt-5b/MMP-10 signalling axis.
Collapse
Affiliation(s)
- Masafumi Hino
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan; Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505, Japan, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan;
| | - Daishi Saito
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505, Japan, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu-shi, Gifu 501-1194, Japan
| | - Harumi Mizuki
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505, Japan, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan
| |
Collapse
|
14
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Hesperidin methyl chalcone inhibits oxidative stress and inflammation in a mouse model of ultraviolet B irradiation-induced skin damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:145-153. [DOI: 10.1016/j.jphotobiol.2015.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
|
15
|
Abstract
Transforming growth factor (TGF) β1 activity depends on a complex signalling cascade that controls expression of several genes. Among others, TGFβ1 regulates expression of matrix metalloproteinases (MMPs) through activation of Smads. In the present study, we demonstrate for the first time that the αvβ6 integrin interacts with TGFβ receptor II (TβRII) through the β6 cytoplasmic domain and promotes Smad3 activation in prostate cancer (PrCa) cells. Another related αv integrin, αvβ5, as well as the αvβ6/3 integrin, which contains a chimeric form of β6 with a β3 cytoplasmic domain, do not associate with TβRII and fail to show similar responses. We provide evidence that αvβ6 is required for up-regulation of MMP2 by TGFβ1 through a Smad3-mediated transcriptional programme in PrCa cells. The functional relevance of these results is underscored by the finding that αvβ6 modulates cell migration in an MMP2-dependent manner on an αvβ6-specific ligand, latency-associated peptide (LAP)-TGFβ. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, is sufficient to promote activation of Smad3, regulation of MMP2 levels and consequent catalytic activity, as well as cell migration. Our study describes a new TGFβ1-αvβ6-MMP2 signalling pathway that, given TGFβ1 pro-metastatic activity, may have profound implications for PrCa therapy.
Collapse
|
16
|
Missan DS, Chittur SV, DiPersio CM. Regulation of fibulin-2 gene expression by integrin α3β1 contributes to the invasive phenotype of transformed keratinocytes. J Invest Dermatol 2014; 134:2418-2427. [PMID: 24694902 PMCID: PMC4134363 DOI: 10.1038/jid.2014.166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022]
Abstract
The laminin-binding integrin α3β1 is highly expressed in epidermal keratinocytes, where it regulates both cell-autonomous and paracrine functions that promote wound healing and skin tumorigenesis. However, the roles for α3β1 in regulating gene expression programs that control the behaviors of immortalized or transformed keratinocytes remain underexplored. In the current study, we used a microarray approach to identify genes that are regulated by α3β1 in immortalized keratinocytes. α3β1-Responsive genes included several genes that are involved in extracellular matrix proteolysis or remodeling, including fibulin-2 and secreted protein acidic and rich in cysteine. However, α3β1-dependent induction of specific target genes was influenced by the genetic lesion that triggered immortalization, as α3β1-dependent fibulin-2 expression occurred in cells immortalized by either SV40 large T antigen or p53-null mutation, whereas α3β1-dependent expression of secreted protein acidic and rich in cysteine occurred only in the former cells. Interestingly, quantitative PCR arrays did not reveal strong patterns of α3β1-dependent gene expression in freshly isolated primary keratinocytes, suggesting that this regulation is acquired during immortalization. p53-null keratinocytes transformed with oncogenic RasV12 retained α3β1-dependent fibulin-2 expression, and RNAi-mediated knockdown of fibulin-2 in these cells reduced invasion, although not their tumorigenic potential. These findings demonstrate a prominent role for α3β1 in immortalized/transformed keratinocytes in regulating fibulin-2 and other genes that promote matrix remodeling and invasion.
