1
|
Yang X, Li Y, Bao D, Yan B, Mei T, Liu X, Cięszczyk P, Ahmetov I, Mc Naughton L, He Z. Genomic predictors of fat mass response to the standardized exercise training. Int J Sports Med 2025; 46:127-136. [PMID: 39477221 DOI: 10.1055/a-2421-9385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
To explore the genetic architecture underlying exercise-induced fat mass change, we performed a genome-wide association study with a Chinese cohort consisting of 442 physically inactive healthy adults in response to a 12-week exercise training (High-intensity Interval Training or Resistance Training). The inter-individual response showed an exercise-induced fat mass change and ten novel lead SNPs were associated with the response on the level of P<1×10-5. Four of them (rs7187742, rs1467243, rs28629770 and rs10848501) showed a consistent effect direction in the European ancestry. The Polygenic Predictor Score (PPS) derived from ten lead SNPs, sex, baseline body mass and exercise protocols explained 40.3% of the variance in fat mass response, meanwhile importantly the PPS had the greatest contribution. Of note, the subjects whose PPS was lower than -9.301 had the highest response in exercise-induced fat loss. Finally, we highlight a series of pathways and biological processes regarding the fat mass response to exercise, e.g. apelin signaling pathway, insulin secretion pathway and fat cell differentiation biological process.
Collapse
Affiliation(s)
- Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Pawel Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - IldusI Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Zihong He
- Biology Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Raza A, Mushtaq MN, Hassan S, Sharif A, Akhtar B, Akhtar MF. Mitigation of Diabetes Mellitus Using Euphorbia helioscopia Leaf Ethanolic Extract by Modulating GCK, GLUT4, IGF, and G6P Expressions in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:5497320. [PMID: 39329045 PMCID: PMC11424858 DOI: 10.1155/2024/5497320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder. Synthetic antidiabetics are the commonly used treatment options associated with complications. The objective of this study was to explore the antioxidative and antidiabetic potential of Euphorbia helioscopia whole plant ethanolic extract using in vitro and in vivo models. For that purpose, the antioxidative potential was explored by using 2,2-diphenyl-1-picrylhydrazyl analysis. In vitro antidiabetic potential of the extract was evaluated using amylase inhibitory analysis. In vivo antidiabetic activity of the extract was assessed in diabetic rats using streptozotocin/nicotinamide (60 mg/kg/120 mg/kg) as an inducing agent. Metformin was used as standard. The results indicated the presence of significant quantities of phenolic 82.18 ± 1.28 mgg-1 gallic acid equivalent (GAE) and flavonoid 66.55±1.22 mgg-1 quercetin equivalent (QE) contents in the extract. Quantitation of phytoconstituents exhibited the presence of sinapic acid, myricetin, and quercetin using HPLC analysis. The extract inhibited α-amylase by 84.71%, and an antiglycemic potential of 50.34% was assessed in the OGTT assay. Biochemical analysis demonstrated a reduction in urea, creatinine, cholesterol, low-density lipoprotein, and alkaline phosphatase (p < 0.001) as compared to diabetic control rats at the dose of 500 mg/kg. An upregulation in the expressions of glucokinase, glucose transporter 4, peroxisome proliferator-activated receptor γ, and insulin-like growth factor was observed in treated rats in contrast to G6P expression, which was downregulated upon treatment. In conclusion, this study provided evidence of the antioxidative and antidiabetic potential of E. helioscopia whole plant ethanolic extract through in vitro and in vivo analysis and emphasized its promising role as a natural alternative.
