1
|
Zawadzka M, Gil W, Konieczny A, Krakowska-Jura K, Kijewska M, Stefanowicz P. Affinity on Demand: A One-Pot Method for Synthesis and Sample Enrichment Using TentaGel-Functionalized Resins. ACS OMEGA 2025; 10:18135-18144. [PMID: 40352538 PMCID: PMC12060058 DOI: 10.1021/acsomega.5c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Protein glycation is a nonenzymatic reaction that results in the formation of early glycation products, commonly referred to as Amadori products, which play an important role in diabetes complications. In proteomic research, the analysis of glycated peptides is very challenging due to the low amount of analyte in a biological sample. One of the methods to overcome this is selective enrichment of the sample in the desired analyte. A method for synthesizing functionalized resins with phenylboronic acids has been developed, which allows for the incorporation of different linkers and a variable number of phenylboronic acid moieties, as well as the use of any solid support. Furthermore, the resins are prepared for use in sample enrichment following the completion of the synthesis process and demonstrate a high affinity for glycated peptides. The highest-affinity resin (4PhB-3Lys-TGR) was applied to artificially glycated albumin hydrolyzate and patient serum, and, in addition, it was used in conjunction with a biological sample (i.e., milk) for the selective enrichment of glycated peptides. The bioinformatics analysis provided results that confirmed the high coverage of protein sequences identified in the complex samples based on glycated peptides. This paper presents a novel, fast, simple, and cost-effective one-pot method for the synthesis of functionalized resins, along with a selective method for the enrichment of samples with glycated peptides. We believe that the presented approach is general and, with necessary modifications, could be applied for affinity-based isolation not only of Amadori products but also of carbonyl compounds, thiols, compounds with chelating properties, and others.
Collapse
Affiliation(s)
- Michalina Zawadzka
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| | - Wojciech Gil
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| | - Andrzej Konieczny
- Department
of Nephrology and Transplantation Medicine, Wrocław Medical University, Borowska 213, Wrocław 50-556, Poland
| | - Kornelia Krakowska-Jura
- Department
of Nephrology and Transplantation Medicine, Wrocław Medical University, Borowska 213, Wrocław 50-556, Poland
| | - Monika Kijewska
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| | - Piotr Stefanowicz
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| |
Collapse
|
2
|
Grosskopf A, Rahn J, Kim A, Szabó G, Rujescu D, Klawonn F, Frolov A, Simm A. Peptide-Bound Glycative, AGE and Oxidative Modifications as Biomarkers for the Diagnosis of Alzheimer's Disease-A Feasibility Study. Biomedicines 2024; 12:2127. [PMID: 39335639 PMCID: PMC11428617 DOI: 10.3390/biomedicines12092127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The diagnosis of Alzheimer's disease (AD) relies on core cerebrospinal fluid (CSF) biomarkers, amyloid beta (Aβ) and tau. As the brain is then already damaged, researchers still strive to discover earlier biomarkers of disease onset and the progression of AD. Glycation, advanced glycation end products (AGEs) and oxidative modifications on proteins in CSF mirror the underlying biological mechanisms that contribute to early AD pathology. However, analyzing free AGEs in the body fluids of AD patients has led to controversial results. Thus, this pilot study aimed to test the feasibility of detecting, identifying and quantifying differentially glycated, AGE or oxidatively modified peptides in CSF proteins of AD patients (n = 5) compared to a control group (n = 5). Methods: To this end, we utilized a data-dependent (DDA) nano liquid chromatography (LC) linear ion trap-Orbitrap tandem mass spectrometry (MS/MS) ) approach and database search that included over 30 glycative and oxidative modifications in four search nodes to analyze endogenous modifications on individual peptides. Furthermore, we quantified candidate peptide abundance using LC Quan. Results: We identified 299 sites of early and advanced glycation and 53 sites of oxidatively modified tryptophan. From those, we identified 17 promising candidates as putative biomarkers (receiver operating curve-area under the curve (ROC-AUC) > 0.8), albeit without statistical significance. Conclusions: The potential candidates with higher discrimination power showed correlations with established diagnostic markers, thus hinting toward the potential of those peptides as biomarkers.
Collapse
Affiliation(s)
- Anne Grosskopf
- Clinic for Cardiac Surgery, University Medicine Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jette Rahn
- Clinic for Cardiac Surgery, University Medicine Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Gábor Szabó
- Clinic for Cardiac Surgery, University Medicine Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, Psychosomatic Medicine, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, 127276 Moscow, Russia
| | - Andreas Simm
- Clinic for Cardiac Surgery, University Medicine Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Qin S, Gao K, Tian Z. Comprehensive characterization of differential glycation in hepatocellular carcinoma using tissue proteomics with stable isotopic labeling. Anal Bioanal Chem 2024; 416:4531-4541. [PMID: 38922433 DOI: 10.1007/s00216-024-05392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Glycation is a non-enzymatic posttranslational modification coming from the reaction between reducing sugars and free amino groups in proteins, where early glycation products (fructosyl-lysine, FL) and advanced glycation end products (AGEs) are formed. The occurrence of glycation and accumulation of AGEs have been closely associated with hepatocellular carcinoma (HCC). Here, we reported the characterization of differential glycation in HCC using tissue proteomics with stable isotopic labeling; early glycation-modified peptides were enriched with boronate affinity chromatography (BAC), and AGEs-modified peptides were fractionated with basic reversed-phase separation. By this integrated approach, 3717 and 1137 early and advanced glycated peptides corresponding to 4007 sites on 1484 proteins were identified with a false discovery rate (FDR) of no more than 1%. One hundred fifty-five sites were modified with both early and advanced end glycation products. Five early and 7 advanced glycated peptides were quantified to be differentially expressed in HCC tissues relative to paired adjacent tissues. Most (8 out of 10) of the proteins corresponding to the differential glycated peptides have previously been reported with dysregulation in HCC. The results together may deepen our knowledge of glycation as well as provide insights for therapeutics.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Kumari N, Vaishnav MS, Srikanta S, Krishnaswamy PR, Bhat N. Exploring glycated sites in human serum albumin: impact of sample processing techniques on detection and analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5239-5247. [PMID: 39007648 DOI: 10.1039/d4ay00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Glycation and the subsequent formation of advanced glycation end products (AGEs) disrupt and impair the physiological functions of proteins. This study presents a comprehensive glycation site mapping of human serum albumin (HSA) utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both in vitro glycation experiments and patient samples were investigated, exploring various enzymes, processing techniques, and their impacts on glycation site detection. A pilot study was conducted, analyzing sixteen serum samples, which spanned from healthy individuals to severe diabetic patients (with HbA1c values ranging from 5.7% to 18.1%). The aim was to comprehend the progression of glycation on various sites of HSA with increasing levels of glycation. Their glycated albumin levels (GA) spanned from 19.7% to 62.3%. Trypsin-mediated proteolytic digestion unveiled 12 glycation sites through direct in-solution digestion of whole serum. However, isolating albumin from serum enabled the identification of a higher number of glycation sites in each sample compared to direct serum digestion. Boronate affinity chromatography facilitated the segregation of less glycated albumin (LGA) from the more glycated albumin (MGA) fraction. Subsequent proteolytic digestion of both LGA and MGA samples revealed similar glycation sites. The MGA fraction exhibited a greater number of identified glycation sites, thereby elucidating which sites are particularly prone to glycation in highly glycated albumin samples. Changes in relative glycation levels were noted in the tryptic digests of albumin samples following the sample enrichment steps, as opposed to direct in-solution digestion of whole serum. Two enzymes, trypsin and Glu-C, were evaluated for efficacy in sequence coverage and glycation site analysis of HSA, with trypsin demonstrating superior efficiency over Glu-C.