Collapse
Affiliation(s)
- Dara S Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, New York, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
17
|
Volkert G, Jahn A, Dinkel C, Fahlbusch F, Zürn C, Hilgers KF, Rascher W, Hartner A, Marek I. Contribution of the α8 Integrin Chain to the Expression of Extracellular Matrix Components. ACTA ACUST UNITED AC 2014; 21:89-98. [DOI: 10.3109/15419061.2013.876012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Expression of TGF-β1, SNAI1 and MMP-9 is associated with lymph node metastasis in papillary thyroid carcinoma. J Mol Histol 2013; 45:391-9. [DOI: 10.1007/s10735-013-9557-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/21/2013] [Indexed: 01/30/2023]
|
19
|
Abstract
We investigated the effects of loss of tenascin C on the healing of the stroma using incision-injured mice corneas. Tenascin C was upregulated in the stroma following incision injury to the cornea. Wild-type (WT) and tenascin C-null (knockout (KO)) mice on a C57BL/6 background were used. Cell culture experiments were also conducted to determine the effects of the lack of tenascin C on fibrogenic gene expression in ocular fibroblasts. Histology, immunohistochemistry and real-time reverse transcription PCR were employed to evaluate the healing process in the stroma. The difference in the incidence of wound closure was statistically analyzed in hematoxylin and eosin-stained samples between WT and KO mice in addition to qualitative observation. Healing of incision injury in corneal stroma was delayed, with less appearance of myofibroblasts, less invasion of macrophages and reduction in expression of collagen Iα1, fibronectin and transforming growth factor β1 (TGFβ1) in KO mice compared with WT mice. In vitro experiments showed that the loss of tenascin C counteracted TGFβ1 acceleration of mRNA expression of TGFβ1, and of collagen Iα1 and of myofibroblast conversion in ocular fibroblasts. These results indicate that tenascin C modulates wound healing-related fibrogenic gene expression in ocular fibroblasts and is required for primary healing of the corneal stroma.
Collapse
|
20
|
Yue J, Zhang K, Chen J. Role of integrins in regulating proteases to mediate extracellular matrix remodeling. CANCER MICROENVIRONMENT 2012; 5:275-83. [PMID: 22437309 DOI: 10.1007/s12307-012-0101-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is an extracellular scaffold composed of complex mixtures of proteins that plays a pivotal role in tumor progression. ECM remodeling is crucial for tumor migration and invasion during the process of metastasis. ECM can be remodeled by several processes including synthesis, contraction and proteolytic degradation. In order to cross through the ECM barriers, malignant cells produce a spectrum of extracellular proteinases including matrix metalloproteinases (MMPs), serine proteases (mainly the urokinase plasminogen activator (uPA) system) and cysteine proteases to degrade ECM components. As major adhesion molecules to support cell attachment to ECM, integrins play critical roles in tumor progression by enhancing tumor cell survival, migration and invasion. Previous studies have shown that integrins can regulate the expression and activity of these proteases through different pathways. This review summarizes the roles of MMPs and uPA system in ECM remodeling and discusses the regulatory functions of integrins on these proteases in invasive tumors.
Collapse
Affiliation(s)
- Jiao Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
21
|
TGFβ (transforming growth factor β) and keratocyte motility in 24 h zebrafish explant cultures. Cell Biol Int 2012; 35:1131-9. [PMID: 21729005 DOI: 10.1042/cbi20110063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fish keratocytes are used as a model system for the study of the mechanics of cell motility because of their characteristic rapid, smooth gliding motion, but little work has been done on the regulation of fish keratocyte movement. As TGFβ (transforming growth factor β) plays multiple roles in primary human keratinocyte cell migration, we investigated the possible involvement of TGFβ in fish keratocyte migration. Studying the involvement of TGFβ1 in 24 h keratocyte explant allows the examination of the cells before alterations in cellular physiology occur due to extended culture times. During this initial period, TGFβ levels increase 6.2-fold in SFM (serum-free medium) and 2.4-fold in SFM+2% FBS (fetal bovine serum), while TGFβ1 and TGFβRII (TGFβ receptor II) mRNA levels increase ∼3- and ∼5-fold respectively in each culture condition. Two measures of motility, cell sheet area and migration distance, vary with the amount of exogenous TGFβ1 and culture media. The addition of 100 ng/ml exogenous TGFβ1 in SFM increases both measures [3.3-fold (P = 4.5×10-5) and 26% (P = 2.1×10-2) respectively]. In contrast, 100 ng/ml of exogenous TGFβ1 in medium containing 2% FBS decreases migration distance by 2.1-fold (P = 1.7×10-7), but does not affect sheet area. TGFβ1 (10 ng/ml) has little effect on cell sheet area in SFM cultures, but leads to a 1.8-fold increase (P = 1.5×10-2) with 2% FBS. The variable response to TGFβ1 may be, at least in part, explained by the effect of 2% FBS on cell morphology, mode of motility and expression of endogenous TGFβ1 and TGFβRII. Together, these results suggest that expression of TGFβ and its receptor are up-regulated during zebrafish keratocyte explant culture and that TGFβ promotes fish keratocyte migration.