Collapse
Affiliation(s)
- Ahmed Raza
- Faculty of PharmacyThe University of Lahore, Lahore 54000, Pakistan
| | | | - Sadia Hassan
- Department of Biomedical Engineering and SciencesSchool of Mechanical and Manufacturing EngineeringNational University of Science and Technology, Islamabad 24090, Pakistan
| | - Ali Sharif
- Department of PharmacologyFaculty of Pharmaceutical and Allied Health SciencesLahore College for Women University, Lahore 54000, Pakistan
| | - Bushra Akhtar
- Department of PharmacyUniversity of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical SciencesRiphah International UniversityLahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Xu WL, Zhou PP, Yu X, Tian T, Bao JJ, Ni CR, Zha M, Wu X, Yu JY. Myricetin induces M2 macrophage polarization to alleviate renal tubulointerstitial fibrosis in diabetic nephropathy via PI3K/Akt pathway. World J Diabetes 2024; 15:105-125. [PMID: 38313853 PMCID: PMC10835493 DOI: 10.4239/wjd.v15.i1.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy (DN). Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue. Nevertheless, the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain. AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism. METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk. Subsequently, blood and urine indexes were assessed, along with examination of renal tissue pathology. Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin, periodic acid-Schiff, Masson's trichrome, and Sirius-red. Additionally, high-glucose culturing was conducted on the RAW 264.7 cell line, treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h. In both in vivo and in vitro settings, quantification of inflammation factor levels was conducted using western blotting, real-time qPCR and ELISA. RESULTS In db/db mice, administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis. Notably, we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin, along with a decrease in expressions of inflammatory cytokine-related factors. Furthermore, myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha, interleukin-6, and interluekin-1β induced by high glucose in RAW 264.7 cells. Additionally, myricetin modulated the M1-type polarization of the RAW 264.7 cells. Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin. The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002. CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei-Long Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Pei-Pei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Xu Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Ting Tian
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Jin-Jing Bao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Chang-Rong Ni
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Min Zha
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Xiao Wu
- Department of Pneumology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Jiang-Yi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
4
|
Mohamed GA, Omar AM, El-Araby ME, Mass S, Ibrahim SRM. Assessments of Alpha-Amylase Inhibitory Potential of Tagetes Flavonoids through In Vitro, Molecular Docking, and Molecular Dynamics Simulation Studies. Int J Mol Sci 2023; 24:10195. [PMID: 37373340 DOI: 10.3390/ijms241210195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes is a chronic fast-growing metabolic disorder that is characterized by high blood glucose levels. Tagetes minuta L. has been used as a traditional remedy for various illnesses for many years, and, furthermore, its oil is used in the perfume and flavor industries. T. minuta contains various metabolites, such as flavonoids, thiophenes, terpenes, sterols, and phenolics, with varied bioactivities. Flavonoids can inhibit carbohydrate-digesting enzymes, such as alpha-amylase, which is a convenient dietary strategy for controlling hyperglycemia. In the current investigation, the isolated flavonoids quercetagetin-6-O-(6-O-caffeoyl-β-D-glucopyranoside), quercetagetin-7-O-β-D-glucopyranoside, quercetagetin-6-O-β-D-glucopyranoside, minutaside A, patuletin-7-O-β-D-glucopyranoside, quercetagetin-7-methoxy-6-O-β-D-glucopyranoside, tagenols A and B, quercetagetin-3,7-dimethoxy-6-O-β-D-glucopyranoside, patuletin, quercetin-3,6-dimethyl ether, and quercetin-3-methyl ether from T. minuta were assessed for their alpha-amylase inhibition (AAI) efficacy using an in vitro assay, as well as molecular docking, dynamics simulation, and ADMET analyses. Our findings show that quercetagetin-6-O-(6-O-caffeoyl-β-D-glucopyranoside) (1), quercetagetin-7-O-β-D-glucopyranoside (2), quercetagetin-6-O-β-D-glucopyranoside (3), minutaside A (4), patuletin-7-O-β-D-glucopyranoside (5), and quercetagetin-7-methoxy-6-O-β-D-glucopyranoside (6) had a notable AAI capacity (IC50s ranged from 7.8 to 10.1 μM) compared to acarbose (IC50 7.1 μM). Furthermore, these compounds with the highest binding affinity among the tested flavonoids revealed high docking scores for AA (ranging from -12.171 to 13.882 kcal/mol) compared to that of acarbose (-14.668 kcal/mol). In MDS, these compounds were observed to show maximum stability and the greatest binding free energy, suggesting that they may contend with native ligands. In addition, the ADMET analysis showed that these active compounds had a broad span of drug-like, pharmacokinetic, and physicochemical features and did not possess any considerable undesired effects. The current results suggest the potential of these metabolites as AAI candidates. However, further in vivo and mechanistic studies are warranted to specify the efficacy of these metabolites.