Collapse
Affiliation(s)
- Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Madhumati S Vaishnav
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Sathyanarayana Srikanta
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - P R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
5
|
Mötzing M, Blüher M, Grunwald T, Hoffmann R. Immunological Quantitation of the Glycation Site Lysine-414 in Serum Albumin in Human Plasma Samples by Indirect ELISA Using Highly Specific Monoclonal Antibodies. Chembiochem 2024; 25:e202300550. [PMID: 37873910 DOI: 10.1002/cbic.202300550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Diabetes mellitus, a metabolic disorder that is characterized by elevated blood glucose levels, is common throughout the world and its prevalence is steadily increasing. Early diagnosis and treatment are important to prevent acute complications and life-threatening long-term organ damage. Glycation sites in human serum albumin (HSA) are considered to be promising biomarkers of systemic glycemic status. This work aimed to develop a sensitive and clinically applicable ELISA for the quantification of glycation site Lys414 in HSA (HSAK414 ). The monoclonal antibodies (mAbs) were generated by immunizing mice with a glycated peptide. The established indirect ELISA based on mAb 50D8 (IgG1 isotype) yielded a limit of detection of 0.39 nmol/g HSA for HSAK414 with a linear dynamic range from 0.50 to 6.25 nmol/g glycated HSA. The inter- and intra-day assays with coefficients of variation less than 20 % indicated good assay performance and precision. Assay evaluation was based on plasma samples from diabetic and non-diabetic subjects with known HSAK414 glycation levels previously determined by LC-MS. Both data sets correlated very well. In conclusion, the generated mAb 50D8 and the established ELISA could be a valuable tool for the rapid quantitation of glycation site HSAK414 in plasma samples to evaluate its clinical relevance.
Collapse
Affiliation(s)
- Marina Mötzing
- Institute of Bioanalytical Chemistry and, Center for Biotechnology and Biomedicine, University Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München at the University of Leipzig and, University Hospital Leipzig, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, 04103, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry and, Center for Biotechnology and Biomedicine, University Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Ren X, Wu L, Zhang L, Liu Y, Wang G, Lu H. Discovery of age-related early-stage glycated proteins based on deep quantitative serum glycated proteome analysis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1659-1667. [PMID: 37654074 PMCID: PMC10577472 DOI: 10.3724/abbs.2023222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Aging is a pressing global health issue that is linked to various diseases, such as diabetes and Alzheimer's disease. It is well known that glycation plays a pathological role in the aging process and age-related diseases. Thus, it is of great significance to discover protein glycation at an early stage for monitoring and intervention in the aging process. However, the endogenous age-related early-stage glycated proteome remains insufficiently profiled. To address this research gap, our study focuses on assessing glycated proteomics profiles in the serum of mice. We employ a robust and quantitative strategy previously developed by our team, to analyze endogenous glycated proteome in serum samples of 4 age groups of mice (10 weeks, 16 weeks, 48 weeks and 80 weeks). In total, 2959 endogenous glycated peptides corresponding to 296 serum proteins are identified from 48 runs of serum samples from 16 mice across the four age groups. By comparing these glycated peptides between adjacent age groups, we discover 49 glycated peptides from 35 proteins that show significant upregulation between the 48-week and 80-week age groups. Furthermore, we identify 10 glycated proteins (or protein groups) that are significantly upregulated only between the 48-week and 80-week age groups, including lecithin-cholesterol acyltransferase (LCAT) and apolipoprotein A-II (Apo A-II). These novel findings provide unique signatures for understanding the aging process and age-related diseases. By shedding light on the early-stage glycated proteome, our study contributes valuable insights that may have implications for future interventions and therapeutic approaches.
Collapse
Affiliation(s)
- Xinyue Ren
- Shanghai Medical CollegeFudan UniversityShanghai200032China
| | - Linlin Wu
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Lei Zhang
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Yang Liu
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Guoli Wang
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Haojie Lu
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| |
Collapse
|
7
|
Rhein S, Inderhees J, Herrmann O, Othman A, Begemann K, Fleming T, Nawroth PP, Klika KD, Isa R, König IR, Royl G, Schwaninger M. Glyoxal in hyperglycaemic ischemic stroke - a cohort study. Cardiovasc Diabetol 2023; 22:173. [PMID: 37438755 DOI: 10.1186/s12933-023-01892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.
Collapse
Affiliation(s)
- Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver Herrmann
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Thomas Fleming
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
- German Research Centre for Diabetes Research, Düsseldorf, Germany
| | - Peter P Nawroth
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rakad Isa
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Inke R König
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
8
|
Chaurasiya A, Jaiswal MR, Bayatigeri S, Kahar S, Tiwari S, Unnikrishnan AG, Kulkarni MJ. Elevated Level of Glycated KQTALVELVK Peptide of Albumin Is Associated with the Risk of Diabetic Nephropathy. ACS OMEGA 2023; 8:20654-20660. [PMID: 37332825 PMCID: PMC10268606 DOI: 10.1021/acsomega.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 06/20/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease. Hence, early detection of diabetic nephropathy is essential to mitigate the disease burden. Microalbuminuria, the currently used diagnostic marker of diabetic nephropathy, is not efficient in detecting it at an early stage. Therefore, we explored the utility of glycated human serum albumin (HSA) peptides for risk prediction of diabetic nephropathy. Three glycation-sensitive HSA peptides, namely, FKDLGEENFK, KQTALVELVK, and KVPQVSTPTLVEVSR, with deoxyfructosyllysine (DFL) modification were quantified by targeted mass spectrometry (MS) in a study population comprising healthy and type II diabetes subjects with and without nephropathy. Mass spectrometry, receiver operating characteristic (ROC) curve, and correlation analysis revealed that the DFL-modified KQTALVELVK peptide was better than other glycated HSA peptides and HbA1c for identifying diabetic nephropathy. DFL-modified KQTALVELVK could be a potential marker for risk prediction of diabetic nephropathy.
Collapse
Affiliation(s)
- Arvindkumar
H. Chaurasiya
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R. Jaiswal
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santhakumari Bayatigeri
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Center
for Materials Characterization, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Shweta Kahar
- Department
of Diabetes and Endocrine Research, Chellaram
Diabetes Institute, Pune 411021, India
| | - Shalbha Tiwari
- Department
of Diabetes and Endocrine Research, Chellaram
Diabetes Institute, Pune 411021, India
| | - Ambika G. Unnikrishnan
- Department
of Diabetes and Endocrine Research, Chellaram
Diabetes Institute, Pune 411021, India
| | - Mahesh J. Kulkarni
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
10
|
Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin. Anal Bioanal Chem 2022; 414:4861-4875. [PMID: 35538229 DOI: 10.1007/s00216-022-04108-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/09/2023]
Abstract
Lysine residues of proteins slowly react with glucose forming Amadori products. In hyperglycemic conditions, such as diabetes mellitus, this non-enzymatic glycation becomes more pervasive causing severe medical complications. The structure and conformation of a protein predisposes lysine sites to differing reactivity influenced by their steric availability and amino acid microenvironment. The goal of our study was to identify these sites in albumin and measure glycation affinities of lysine residues. We applied a bottom-up approach utilizing a combination of three LC-MS instruments: timsTOF, Orbitrap, and QTRAP. To prove applicability to samples of varying glycemic status, we compared in vitro glycated and non-glycated HSA, as well as diabetic and non-diabetic individual samples. The analysis of lysine glycation affinities based on peptide intensities provide a semi-quantitative approach, as the results depend on the mass spectrometry platform used. We found that glycation levels based on multiple reaction monitoring (MRM) quantitation better reflect individual glycemic status and that the glycation percentage for each site is in linear relation to all other sites. To develop an approach which more accurately reflects glycation affinity, we developed a kinetics model which uses results from stable isotope dilution HPLC-MRM methodology. Through glycation of albumin at different glucose concentrations, we determine the rate constants of glycation for every lysine residue by simultaneous comparative analysis.