Collapse
|
22
|
Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol 2011; 26:812-20. [PMID: 22211801 DOI: 10.1111/j.1468-3083.2011.04415.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In wound healing, a variety of mediators have been identified throughout the years. The mediators discussed here comprise growth factors, cytokines and chemokines. These mediators act via multiple (specific) receptors to facilitate wound closure. As research in the last years has led to many new findings, there is a need to give an overview on what is known, and on what might possibly play a role as a molecular target for future wound therapy. This review aims to keep the reader up to date with selected important and novel findings regarding growth factors, cytokines and chemokines in wound healing.
Collapse
Affiliation(s)
- B Behm
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
23
|
Pinto D, Marzani B, Minervini F, Calasso M, Giuliani G, Gobbetti M, De Angelis M. Plantaricin A synthesized by Lactobacillus plantarum induces in vitro proliferation and migration of human keratinocytes and increases the expression of TGF-β1, FGF7, VEGF-A and IL-8 genes. Peptides 2011; 32:1815-24. [PMID: 21782870 DOI: 10.1016/j.peptides.2011.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
This work showed the effect of pheromone plantaricin A (PlnA) on the proliferation and migration of the human keratinocytes NCTC 2544. PlnA was chemically synthesized and used as pure peptide or biologically synthesized during co-cultivation of Lactobacillus plantarum DC400 and Lactobacillus sanfranciscensis DPPMA174. The cell-free supernatant (CFS) was used as the crude preparation containing PlnA. The inductive effect of PlnA on the proliferation of NCTC 2544 cells was higher than that found for hyaluronic acid, a well known skin protective compound. As shown by scratch assay and image analyses, PlnA enhanced the migration of NCTC 2544 cells. Compared to the basal serum free medium (control), the highest inductive effect was found using 10μg/ml of chemically synthesized PlnA. Similar results (P>0.05) were found for CFS. In agreement, the percentage of the starting scratch area was decreased after treatment (24h) with PlnA. The expression of transforming growth factor-β1 (TGF-β1), keratinocyte growth factor 7 (FGF7), vascular endothelial growth factor (VEGF-A), and interleukin-8 (IL-8) genes was affected by PlnA. Compared to control, TGF-β1 gene was under expressed in the first 4h of treatments and up-regulated after 8-24h. On the contrary, FGF7 gene was strongly up-regulated in the first 4h of treatments. Compared to control, VEGF-A and IL-8 genes were always up-regulated during the 4-24h from scratching. Since capable of promoting the proliferation and migration of the human keratinocytes and of stimulating IL-8 cytokine, the use of PlnA for dermatological purposes should be considered.
Collapse
Affiliation(s)
- Daniela Pinto
- Department of Biologia e Chimica Agro-Forestale ed Ambientale, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Sundararaghavan HG, Masand SN, Shreiber DI. Microfluidic generation of haptotactic gradients through 3D collagen gels for enhanced neurite growth. J Neurotrauma 2011; 28:2377-87. [PMID: 21473683 DOI: 10.1089/neu.2010.1606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We adapted a microfluidic system used previously to generate durotactic gradients of stiffness in a 3D collagen gel, to produce haptotactic gradients of adhesive ligands through the collagen gel. Oligopeptide sequences that included bioactive peptide sequences from laminin, YIGSR, or IKVAV, were grafted separately onto type I collagen using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Solutions of peptide-grafted collagen and untreated collagen were then used as source and sink input solutions, respectively, in an H-shaped microfluidic network fabricated using traditional soft lithography. One-dimensional gradients of the peptide-grafted collagen solution were generated in the channel that connected the source and sink channels, and these gradients became immobilized upon self-assembly of the collagen into a 3D fibrillar gel. The slope and average concentration of the gradients were adjusted by changing the concentration of the source solutions and by changing the length of the cross-channel. A separate, underlying channel in the microfluidic construct allowed the introduction of a chick embryo dorsal root ganglion into the network. Neurites from these explants grew significantly longer up steep gradients of YIGSR, but shallow gradients of IKVAV in comparison to untreated collagen controls. When these two gradients were presented in combination, the bias in growth acceleration was the largest and most consistent. No differences were observed in the number of neurites choosing to grow up or down the gradients in any condition. These results suggest that the incorporation of distinct gradients of multiple bioactive ligands can improve directional acceleration of regenerating axons.