Collapse
Affiliation(s)
- Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaza Mass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
5
|
Niisato N, Marunaka Y. Therapeutic potential of multifunctional myricetin for treatment of type 2 diabetes mellitus. Front Nutr 2023; 10:1175660. [PMID: 37305094 PMCID: PMC10251146 DOI: 10.3389/fnut.2023.1175660] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, insulin resistance, and insufficient insulin secretion. It is considered that chronic hyperglycemia causes serious problems due to diabetic complications such as retinopathy, nephropathy, and neuropathy. Primarily, treatment in T2DM is pharmacologically tried by using drugs that are insulin sensitizers, insulin secretagogues, α-glucosidase inhibitors, and glucose transporter inhibitors. However, long-term application of these drugs frequently induces various harmful side effects, suggesting that the importance of taking advantage of natural products like phytochemicals. Accordingly, flavonoids, a group of phytochemicals, have attracted attention as components of natural products which are effective in the treatment of several diseases containing T2DM and are strongly recommended as food supplements to ameliorate T2DM-related complications. Several well-studied flavonoids such as quercetin and catechin are known to have anti-diabetic, anti-obesity, and anti-hypertensive actions, although a huge number of flavonoids are still under investigation and their actions are not fully understood. In this situation, myricetin is being shown to be a multiple bioactive compound to prevent and/or suppress hyperglycemia through inhibiting digestion and uptake of saccharides and enhancing insulin secretion as a possible GLP-1 receptor agonist, and to ameliorate T2DM-related complications by protecting endothelial cells from oxidative stress induced by hyperglycemia. In this review, we summarize the multiple effects of myricetin on the targets of T2DM treatment, comparing with different flavonoids.
Collapse
Affiliation(s)
- Naomi Niisato
- Department of Health and Sports Sciences, Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kameoka, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
- Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
6
|
Myricetin improves apoptosis after ischemic stroke via inhibiting MAPK-ERK pathway. Mol Biol Rep 2023; 50:2545-2557. [PMID: 36611117 DOI: 10.1007/s11033-022-08238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuronal apoptosis is the main cause for the disabilities and deaths of patients suffered with stroke. Neuroprotectants are clinically used to reduce neuronal apoptosis in ischemic stroke. However, the current neuroprotectants have multiple limitations. Myricetin is beneficial for multiple neurodegenerative diseases, but the role of myricetin as a neuroprotective agent in ischemic stroke is still not fully understood. METHODS AND RESULTS Middle cerebral artery occlusion, Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Western blots were used to explore the anti-apoptotic effects of myricetin in vivo. Flow cytometry, Western blots and Ca2+ staining were used to study the neuroprotective effects of myricetin in vitro. In this study, we first demonstrated that myricetin reduced neuronal apoptosis after ischemia in vivo and in vitro. And, among the factors of apoptosis after ischemic stroke, excitotoxicity, oxidative stress and inflammation-induced apoptosis can be alleviated by myricetin. Moreover, we further demonstrated that myricetin was able to improve neuronal intrinsic apoptosis by inhibiting the phosphorylation of extracellular signal-regulated kinase in the oxygen and glucose deprivation in vitro. CONCLUSIONS Summarily, our results support myricetin as a novel neuroprotectant for the prevention or treatment of ischemic stroke via MAPK-ERK signaling pathway.