Collapse
|
11
|
Dahal UP, Rock BM, Rodgers J, Shen X, Wang Z, Wahlstrom JL. Absorption, Distribution, Metabolism, and Excretion of [ 14C]-Sotorasib in Rats and Dogs: Interspecies Differences in Absorption, Protein Conjugation and Metabolism. Drug Metab Dispos 2022; 50:600-612. [PMID: 35153196 DOI: 10.1124/dmd.121.000798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 02/13/2025] Open
Abstract
Sotorasib is a first-in-class, targeted covalent inhibitor of Kirsten rat sarcoma viral oncogene homolog (KRAS)G12C approved by the FDA to treat patients with locally advanced or metastatic non-small cell lung cancer with the KRASG12C mutation. The mass balance, excretion, and metabolism of [14C]-sotorasib was characterized in rats and dogs after a single dose of 60 or 500 mg/kg, respectively. Mean recovery was >90% for both species. Excretion of unchanged sotorasib was a minor pathway in rats, accounting for <4% of administered dose in urine and <7% of administered dose in feces. Approximately 66% of administered dose was recovered in the bile from bile duct cannulated rats as metabolites. Excretion of unchanged sotorasib was the major excretion pathway in dogs, likely caused by solubility-limited absorption. Major pathways of sotorasib biotransformation included glutathione conjugation and oxidative metabolism. In vitro experiments demonstrated that nonenzymatic conjugation (Michael addition) was the primary mechanism of the reaction with glutathione. Extended radioactivity profiles in blood and plasma were observed in rats, but not dogs, after dosing with [14C]-sotorasib. In vitro experiments demonstrated that sotorasib-protein adducts were observed with both rat hemoglobin and serum albumin, explaining the extended radioactivity profile. SIGNIFICANCE STATEMENT: This study characterized the mass balance, excretion, and metabolism of [14C]-sotorasib, a covalent Kirsten rat sarcoma viral oncogene homolog G12C inhibitor, in rats and dogs. Rapid absorption and extensive metabolism of sotorasib was observed in rats, while sotorasib was primarily excreted unchanged in dog feces, likely due to solubility-limited absorption. Protein adducts with rat hemoglobin and serum albumin were characterized, explaining observed extended blood and plasma radioactivity profiles. The primary biotransformation pathway, glutathione conjugation, was mediated through nonenzymatic conjugation.
Collapse
Affiliation(s)
- Upendra P Dahal
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - John Rodgers
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Zhe Wang
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Jan L Wahlstrom
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| |
Collapse
|
12
|
Kijewska M, Zawadzka M, Włodarczyk K, Stefanowicz P. HPLC-free method of synthesis of isotopically labeled deoxyfructosylated peptides. Anal Bioanal Chem 2022; 414:3803-3811. [PMID: 35316349 DOI: 10.1007/s00216-022-04022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
Abstract
The biomarker strategy, based on multiple specific glycation sites in plasma proteins, could essentially increase the efficiency of glycemic control and disease prediction. Besides glycated albumin being a potential biomarker of early states of diabetes mellitus and control of short-term, it has been shown that the glycation of fibrinogen may also impact the formation of the fibrin network, while quantification of glycation of the CD59 protein allows for early detection of glucose intolerance in pregnant women. A different level of glycation of individual lysine residues in proteins has a crucial influence on the stages of the disease. The quantification of new biomarkers of different stages of diabetes requires appropriate isotope-labeled analogs that may improve biomarker search by providing more accurate quantitative data and by more robust detection/quantitation of low-abundance biomarkers. In the presented work, we proposed a fast and simple protocol for the synthesis of isotopically labeled and bi-labeled deoxyfructosylated peptide based on a combination of microwave-assisted synthesis and boronic affinity chromatography using functionalized resin (PhB-Lys(PhB)-ChemMatrix® Rink resin) developed by us. Our method is focused on the synthesis of glycated peptides identified in glycated albumin (GA) after enzymatic hydrolysis catalyzed by trypsin after arginine residues. Thereby, the standard peptides comprised [13C6]-deoxyfructose attached to lysine residue side chain, a dabcyl moiety for determination of standard amounts, and a cleavable linker. Moreover, we applied bi-labeled deoxyfructosylated peptide to determine the concentration of appropriate analog in a sample of human serum albumin glycated in vitro.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland.
| | - Michalina Zawadzka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Karolina Włodarczyk
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
13
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
14
|
Qiu HY, Hou NN, Shi JF, Liu YP, Kan CX, Han F, Sun XD. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J Diabetes 2021; 12:1057-1069. [PMID: 34326954 PMCID: PMC8311477 DOI: 10.4239/wjd.v12.i7.1057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.
Collapse
Affiliation(s)
- Hong-Yan Qiu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Jun-Feng Shi
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
15
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Kumari N, Bandyopadhyay D, Kumar V, Venkatesh DB, Prasad S, Prakash S, Krishnaswamy PR, Balaram P, Bhat N. Glycation of albumin and its implication in Diabetes: A comprehensive analysis using mass spectrometry. Clin Chim Acta 2021; 520:108-117. [PMID: 34089724 DOI: 10.1016/j.cca.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022]
Abstract
AIM To understand the mechanism of glycation of albumin and effects on cysteinylation and methionine oxidation. METHODS The in vitro glycation of HSA and BSA was studied with varying concentrations of glucose. Clinical blood samples of diabetic subjects with varying HbA1c values, were analyzed to assess in vivo glycation. All samples and their tryptic digests were analyzed using liquid chromatography/mass spectrometry. Glycation sites were mapped on to the three-dimensional structure of the HSA and BSA. RESULTS A total thirty-one sites for glycation and eight sites of Nε-carboxymethyl-lysine (CML) modification were identified on albumin. The site selectivity of glycation was correlated with the environment of the reactive residue in the three-dimensional structure. CONCLUSIONS The maximum percentage glycation under extreme conditions was in the range of ~55 to 88% in four weeks. Two major glycation sites K-233 and K-525 were identified, which together accounted for 40-50% of total glycation. A correlation was observed between glycation and oxidation of methionine residues in samples glycated in vitro. The role of spatially proximate residues in facilitating the glycation process is evident. The tri- and tetra-glycated isoforms of albumin can serve as biomarkers for the severe uncontrolled diabetic state.
Collapse
Affiliation(s)
- Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Debarati Bandyopadhyay
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India; Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Kumar
- PathShodh Healthcare Pvt. Ltd, Bengaluru 560094, India
| | - D B Venkatesh
- Anand Diagnostic Laboratory, Bengaluru 560001, India
| | - Sujay Prasad
- Anand Diagnostic Laboratory, Bengaluru 560001, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - P R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - P Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India; National Centre for Biological Sciences, Bengaluru 560065, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
17
|
Wu L, Fang C, Zhang L, Yuan W, Yu X, Lu H. Integrated Strategy for Discovery and Validation of Glycated Candidate Biomarkers for Hemodialysis Patients with Cardiovascular Complications. Anal Chem 2021; 93:4398-4407. [PMID: 33661625 DOI: 10.1021/acs.analchem.0c04028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycation plays a pathogenic role in many age-related degenerative pathological conditions, such as diabetes, end-stage renal diseases, and cardiovascular diseases. Mass spectrometry-based qualitative and quantitative analysis methods have been greatly developed and contribute to our understanding of protein glycation. However, it is still challenging to sensitively and accurately quantify endogenous glycated proteome in biological samples. Herein, we proposed an integrated and robust quantitative strategy for comprehensive profiling of early-stage glycated proteome. In this strategy, a filter-assisted sample preparation method was applied to reduce sample loss and improve reproducibility of sample preparation, contributing to high-throughput analysis and accurate quantification of endogenous glycated proteins with low abundance. Standard glycated peptides were spiked and performed the subsequent process together with complex samples both in label-free quantification and multiple reaction monitoring (MRM) analysis, contributing to the improvement of quantitative accuracy. In parallel, a novel approach was developed for the synthesis of heavy isotope-labeled glycated peptides used in MRM analysis. By this way, a total of 1128 endogenous glycated peptides corresponding to 203 serum proteins were identified from 60 runs of 10 pairs of hemodialysis patients with and without cardiovascular complications, and 234 glycated peptides corresponding to 63 proteins existed in >70% runs, among which 17 peptides were discovered to be differentially glycated (P < 0.05, fold-change > 1.5 or <0.67). Furthermore, we validated the glycation difference of four target peptides in 46 serum samples using MRM analysis, which were consistent with our results of label-free quantification.