Collapse
Affiliation(s)
- Harini G Sundararaghavan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
25
|
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways. Cell Tissue Res 2011; 347:11-20. [PMID: 21701805 DOI: 10.1007/s00441-011-1201-y] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.
Collapse
Affiliation(s)
- Yabing Mu
- Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | | | | |
Collapse
|
26
|
Activation of kinin B1 receptor increases the release of metalloproteases-2 and -9 from both estrogen-sensitive and -insensitive breast cancer cells. Cancer Lett 2010; 301:106-18. [PMID: 21147512 DOI: 10.1016/j.canlet.2010.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
The kinin B(1) receptor (B(1)R) agonist Lys-des[Arg(9)]-bradykinin (LDBK) increases proliferation of estrogen-sensitive breast cancer cells by a process involving activation of the epidermal growth factor receptor (EGFR) and downstream signaling via the ERK1/2 mitogen-activated protein kinase pathway. Here, we investigated whether B(1)R stimulation induced release of the extracellular matrix metalloproteases MMP-2 and MMP-9 via ERK-dependent pathway in both estrogen-sensitive MCF-7 and -insensitive MDA-MB-231 breast cancer cells. Cells were stimulated with 1-100nM of the B(1)R agonist for variable time-points. Western blotting and gelatin zymography were used to evaluate the presence of MMP-2 and MMP-9 in the extracellular medium. Stimulation of B(1)R with as little as 1 nM LDBK induced the accumulation of these metalloproteases in the medium within 5-30min of stimulation. In parallel, immunocytochemistry revealed that metalloprotease levels in the breast cancer cells declined after stimulation. This effect was blocked either by pre-treating the cells with a B(1)R antagonist or by transfecting with B(1)R-specific siRNA. Activation of the ERK1/2 pathway and EGFR transactivation was required for release of metalloproteases because both the MEK1 inhibitor, PD98059, and AG1478, an inhibitor of the EGFR-tyrosine kinase activity, blocked this event. The importance of EGFR-dependent signaling was additionally confirmed since transfection of cells with the dominant negative EGFR mutant HERCD533 blocked the release of metalloproteases. Thus, activation of B(1)R is likely to enhance breast cancer cells invasiveness by releasing enzymes that degrade the extracellular matrix and thereby favor metastasis.
Collapse
|
27
|
Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J 2010; 24:4133-52. [DOI: 10.1096/fj.09-151449] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Coert Margadant
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| | | | - Arnoud Sonnenberg
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| |
Collapse
|
28
|
Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 2010; 11:97-105. [PMID: 20075988 DOI: 10.1038/embor.2009.276] [Citation(s) in RCA: 494] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/04/2009] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that there is extensive crosstalk between integrins and TGF-beta signalling. TGF-beta affects integrin-mediated cell adhesion and migration by regulating the expression of integrins, their ligands and integrin-associated proteins. Conversely, several integrins directly control TGF-beta activation. In addition, a number of integrins can interfere with both Smad-dependent and Smad-independent TGF-beta signalling in different ways, including the regulation of the expression of TGF-beta signalling pathway components, the physical association of integrins with TGF-beta receptors and the modulation of downstream effectors. Reciprocal TGF-beta-integrin signalling is implicated in normal physiology, as well as in a variety of pathological processes including systemic sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease and cancer; thus, integrins could provide attractive therapeutic targets to interfere with TGF-beta signalling in these processes.