Collapse
|
7
|
Potential interactions among myricetin and dietary flavonols through the inhibition of human UDP-glucuronosyltransferase in Vitro. Toxicol Lett 2022; 358:40-47. [DOI: 10.1016/j.toxlet.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
8
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
An Overview on the Conservative Management of Endometriosis from a Naturopathic Perspective: Phytochemicals and Medicinal Plants. PLANTS 2021; 10:plants10030587. [PMID: 33804660 PMCID: PMC8003677 DOI: 10.3390/plants10030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Background: Endometriosis is a chronic and debilitating disease, which affects millions of young women worldwide. Although medicine has incontestably evolved in the last years, there is no common ground regarding the early and accurate diagnosis of this condition, its pathogenic mechanisms, and curative treatment. Even though the spontaneous resolution of endometriosis is sometimes possible, recent reports suggested that it can be a progressive condition. It can associate chronic pelvic pain, vaginal bleeding, infertility, or malignant degenerescence. Conventional treatments could produce many side effects, and despite treatment, the symptoms may reappear. In recent years, experimental evidence suggested that plant-based medicine could exert beneficial effects on endometriosis and endometriosis-related symptoms. This study aims to highlight the pharmaceutical activity of phytochemicals and medicinal plants against endometriosis and to provide a source of information regarding the alternative treatment of this condition. Methods: For this review, we performed a research using PubMed, GoogleScholar, and CrossRef databases. We selected the articles published between January 2000 and July 2020, written in English. Results: We found 17 medicinal plants and 13 phytochemicals, which have demonstrated their beneficial effects against endometriosis. Several of their biological activities consist of antiangiogenic, anti-inflammatory effects, and oxidative-stress reduction. Conclusion: Medicinal herbs and their bioactive compounds exhibit antiangiogenic, antioxidant, sedative and pain-alleviating properties and the effects recorded until now encourage their use for the conservative management of endometriosis.
Collapse
|
10
|
Xu Y, Le Sayec M, Roberts C, Hein S, Rodriguez-Mateos A, Gibson R. Dietary Assessment Methods to Estimate (Poly)phenol Intake in Epidemiological Studies: A Systematic Review. Adv Nutr 2021; 12:1781-1801. [PMID: 33684195 PMCID: PMC8483972 DOI: 10.1093/advances/nmab017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022] Open
Abstract
Nutritional epidemiological studies have frequently reported associations between higher (poly)phenol intake and a decrease in the risk or incidence of noncommunicable diseases. However, the assessment methods that have been used to quantify the intakes of these compounds in large-population samples are highly variable. This systematic review aims to characterize the methods used to assess dietary (poly)phenol intake in observational studies, report the validation status of the methods, and give recommendations on method selection and data reporting. Three databases were searched for publications that have used dietary assessment methods to measure (poly)phenol intake and 549 eligible full texts were identified. Food-frequency questionnaires were found to be the most commonly used tool to assess dietary (poly)phenol intake (73%). Published data from peer-reviewed journals were the major source of (poly)phenol content data (25%). An increasing number of studies used open-access databases such as Phenol-Explorer and USDA databases on flavonoid content since their inception, which accounted for 11% and 23% of the data sources, respectively. Only 16% of the studies reported a method that had been validated for measuring the target (poly)phenols. For future research we recommend: 1) selecting a validated dietary assessment tool according to the target compounds and target period of measurement; 2) applying and combining comprehensive (poly)phenol content databases such as USDA and Phenol-Explorer; 3) detailing the methods used to assess (poly)phenol intake, including dietary assessment method, (poly)phenol content data source; 4) follow the Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology (STROBE-nut) framework; and 5) complementing dietary intake assessment based on questionnaires with measurement of (poly)phenols in biofluids using appropriate and validated analytical methods.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Caroline Roberts
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sabine Hein
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom,School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
11
|
Gupta G, Siddiqui MA, Khan MM, Ajmal M, Ahsan R, Rahaman MA, Ahmad MA, Arshad M, Khushtar M. Current Pharmacological Trends on Myricetin. Drug Res (Stuttg) 2020; 70:448-454. [DOI: 10.1055/a-1224-3625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractMyricetin is a member of the group of flavonoids called flavonols. Myricetin is obtained from various fruit, vegetables, tea, berries and red wine. Myricetin is characterized by the pysrogallol B-ring, and the more hydroxylated structure is known to be capable for its increased biological properties compared with other flavonols. Myricetin is produced by the Myricaceae, Anacardiaceae, Polygonaceae, Pinaceae and Primulacea families. It is soluble in organic solvent such as ethanol, DMSO (dimethyl sulfoxide), and dimethyl formamide (DMF). It is sparingly soluble in aqueous buffers. Myricetin shows its various pharmacological activities including antioxidant, anti-amyloidogenic, antibacterial, antiviral, antidiabetic, anticancer, anti-inflammatory, anti-epileptic and anti-ulcer. This review article focuses on pharmacological effects of Myricetin on different diseases such as osteoporotic disorder, anti-inflammatory disorder, alzheimer’s disease, anti-epileptic, cancer, cardiac disorder, diabetic metabolic disorder, hepatoprotective disorder and gastro protective disorder.