Collapse
Affiliation(s)
- Linlin Wu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R.China
| | - Caiyun Fang
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R.China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R.China
| | - Wenjuan Yuan
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R.China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R.China
| | - Haojie Lu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R.China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R.China
| |
Collapse
|
18
|
CUPRAC-Reactive Advanced Glycation End Products as Prognostic Markers of Human Acute Myocardial Infarction. Antioxidants (Basel) 2021; 10:antiox10030434. [PMID: 33799852 PMCID: PMC7999086 DOI: 10.3390/antiox10030434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disorders, especially acute coronary syndromes, are among the leading causes of mortality worldwide, and advanced glycation end products (AGEs) are associated with cardiovascular disease and serve as biomarkers for diagnosis and prediction. In this study, we investigated the utility of AGEs as prognostic biomarkers for acute myocardial infarction (AMI). We measured AGEs in serum samples of AMI patients (N = 27) using the cupric ion reducing antioxidant capacity (CUPRAC) method on days 0, 2, 14, 30, and 90 after AMI, and the correlation of serum AGE concentration and post-AMI duration was determined using Spearman's correlation analysis. Compared to total serum protein, the level of CUPRAC reactive AGEs was increased from 0.9 to 2.1 times between 0-90 days after AMI incident. Furthermore, the glycation pattern and Spearman's correlation analysis revealed four dominant patterns of AGE concentration changes in AMI patients: stable AGE levels (straight line with no peak), continuous increase, single peak pattern, and multimodal pattern (two or more peaks). In conclusion, CUPRAC-reactive AGEs can be developed as a potential prognostic biomarker for AMI through long-term clinical studies.
Collapse
|
19
|
Korwar AM, Zhang Q. Comprehensive Quantification of Carboxymethyllysine-Modified Peptides in Human Plasma. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:744-752. [PMID: 33512994 PMCID: PMC8075102 DOI: 10.1021/jasms.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A prolonged hyperglycemic condition in diabetes mellitus results in glycation of plasma proteins. N(ε)-Carboxymethyllysine (CML) is a well-known protein advanced glycation end product, and one of its mechanisms of formation is through further oxidation of Amadori compound modified lysine (AML). Unlike enrichment of AML peptides using boronate affinity, biochemical enrichment methods are scarce for comprehensive profiling of CML-modified peptides. To address this problem, we used AML peptide sequence and site of modification as template library to identify and quantify CML peptides. In this study, a parallel reaction monitoring workflow was developed to comprehensively quantify CML modified peptides in Type 1 diabetic subjects' plasma with good and poor glycemic control (n = 20 each). A total of 58 CML modified peptides were quantified, which represented 57 CML modification sites in 19 different proteins. Out of the 58 peptides, five were significantly higher in poor glycemic control samples with the area under the receiver operating characteristic curve ≥0.83. These peptides could serve as promising indicators of glycemic control in Type 1 diabetes management.
Collapse
Affiliation(s)
- Arvind M. Korwar
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Corresponding author: Dr. Qibin Zhang, UNCG Center for Translational Biomedical Research, 600 Laureate Way, Kannapolis, NC 28081,
| |
Collapse
|
20
|
Qiu H, Jin L, Chen J, Shi M, Shi F, Wang M, Li D, Xu X, Su X, Yin X, Li W, Zhou X, Linhardt RJ, Wang Z, Chi L, Zhang Q. Comprehensive Glycomic Analysis Reveals That Human Serum Albumin Glycation Specifically Affects the Pharmacokinetics and Efficacy of Different Anticoagulant Drugs in Diabetes. Diabetes 2020; 69:760-770. [PMID: 31974145 DOI: 10.2337/db19-0738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
Long-term hyperglycemia in patients with diabetes leads to human serum albumin (HSA) glycation, which may impair HSA function as a transport protein and affect the therapeutic efficacy of anticoagulants in patients with diabetes. In this study, a novel mass spectrometry approach was developed to reveal the differences in the profiles of HSA glycation sites between patients with diabetes and healthy subjects. K199 was the glycation site most significantly changed in patients with diabetes, contributing to different interactions of glycated HSA and normal HSA with two types of anticoagulant drugs, heparin and warfarin. An in vitro experiment showed that the binding affinity to warfarin became stronger when HSA was glycated, while HSA binding to heparin was not significantly influenced by glycation. A pharmacokinetic study showed a decreased level of free warfarin in the plasma of diabetic rats. A preliminary retrospective clinical study also revealed that there was a statistically significant difference in the anticoagulant efficacy between patients with diabetes and patients without diabetes who had been treated with warfarin. Our work suggests that larger studies are needed to provide additional specific guidance for patients with diabetes when they are administered anticoagulant drugs or drugs for treating other chronic diseases.
Collapse
Affiliation(s)
- Hongyan Qiu
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lan Jin
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jian Chen
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Min Shi
- Jinan Center for Food and Drug Control, Jinan, Shandong, China
| | - Feng Shi
- Scientific Research Division, Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| | - Mansen Wang
- Medical Data Research Center, Providence Health & Services, Portland, OR
| | - Daoyuan Li
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaohui Xu
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xinhuan Su
- Division of Endocrinology and Metabolism, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xianlun Yin
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Wenhua Li
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoming Zhou
- Division of Endocrinology and Metabolism, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lianli Chi
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
Kijewska M, Nuti F, Wierzbicka M, Waliczek M, Ledwoń P, Staśkiewicz A, Real-Fernandez F, Sabatino G, Rovero P, Stefanowicz P, Szewczuk Z, Papini AM. An Optimised Di-Boronate-ChemMatrix Affinity Chromatography to Trap Deoxyfructosylated Peptides as Biomarkers of Glycation. Molecules 2020; 25:E755. [PMID: 32050527 PMCID: PMC7037614 DOI: 10.3390/molecules25030755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
We report herein a novel ChemMatrix® Rink resin functionalised with two phenylboronate (PhB) moieties linked on the N-α and N-ε amino functions of a lysine residue to specifically capture deoxyfructosylated peptides, compared to differently glycosylated peptides in complex mixtures. The new PhB-Lys(PhB)-ChemMatrix® Rink resin allows for exploitation of the previously demonstrated ability of cis diols to form phenylboronic esters. The optimised capturing and cleavage procedure from the novel functionalised resin showed that only the peptides containing deoxyfructosyl-lysine moieties can be efficiently and specifically detected by HR-MS and MS/MS experiments. We also investigated the high-selective affinity to deoxyfructosylated peptides in an ad hoc mixture containing unique synthetic non-modified peptides and in the hydrolysates of human and bovine serum albumin as complex peptide mixtures. We demonstrated that the deoxyfructopyranosyl moiety on lysine residues is crucial in the capturing reaction. Therefore, the novel specifically-designed PhB-Lys(PhB)-ChemMatrix® Rink resin, which has the highest affinity to deoxyfructosylated peptides, is a candidate to quantitatively separate early glycation peptides from complex mixtures to investigate their role in diabetes complications in the clinics.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
| | - Magdalena Wierzbicka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Patrycja Ledwoń
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Agnieszka Staśkiewicz
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Giuseppina Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- PeptLab@UCP and Laboratory of Chemical Biology EA4505, CY Cergy Paris University, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise, France
| |
Collapse
|
22
|
Kijewska M, Czerwińska A, Al-Harthi S, Wołczański G, Waliczek M, Emwas AH, Jaremko M, Jaremko Ł, Stefanowicz P, Szewczuk Z. Intramolecularly stapled amphipathic peptides via a boron–sugar interaction. Chem Commun (Camb) 2020; 56:8814-8817. [DOI: 10.1039/d0cc02603d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The intramolecular interactions between the fructosyl moiety and phenylboronic acid incorporated into various positions of the peptide chain were investigated using mass spectrometry (MS), circular dichroism (CD), and nuclear magnetic resonance (NMR).