Collapse
Affiliation(s)
- Coert Margadant
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Reichelt J, Haase I. Establishment of spontaneously immortalized keratinocyte lines from wild-type and mutant mice. Methods Mol Biol 2010; 585:59-69. [PMID: 19907996 DOI: 10.1007/978-1-60761-380-0_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A considerable number of transgenic or knockout mice in which epidermal keratinocytes have been targeted die shortly after birth due to barrier defects. In this case, recovery and cultivation of keratinocytes from these animals provide an opportunity for in vitro studies. Working with isolated keratinocytes is also interesting for certain experiments which cannot be performed in live animals. Primary human keratinocytes can be kept in culture for a variable number of passages and then senescence. Immortalization can be achieved by transduction with constructs encoding viral genes. Murine keratinocytes can be kept in culture as primary cells. Naturally the numbers of cells obtained by direct isolation from mouse epidermis is restricted and sometimes not sufficient for certain biochemical analyses. To overcome this restriction some permanent murine keratinocyte lines have been generated by transfection with SV40T or HPV E6E7 genes. This is, however, not suitable if established or hypothetical biochemical links exist between these genes and the pathways or processes to be analysed in the respective experiment. We describe an easy and reproducible method of establishing permanent keratinocyte lines from spontaneously immortalized primary murine keratinocytes. This method employs co-cultivation of keratinocytes with 3T3-J2 fibroblast feeder cells for several passages during which immortalization occurs. The resulting keratinocyte lines do not only grow infinitely but, in many cases, individual lines from the same genetic background also exhibit similar growth characteristics, hence they are especially valuable for comparative studies.
Collapse
Affiliation(s)
- Julia Reichelt
- Institute of Cellular Medicine and North East England Stem Cell Institute, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
30
|
Inhibition of TGF-beta receptor I by siRNA suppresses the motility and invasiveness of T24 bladder cancer cells via modulation of integrins and matrix metalloproteinase. Int Urol Nephrol 2009; 42:315-23. [PMID: 19669587 DOI: 10.1007/s11255-009-9620-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/15/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Urinary bladder transitional-cell carcinoma is still challenging because the mechanisms underlying the tumor progression are still largely unknown. Transforming growth factor beta1 (TGF-beta1) is considered a crucial molecule in the tumorigenesis of urinary bladder carcinoma. Many studies have indicated that it is also associated with epithelial-mesenchymal transition, angiogenesis, migration and metastases in many types of malignant tumors. MATERIALS AND METHODS We blocked the TGF-beta signal pathway in T24 human bladder cancer cells with a siRNA (TsiRNA), which targets the TGF-beta type I receptor and evaluated the effects of TGF-beta1 and TsiRNA on the cell motility and invasiveness by Matrigel migration assay, wound-healing assay and Matrigel invasion assay. RT-PCR and Western blotting analysis were used to examine the effects of TGF-beta1 and TsiRNA on the expression of TGFBRI and genes, which are related to tumor migration and invasion. RESULTS While exogenous TGF-beta1 enhanced the migration and invasion of T24 cells, TsiRNA significantly suppressed them. RT-PCR and Western blotting analysis revealed that TsiRNA could downregulate both the expression of alpha3, beta1 and alpha2 integrin subunits and the activity of matrix metalloproteinase 9 enhanced by exogenous TGF-beta1. CONCLUSION Our study suggested that inhibition of TGF-beta1 signaling pathway by siRNA could be beneficial in the treatment of patients with metastatic bladder cancer.