Collapse
Affiliation(s)
- Gudiya Gupta
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Aftab Siddiqui
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Ajmal
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rabiya Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Azizur Rahaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Afroz Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Arshad
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khushtar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
12
|
Rehman MU, Rather IA. Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats. PLANTS 2019; 9:plants9010028. [PMID: 31878169 PMCID: PMC7020155 DOI: 10.3390/plants9010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin [cis-diamminedichloroplatinum II] is an extensively prescribed drug in cancer chemotherapy; it is also useful for the treatment of diverse types of malignancies. Conversely, cisplatin is associated with a range of side effects such as nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, and so on. Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4chromenone) is a very common natural flavonoid found in fruits, tea, and plants. It has been found to have high-value pharmacological properties and strong health benefits. To examine the role of myricetin in colon toxicity induced by cisplatin, we conducted a concurrent prophylactic study in experimental animals that were treated orally with myricetin for 14 days at two doses—25 and 50 mg/kg of body weight. On the 14th day, a single intraperitoneal injection of cisplatin (7.5 mg/kg body weight) was administered in all groups except control. The effects of myricetin in cisplatin-induced toxicity in the colon were assessed in terms of antioxidant status, phase-II detoxification enzymes, the level of inflammatory markers, and goblet cell disintegration. Myricetin was found to restore the level of all the antioxidant enzymes analyzed in the study. In addition, the compound ameliorated cisplatin-induced lipid peroxidation, increase in xanthine oxidase activity, and phase-II detoxifying enzyme activity. Myricetin also attenuated deteriorative effects induced by cisplatin by regulating the level of molecular markers of inflammation (NF-κB, Nrf-2, IL-6, and TNF-α), restoring Nrf-2 levels, and controlling goblet cell disintegration. The current study reinforces the conclusion that myricetin exerts protection in colon toxicity via up-regulation of inflammatory markers, improving anti-oxidant status, and protecting tissue damage.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Division of Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKAUST-Kashmir, Alustang, Srinagar, J&K 190006, India
- Correspondence: (M.U.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) P.O. Box-80141, Jeddah 21589, Saudi Arabia
- Correspondence: (M.U.R.); (I.A.R.)
| |
Collapse
|
13
|
Hydrophobically Modified Glucan as an Amphiphilic Carbohydrate Polymer for Micellar Delivery of Myricetin. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24203747. [PMID: 31627423 PMCID: PMC6833000 DOI: 10.3390/molecules24203747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Myricetin (Myr) is a phytochemical with many functional properties. However, its hydrophobicity, low bioavailability, and stability limit its application. In this study, octadecanoate oat β-glucan (OGE) was synthesized and gained recognition as a self-assembled micelle forming a polymer with a critical micelle concentration (CMC) of 59.4 μg/mL. The Myr-loaded OGE micelle was then prepared and characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FT-IR) spectra. The water solubility of Myr was greatly enhanced by forming the Myr/OGE inclusion complex. Consequently, compared to free Myr, the retention of Myr in Myr-loaded OGE micelle was effectively increased during the intestinal digestion phase, and its antioxidant activity was also improved. Overall, our findings demonstrated the potential applications of OGE polymer for the development of prospective micelle in health food, cosmetics, and pharmaceutical fields because they can aid in the delivery of hydrophobic functional compounds like Myr.
Collapse
|