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Samah Al-Harthi
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences & Engineering Division (BESE)
- Thuwal
- Saudi Arabia
| | | | | | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences & Engineering Division (BESE)
- Thuwal
- Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences & Engineering Division (BESE)
- Thuwal
- Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences & Engineering Division (BESE)
- Thuwal
- Saudi Arabia
| | | | | |
Collapse
|
23
|
McAvan BS, France AP, Bellina B, Barran PE, Goodacre R, Doig AJ. Quantification of protein glycation using vibrational spectroscopy. Analyst 2020; 145:3686-3696. [DOI: 10.1039/c9an02318f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FTIR-ATR and Raman spectroscopy can distinguish between glycated and non-glycated proteins.
Collapse
Affiliation(s)
- Bethan S. McAvan
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Aidan P. France
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Bruno Bellina
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Perdita E. Barran
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
- UK
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Division of Neuroscience and Experimental Psychology
- Michael Smith Building
- School of Biological Sciences
- Faculty of Biology
- Medicine and Health
| |
Collapse
|
24
|
Rathore R, Sonwane BP, Jagadeeshaprasad MG, Kahar S, Santhakumari B, Unnikrishnan AG, Kulkarni MJ. Glycation of glucose sensitive lysine residues K36, K438 and K549 of albumin is associated with prediabetes. J Proteomics 2019; 208:103481. [PMID: 31394310 DOI: 10.1016/j.jprot.2019.103481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
Prediabetes is a risk factor for the development of diabetes. Early diagnosis of prediabetes may prevent the onset and progression of diabetes and its associated complications. Therefore, this study aimed at the identification of novel markers for efficient prediction of prediabetes. In this pursuit, we have evaluated the ability of glycated peptides of albumin in predicting prediabetes. Glycated peptides of in vitro glycated albumin were characterized by data dependent acquisition and parallel reaction monitoring using LC-HRMS. Amongst 14 glycated peptides characterized in vitro, four peptides, particularly, FK(CML)DLGEENFK, K(AML)VPQVSTPTLVEVSR, K(CML)VPQVSTPTLVEVSR, and K(AML)QTALVELVK, corresponding to 3 glucose sensitive lysine residues K36, K438, and K549, respectively showed significantly higher abundance in prediabetes than control. Additionally, the abundance of three of these peptides, namely K(AML)QTALVELVK, K(CML)VPQVSTPTLVEVSR and FK(CML)DLGEENFK was >1.8-fold in prediabetes, which was significantly higher than the differences observed for FBG, PPG, and HbA1c. Further, the four glycated peptides showed a significant correlation with FBG, PPG, HbA1c, triglycerides, VLDL, and HDL. This study supports that glycated peptides of glucose sensitive lysine residues K36, K438 and K549 of albumin could be potentially useful markers for prediction of prediabetes. SIGNIFICANCE: Undiagnosed prediabetes may lead to diabetes and associated complications. This study reports targeted quantification of four glycated peptides particulary FK(CML)DLGEENFK, K(AML)VPQVSTPTLVEVSR, K(CML)VPQVSTPTLVEVSR, and K(AML)QTALVELVK, corresponding to 3 glucose sensitive lysine residues K36, K438 and K549 respectively by parallel reaction monitoring in healthy and prediabetic subjects. These peptides showed significantly higher abundance in prediabetes than healthy subjects, and showed significant correlation with various clinical parameters including FBG, PPG, HbA1c, and altered lipid profile. Therefore, together these four peptides constitute a panel of markers that can be useful for prediction of prediabetes.
Collapse
Affiliation(s)
- Rajeshwari Rathore
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Babasaheb P Sonwane
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - M G Jagadeeshaprasad
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - B Santhakumari
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Mahesh J Kulkarni
- Proteomics Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
25
|
Soboleva A, Mavropulo-Stolyarenko G, Karonova T, Thieme D, Hoehenwarter W, Ihling C, Stefanov V, Grishina T, Frolov A. Multiple Glycation Sites in Blood Plasma Proteins as an Integrated Biomarker of Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:2329. [PMID: 31083443 PMCID: PMC6539793 DOI: 10.3390/ijms20092329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widely spread metabolic diseases. Because of its asymptomatic onset and slow development, early diagnosis and adequate glycaemic control are the prerequisites for successful T2DM therapy. In this context, individual amino acid residues might be sensitive indicators of alterations in blood glycation levels. Moreover, due to a large variation in the half-life times of plasma proteins, a generalized biomarker, based on multiple glycation sites, might provide comprehensive control of the glycemic status across any desired time span. Therefore, here, we address the patterns of glycation sites in highly-abundant blood plasma proteins of T2DM patients and corresponding age- and gender-matched controls by comprehensive liquid chromatography-mass spectrometry (LC-MS). The analysis revealed 42 lysyl residues, significantly upregulated under hyperglycemic conditions. Thereby, for 32 glycation sites, biomarker behavior was demonstrated here for the first time. The differentially glycated lysines represented nine plasma proteins with half-lives from 2 to 21 days, giving access to an integrated biomarker based on multiple protein-specific Amadori peptides. The validation of this biomarker relied on linear discriminant analysis (LDA) with random sub-sampling of the training set and leave-one-out cross-validation (LOOCV), which resulted in an accuracy, specificity, and sensitivity of 92%, 100%, and 85%, respectively.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | | | - Tatiana Karonova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
- Department of Faculty Therapy, The First Pavlov St. Petersburg State Medical University, 197022 Saint Petersburg, Russia.
| | - Domenika Thieme
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, D-06120 Halle (Saale), Germany.
| | - Vasily Stefanov
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| |
Collapse
|
26
|
Hudson DM, Archer M, King KB, Eyre DR. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase-mediated cross-linking. J Biol Chem 2018; 293:15620-15627. [PMID: 30143533 PMCID: PMC6177574 DOI: 10.1074/jbc.ra118.004829] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Nonenzymatic glycation of collagen has long been associated with the progressive secondary complications of diabetes. How exactly such random glycations result in impaired tissues is still poorly understood. Because of the slow turnover rate of most fibrillar collagens, they are more susceptible to accumulate time-dependent glycations and subsequent advanced glycation end-products. The latter are believed to include cross-links that stiffen host tissues. However, diabetic animal models have also displayed weakened tendons with reduced stiffness. Strikingly, not a single experimentally identified specific molecular site of glycation in a collagen has been reported. Here, using targeted MS, we have identified partial fructosyl-hydroxylysine glycations at each of the helical domain cross-linking sites of type I collagen that are elevated in tissues from a diabetic mouse model. Glycation was not found at any other collagen lysine residues. Type I collagen in mouse tendons is cross-linked intermolecularly by acid-labile aldimine bonds formed by the addition of telopeptide lysine aldehydes to hydroxylysine residues at positions α1(I)Lys87, α1(I)Lys930, α2(I)Lys87, and α2(I)Lys933 of the triple helix. Our data reveal that site-specific glycations of these specific lysines may significantly impair normal lysyl oxidase-controlled cross-linking in diabetic tendons. We propose that such N-linked glycations can hinder the normal cross-linking process, thus altering the content and/or placement of mature cross-links with the potential to modify tissue material properties.