Collapse
|
31
|
Kundi R, Hollenbeck ST, Yamanouchi D, Herman BC, Edlin R, Ryer EJ, Wang C, Tsai S, Liu B, Kent KC. Arterial gene transfer of the TGF-beta signalling protein Smad3 induces adaptive remodelling following angioplasty: a role for CTGF. Cardiovasc Res 2009; 84:326-35. [PMID: 19570811 DOI: 10.1093/cvr/cvp220] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Although transforming growth factor-beta (TGF-beta) is believed to stimulate intimal hyperplasia after arterial injury, its role in remodelling remains unclear. We investigate whether Smad3, a TGF-beta signalling protein, might facilitate its effect on remodelling. METHODS AND RESULTS Using the rat carotid angioplasty model, we assess Smad3 expression following arterial injury. We then test the effect of arterial Smad3 overexpression on the response to injury, and use a conditioned media experimental design to confirm an Smad3-dependent soluble factor that mediates this response. We use small interfering RNA (siRNA) to identify this factor as connective tissue growth factor (CTGF). Finally, we attempt to replicate the effect of medial Smad3 overexpression through adventitial application of recombinant CTGF. Injury induced medial expression of Smad3; overexpression of Smad3 caused neointimal thickening and luminal expansion, suggesting adaptive remodelling. Smad3 overexpression, though exclusively medial, caused adventitial changes: myofibroblast transformation, proliferation, and collagen production, all of which are associated with adaptive remodelling. Supporting the hypothesis that Smad3 initiated remodelling and these adventitial changes via a secreted product of medial smooth muscle cells (SMCs), we found that media conditioned by Smad3-expressing recombinant adenoviral vector (AdSmad3)-infected SMCs stimulated adventitial fibroblast transformation, proliferation, and collagen production in vitro. This effect was attenuated by pre-treatment of SMCs with siRNA specific for CTGF, abundantly produced by AdSmad3-infected SMCs, and significantly up-regulated in Smad3-overexpressing arteries. Moreover, periadventitial administration of CTGF replicated the effect of medial Smad3 overexpression on adaptive remodelling and neointimal hyperplasia. CONCLUSION Medial gene transfer of Smad3 promotes adaptive remodelling by indirectly influencing the behaviour of adventitial fibroblasts. This arterial cell-cell communication is likely to be mediated by Smad3-dependent production of CTGF.
Collapse
Affiliation(s)
- Rishi Kundi
- Division of Vascular Surgery, Weill Medical College of Cornell University, Columbia College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lamar JM, Pumiglia KM, DiPersio CM. An immortalization-dependent switch in integrin function up-regulates MMP-9 to enhance tumor cell invasion. Cancer Res 2008; 68:7371-9. [PMID: 18794124 DOI: 10.1158/0008-5472.can-08-1080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrins, the major receptors for cell adhesion to the extracellular matrix, play important roles during tumor progression. However, it is still unclear whether genetic lesions that occur during carcinoma development can lead to altered integrin function, and how changes in integrin function contribute to subsequent carcinoma progression. Loss-of-function mutations in p53 and activating mutations in H-Ras, which immortalize and transform epithelial cells, respectively, are common causal events in squamous cell carcinoma (SCC). Phenotypes resulting from these two genetic lesions promote SCC progression and are, therefore, potential targets for anticancer therapies. We developed a model system of keratinocyte transformation that has allowed us to investigate the individual roles of p53 mutation and oncogenic Ras mutation in the acquisition of integrin alpha3beta1-regulated phenotypes that promote SCC progression. Using this model, we show that keratinocyte immortalization by p53-null mutation causes a switch in alpha3beta1 function that induces matrix metalloproteinase (MMP)-9 gene expression in tumorigenic cells. This acquired alpha3beta1-dependent regulation of MMP-9 was maintained during subsequent transformation by oncogenic Ras, and it promoted invasion of tumorigenic keratinocytes. Our results show that loss of p53 function leads to changes in integrin-mediated gene regulation that occur during SCC progression and play a critical role in tumor cell invasion.
Collapse
Affiliation(s)
- John M Lamar
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208-3479, USA
| | | | | |
Collapse
|
33
|
Bai P, Hegedus C, Szabó E, Gyüre L, Bakondi E, Brunyánszki A, Gergely S, Szabó C, Virág L. Poly(ADP-ribose) polymerase mediates inflammation in a mouse model of contact hypersensitivity. J Invest Dermatol 2008; 129:234-8. [PMID: 18633442 DOI: 10.1038/jid.2008.196] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Crit Rev Biochem Mol Biol 2000; 48:222-72. [PMID: 10947989 DOI: 10.3109/10409238.2013.770819] [Citation(s) in RCA: 572] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Collapse
Affiliation(s)
- G A McQuibban
- Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|