Collapse
Affiliation(s)
- David M Hudson
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Marilyn Archer
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Karen B King
- the Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - David R Eyre
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| |
Collapse
|
27
|
Diagnostic Accuracy of Protein Glycation Sites in Long-Term Controlled Patients with Type 2 Diabetes Mellitus and Their Prognostic Potential for Early Diagnosis. Pharmaceuticals (Basel) 2018; 11:ph11020038. [PMID: 29710851 PMCID: PMC6027301 DOI: 10.3390/ph11020038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022] Open
Abstract
Current screening tests for type 2 diabetes mellitus (T2DM) identify less than 50% of undiagnosed T2DM patients and provide no information about how the disease will develop in prediabetic patients. Here, twenty-nine protein glycation sites were quantified after tryptic digestion of plasma samples at the peptide level using tandem mass spectrometry and isotope-labelled peptides as internal standard. The glycation degrees were determined in three groups, i.e., 48 patients with a duration of T2DM exceeding ten years, 48 non-diabetic individuals matched for gender, BMI, and age, and 20 prediabetic men. In long-term controlled diabetic patients, 27 glycated peptides were detected at significantly higher levels, providing moderate diagnostic accuracies (ACCs) from 61 to 79%, allowing a subgrouping of patients in three distinct clusters. Moreover, a feature set of one glycated peptides and six established clinical parameters provided an ACC of 95%. The same number of clusters was identified in prediabetic males (ACC of 95%) using a set of eight glycation sites (mostly from serum albumin). All patients present in one cluster showed progression of prediabetic state or advanced towards diabetes in the following five years. Overall, the studied glycation sites appear to be promising biomarkers for subgrouping prediabetic patients to estimate their risk for the development of T2DM.
Collapse
|
28
|
Soboleva A, Schmidt R, Vikhnina M, Grishina T, Frolov A. Maillard Proteomics: Opening New Pages. Int J Mol Sci 2017; 18:E2677. [PMID: 29231845 PMCID: PMC5751279 DOI: 10.3390/ijms18122677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer's disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06108 Halle, Germany.
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
29
|
Marques CMS, Nunes EA, Lago L, Pedron CN, Manieri TM, Sato RH, Oliveira VX, Cerchiaro G. Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:42-51. [PMID: 29150049 DOI: 10.1016/j.mrgentox.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Glucose, in the presence of reactive oxygen species (ROS), acts as an as an oxidative agent and drives deleterious processes in Diabetes Mellitus. We have studied the mechanism and the toxicological effects of glucose-dependent glycoxidation reactions driven by copper and ROS, using a model peptide based on the exposed sequence of Human Serum Albumin (HSA) and containing a lysine residue susceptible to copper complexation. The main products of these reactions are Advanced Glycation End-products (AGEs). Carboxymethyl lysine and pyrraline condensed on the model peptide, generating a Modified Peptide (MP). These products were isolated, purified, and tested on cultured motor neuron cells. We observed DNA damage, enhancement of membrane roughness, and formation of domes. We evaluated nuclear abnormalities by the cytokinesis-blocked micronucleus assay and we measured cytostatic and cytotoxic effects, chromosomal breakage, nuclear abnormalities, and cell death. AGEs formed by glycoxidation caused large micronucleus aberrations, apoptosis, and large-scale nuclear abnormalities, even at low concentrations.
Collapse
Affiliation(s)
| | - Emilene Arusievicz Nunes
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Larissa Lago
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Cibele Nicolaski Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Tânia Maria Manieri
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Roseli Hiromi Sato
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
30
|
|
31
|
Baldassarre M, Naldi M, Domenicali M, Volo S, Pietra M, Dondi F, Caraceni P, Peli A. Simple and rapid LC–MS method for the determination of circulating albumin microheterogeneity in veal calves exposed to heat stress. J Pharm Biomed Anal 2017; 144:263-268. [DOI: 10.1016/j.jpba.2017.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 12/17/2022]
|
32
|
Bhat S, Jagadeeshaprasad MG, Venkatasubramani V, Kulkarni MJ. Abundance matters: role of albumin in diabetes, a proteomics perspective. Expert Rev Proteomics 2017; 14:677-689. [PMID: 28689445 DOI: 10.1080/14789450.2017.1352473] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human serum albumin (HSA) is a multifaceted protein with vital physiological functions. It is the most abundant plasma protein with inherent capability to bind to diverse ligands, and thus susceptible to various post-translational modifications (PTMs) which alter its structure and functions. One such PTM is glycation, a non-enzymatic reaction between reducing sugar and protein leading to formation of heterogeneous advanced glycation end products (AGEs). Glycated albumin (GA) concentration increases significantly in diabetes and is implicated in development of secondary complications. Areas covered: In this review, we discuss in depth, formation of GA and its consequences, approaches used for characterization and quantification of GA, milestones in GA proteomics, clinical relevance of GA as a biomarker, significance of maintaining abundant levels of albumin and future perspectives. Expert commentary: Elevated GA levels are associated with development of insulin resistance as well as secondary complications, in healthy and diabetic individuals respectively. Mass spectrometry (MS) based approaches aid in precise characterization and quantification of GA including early and advanced glycated peptides, which can be useful in prediction of the disease status. Thus GA has evolved to be one of the best candidates in the pursuit of diagnostic markers for prediction of prediabetes and diabetic complications.
Collapse
Affiliation(s)
- Shweta Bhat
- a Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune , India
| | | | | | - Mahesh J Kulkarni
- a Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
33
|
Delanghe S, Moerman A, Pletinck A, Schepers E, Glorieux G, Van Biesen W, Delanghe JR, Speeckaert MM. Quantification of carbamylated albumin in serum based on capillary electrophoresis. Electrophoresis 2017; 38:2135-2140. [PMID: 28556931 DOI: 10.1002/elps.201700068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/14/2017] [Indexed: 11/09/2022]
Abstract
Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Alena Moerman
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | - Anneleen Pletinck
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Eva Schepers
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Griet Glorieux
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Wim Van Biesen
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | - Marijn M Speeckaert
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
34
|
Naldi M, Baldassarre M, Domenicali M, Bartolini M, Caraceni P. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J Pharm Biomed Anal 2017; 144:138-153. [PMID: 28465079 DOI: 10.1016/j.jpba.2017.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
Human serum albumin (HSA) is the most abundant circulating plasma protein. Besides a significant contribution to the osmotic pressure, it is also involved in the fine regulation of many other physiological processes, including the balance of the redox state, the inflammatory and/or immunological responses, and the pharmacokinetic and pharmacodynamics of many drugs. Growing evidence suggests that HSA undergoes structural and functional damage in diseases characterized by an enhanced systemic inflammatory response and oxidative stress, as it occurs in chronic liver disease. Based on their clinical relevance, this review provides a summary of the most common post-translational modifications affecting HSA structural integrity and functions and their clinical relevance in the field of liver disease. The review also provides a critical description of the analytical approaches employed for the investigation of conformational alterations and the identification/quantitation of specific post-translational modifications affecting HSA. Finally, the analytical methods available for the assessment of two of the most clinically relevant non-oncotic properties of HSA, namely the binding capacity and the antioxidant activity, are critically reviewed. Among the available techniques particular attention is given to those proposed for the in vitro and in vivo investigation of structurally modified albumin.
Collapse
Affiliation(s)
- Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Italy; Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Maurizio Baldassarre
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy
| | - Marco Domenicali
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Italy
| | - Paolo Caraceni
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy.
| |
Collapse
|
35
|
Effect of Temperature on Tolbutamide Binding to Glycated Serum Albumin. Molecules 2017; 22:molecules22040569. [PMID: 28362348 PMCID: PMC6154730 DOI: 10.3390/molecules22040569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Glycation process occurs in protein and becomes more pronounced in diabetes when an increased amount of reducing sugar is present in bloodstream. Glycation of protein may cause conformational changes resulting in the alterations of its binding properties even though they occur at a distance from the binding sites. The changes in protein properties could be related to several pathological consequences such as diabetic and nondiabetic cardiovascular diseases, cataract, renal dysfunction and Alzheimer's disease. The experiment was designed to test the impact of glycation process on sulfonylurea drug tolbutamide-albumin binding under physiological (T = 309 K) and inflammatory (T = 311 K and T = 313 K) states using fluorescence and UV-VIS spectroscopies. It was found in fluorescence analysis experiments that the modification of serum albumin in tryptophanyl and tyrosyl residues environment may affect the tolbutamide (TB) binding to albumin in subdomain IIA and/or IIIA (Sudlow's site I and/or II), and also in subdomains IB and IIB. We estimated the binding of tolbutamide to albumin described by a mixed nature of interaction (specific and nonspecific). The association constants Ka (L∙mol-1) for tolbutamide at its high affinity sites on non-glycated albumin were in the range of 1.98-7.88 × 10⁴ L∙mol-1 (λex = 275 nm), 1.20-1.64 × 10⁴ L∙mol-1 (λex = 295 nm) and decreased to 1.24-0.42 × 10⁴ L∙mol-1 at λex = 275 nm (T = 309 K and T = 311 K) and increased to 2.79 × 10⁴ L∙mol-1 at λex = 275 nm (T = 313 K) and to 4.43-6.61 × 10⁴ L∙mol-1 at λex = 295 nm due to the glycation process. Temperature dependence suggests the important role of van der Waals forces and hydrogen bonding in hydrophobic interactions between tolbutamide and both glycated and non-glycated albumin. We concluded that the changes in the environment of TB binding of albumin in subdomain IIA and/or IIIA as well as in subdomains IB and IIB influence on therapeutic effect and therefore the studies of the binding of tolbutamide (in diabetes) to transporting protein under glycation that refers to the modification of a protein are of great importance in pharmacology and biochemistry. This information may lead to the development of more effective drug therapy in people with diabetes.
Collapse
|
36
|
Paleari R, Bonetti G, Callà C, Carta M, Ceriotti F, Di Gaetano N, Ferri M, Guerra E, Lavalle G, Cascio CL, Martino FG, Montagnana M, Moretti M, Santini G, Scribano D, Testa R, Vero A, Mosca A. Multicenter evaluation of an enzymatic method for glycated albumin. Clin Chim Acta 2017; 469:81-86. [PMID: 28365449 DOI: 10.1016/j.cca.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND The use of glycated albumin (GA) has been proposed as an additional glycemic control marker particularly useful in intermediate-term monitoring and in situation when HbA1c test is not reliable. METHODS We have performed the first multicenter evaluation of the analytical performance of the enzymatic method quantILab Glycated Albumin assay implemented on the most widely used clinical chemistry analyzers (i.e. Abbott Architect C8000, Beckman Coulter AU 480 and 680, Roche Cobas C6000, Siemens ADVIA 2400 and 2400 XPT). RESULTS The repeatability of the GA measurement (expressed as CV, %) implemented in the participating centers ranged between 0.9% and 1.2%. The within-laboratory CVs ranged between 1.2% and 1.6%. A good alignment between laboratories was found, with correlation coefficients from 0.996 to 0.998. Linearity was confirmed in the range from 7.6 to 84.7%. CONCLUSION The new enzymatic method for glycated albumin evaluated by our investigation is suitable for clinical use.
Collapse
Affiliation(s)
- Renata Paleari
- Dip. di Fisiopatologia Medico-Chirurgica e dei Trapianti and Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME), Università degli Studi di Milano, Milano, Italy
| | - Graziella Bonetti
- Laboratorio Analisi Chimico Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Cinzia Callà
- Polo Scienze delle Immagini, di Laboratorio ed Infettivologiche. Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Roma, Italy
| | | | - Ferruccio Ceriotti
- Central Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Di Gaetano
- Instrumentation Laboratory - A Werfen Company, R&D Department, Milano, Italy
| | - Marilisa Ferri
- Laboratorio Analisi di Urbino, Azienda Sanitaria Unica Regione Marche Area Vasta 1, Fano, PU, Italy
| | - Elena Guerra
- Laboratorio di Standardizzazione, Servizio Medicina di Laboratorio, Ospedale S. Raffaele, Milano, Italy
| | | | - Claudia Lo Cascio
- UOC Laboratorio Analisi, Azienda Ospedaliera Universitaria Integrata Verona, Italy
| | | | - Martina Montagnana
- Sezione di Biochimica Clinica, Dip. di Neuroscienze, Biomedicina e Movimento, Università degli Studi di Verona, Verona, Italy
| | - Marco Moretti
- Patologia Clinica Azienda Ospedaliera Ospedali Riuniti Marche Nord Pesaro, Italy
| | - Gabriele Santini
- Instrumentation Laboratory - A Werfen Company, R&D Department, Milano, Italy
| | - Donata Scribano
- Polo Scienze delle Immagini, di Laboratorio ed Infettivologiche. Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Roma, Italy
| | - Roberto Testa
- Modelli di Integrazione Multidisciplinare in Patologia Clinica, INRCA-IRCCS, Ancona, Italy
| | - Anna Vero
- Laboratorio di Analisi Chimico-Clinica, Azienda Ospedaliera Pugliese Ciaccio, Catanzaro, Italy
| | - Andrea Mosca
- Dip. di Fisiopatologia Medico-Chirurgica e dei Trapianti and Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME), Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
37
|
Spiller S, Li Y, Blüher M, Welch L, Hoffmann R. Glycated lysine-141 in haptoglobin improves the diagnostic accuracy for type 2 diabetes mellitus in combination with glycated hemoglobin HbA 1c and fasting plasma glucose. Clin Proteomics 2017; 14:10. [PMID: 28360826 PMCID: PMC5370432 DOI: 10.1186/s12014-017-9145-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/18/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent epidemiological studies indicate that only 30-50% of undiagnosed type 2 diabetes mellitus (T2DM) patients are identified using glycated hemoglobin (HbA1c) and elevated fasting plasma glucose (FPG) levels. Thus, novel biomarkers for early diagnosis and prognosis are urgently needed for providing early and personalized treatment. METHODS Here, we studied the glycation degrees of 27 glycation sites representing nine plasma proteins in 48 newly diagnosed male T2DM patients and 48 non-diabetic men matched for age (range 35-65 years). Samples were digested with trypsin and enriched for glycated peptides using boronic acid affinity chromatography. Quantification relied on mass spectrometry (multiple reaction monitoring) using isotope-labelled peptides as internal standard. RESULTS The combination of glycated lysine-141 of haptoglobin (HP K141) and HbA1c provided a sensitivity of 94%, a specificity of 98%, and an accuracy of 96% to identify T2DM. A set of 15 features considering three glycation sites in human serum albumin, HP K141, and 11 routine laboratory measures of T2DM, metabolic syndrome, obesity, inflammation, and insulin resistance provided a sensitivity of 98%, a specificity of 100%, and an accuracy of 99% for newly diagnosed T2DM patients. CONCLUSIONS Our studies demonstrated the great potential of glycation sites in plasma proteins providing an additional diagnostic tool for T2DM and elucidating that the combination of these sites with HbA1c and FPG could improve the diagnosis of T2DM.
Collapse
Affiliation(s)
- Sandro Spiller
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH USA
| | - Matthias Blüher
- Department for Internal Medicine, Clinic for Endocrinology and Nephrology, University Hospital Leipzig, Universität Leipzig, Leipzig, Germany
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH USA
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Dozio E, Di Gaetano N, Findeisen P, Corsi Romanelli MM. Glycated albumin: from biochemistry and laboratory medicine to clinical practice. Endocrine 2017; 55:682-690. [PMID: 27623968 DOI: 10.1007/s12020-016-1091-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023]
Abstract
This review summarizes current knowledge about glycated albumin. We review the changes induced by glycation on the properties of albumin, the pathological implications of high glycated albumin levels, glycated albumin quantification methods, and the use of glycated albumin as a complementary biomarker for diabetes mellitus diagnosis and monitoring and for dealing with long-term complications. The advantages and limits of this biomarker in different clinical settings are also discussed.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133, Milan, Italy
| | - Nicola Di Gaetano
- Instrumentation Laboratory-A Werfen Company, R&D Department, Viale Monza 338, 20128, Milan, Italy
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Theodor Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133, Milan, Italy.
- Service of Laboratory Medicine 1-Clinical Pathology, I.R.C.C.S. Policlinico San Donato, Piazza E. Malan 1, 20097, San Donato Milanese, Milan, Italy.
| |
Collapse
|
39
|
Sabbioni G, Turesky RJ. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chem Res Toxicol 2017; 30:332-366. [PMID: 27989119 PMCID: PMC5241710 DOI: 10.1021/acs.chemrestox.6b00366] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
- Alpine Institute of Chemistry and Toxicology, CH-6718 Olivone, Switzerland
- Walther-Straub-Institut für Pharmakologie
und Toxikologie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Robert J. Turesky
- Masonic Cancer Center and Department of
Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Soboleva A, Modzel M, Didio A, Płóciennik H, Kijewska M, Grischina T, Karonova T, Bilova T, Stefanov V, Stefanowicz P, Frolov A. Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides. ANALYTICAL METHODS 2017; 9:409-418. [DOI: 10.1039/c6ay02483a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
A new analytical approach is proposed for quantification of multiple glycated peptides in human plasma tryptic digests.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
| | | | - Anna Didio
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
| | | | | | - Tatiana Grischina
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
| | - Tatiana Karonova
- Federal Almazov North-West Medical Research Centre
- Russian Federation
- The First Pavlov St. Petersburg State Medical University
- Russian Federation
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry
- St. Petersburg State University
- Russian Federation
| | - Vasily Stefanov
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
| | | | - Andrej Frolov
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- Halle/Saale
- Germany
| |
Collapse
|
41
|
Chen CW, Drechsler C, Suntharalingam P, Karumanchi SA, Wanner C, Berg AH. High Glycated Albumin and Mortality in Persons with Diabetes Mellitus on Hemodialysis. Clin Chem 2016; 63:477-485. [PMID: 27737895 DOI: 10.1373/clinchem.2016.258319] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Monitoring of glycemic control with hemoglobin A1c (A1c) in hemodialysis patients may be compromised by anemia and erythropoietin therapy. Glycated albumin (GA) is an alternative measure of glycemic control but is not commonly used because of insufficient evidence of association to clinical outcomes. We tested whether GA measurements were associated with mortality in hemodialysis patients with diabetes mellitus. METHODS The German Diabetes and Dialysis Study (4D) investigated effects of atorvastatin on survival in 1255 patients with diabetes mellitus receiving hemodialysis. We measured GA during months 0, 6, and 12. Cox proportional hazards analysis was used to measure associations between GA and A1c and all-cause mortality. RESULTS Patients with high baseline GA (fourth quartile) had a 42% higher 4-year mortality compared to those in the first quartile (HR 1.42; 95% CI, 1.09-1.85, P = 0.009). Repeated measurements of GA during year one also demonstrated that individuals in the top quartile for GA (analyzed as a time-varying covariate) had a 39% higher 4-year mortality (HR 1.39; 95% CI, 1.05-1.85, P = 0.022). The associations between high A1c and mortality using similar analyses were less consistent; mortality in individuals with baseline A1c values in the 3rd quartile was increased compared to 1st quartile (HR 1.36; 95% CI, 1.04-1.77, P = 0.023), but risk was not significantly increased in the 2nd or 4th quartiles, and there was a less consistent association between time-varying A1c values and mortality. CONCLUSIONS High GA measurements are consistently associated with increased mortality in patients with diabetes mellitus on hemodialysis.
Collapse
Affiliation(s)
- Christina W Chen
- Division of Nephrology and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Christiane Drechsler
- Division of Nephrology, Department of Internal Medicine 1, University Hospital Würzburg and Comprehensive Heart Failure Center, Würzburg, Germany
| | | | - S Ananth Karumanchi
- Division of Nephrology and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine 1, University Hospital Würzburg and Comprehensive Heart Failure Center, Würzburg, Germany
| | - Anders H Berg
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
42
|
Bilova T, Lukasheva E, Brauch D, Greifenhagen U, Paudel G, Tarakhovskaya E, Frolova N, Mittasch J, Balcke GU, Tissier A, Osmolovskaya N, Vogt T, Wessjohann LA, Birkemeyer C, Milkowski C, Frolov A. A Snapshot of the Plant Glycated Proteome: STRUCTURAL, FUNCTIONAL, AND MECHANISTIC ASPECTS. J Biol Chem 2016; 291:7621-36. [PMID: 26786108 PMCID: PMC4817189 DOI: 10.1074/jbc.m115.678581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome ofBrassica napusand characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made withArabidopsis thaliana The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.
Collapse
Affiliation(s)
- Tatiana Bilova
- From the Departments of Bioorganic Chemistry and Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Elena Lukasheva
- Departments of Biochemistry and Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dominic Brauch
- Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, Germany, and
| | - Uta Greifenhagen
- Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Gagan Paudel
- From the Departments of Bioorganic Chemistry and Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Elena Tarakhovskaya
- Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Interdisciplinary Center for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale),Germany
| | - Juliane Mittasch
- Interdisciplinary Center for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale),Germany
| | - Gerd Ulrich Balcke
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Alain Tissier
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Natalia Osmolovskaya
- Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Thomas Vogt
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | | | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Carsten Milkowski
- Interdisciplinary Center for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale),Germany
| | - Andrej Frolov
- From the Departments of Bioorganic Chemistry and Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany,
| |
Collapse
|
43
|
Brede C, Hop B, Jørgensen K, Skadberg Ø. Measurement of glycated albumin in serum and plasma by LC-MS/MS. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:195-201. [PMID: 26898156 DOI: 10.3109/00365513.2015.1129671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diagnosis of diabetes and monitoring of long-term blood sugar are preferably done by measurement of glycated hemoglobin (HbA1c). Diabetic patients with end stage renal disease (ESRD) may have short-lived red blood cells due to hemodialysis (HD), and thus higher turnover of hemoglobin. The level of glycated hemoglobin (HbA1c) may be lower than expected for these patients, even at increased blood glucose, possibly making glycated albumin (GA) measurement a better alternative. METHODS The percentage of GA was measured by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Fast and efficient trypsin digestion of proteins in diluted serum or plasma resulted in a high number of proteotypic peptides from albumin, including KQTALVELVK which was detected both glycated and non-glycated by multiple reaction monitoring (MRM). The percentage of GA was estimated by neat peak area response of glycated peptide divided by the sum of glycated and non-glycated peptide. RESULTS Acceptable method reproducibility (6% CV), repeatability (2-6% CV), limit of quantification (0.75% GA), linearity (R(2) = 0.999) and recovery (79 ± 9%) was achieved without using calibration or isotope-labeled internal standard. GA was strongly correlated with HbA1c (r = 0.84) for patients without ESRD. The average ratio of GA/HbA1c was significantly higher (p = 0.0021) for ESRD patients (1.84 ± 0.38, n = 62) compared to other patients (1.67 ± 0.28, n = 225). CONCLUSION GA measurement by detecting glycation in KQTALVELVK with LC-MS/MS seems to be a useful supplement to HbA1c for detecting increased blood glucose in diabetic patients with ESRD.
Collapse
Affiliation(s)
- Cato Brede
- a Department of Medical Biochemistry , Stavanger University Hospital , Stavanger
| | - Beate Hop
- b Department of Mathematics and Natural Sciences , University of Stavanger , Stavanger , Norway
| | - Kåre Jørgensen
- b Department of Mathematics and Natural Sciences , University of Stavanger , Stavanger , Norway
| | - Øyvind Skadberg
- a Department of Medical Biochemistry , Stavanger University Hospital , Stavanger
| |
Collapse
|
44
|
Awasthi S, Saraswathi NT. Non-enzymatic glycation mediated structure–function changes in proteins: case of serum albumin. RSC Adv 2016. [DOI: 10.1039/c6ra08283a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Albumin, a major plasma protein with extraordinary ligand binding properties, transports various ligands ranging from drugs, hormones, fatty acids, and toxins to different tissues and organs in the body.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - N. T. Saraswathi
- Molecular Biophysics Lab
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| |
Collapse
|
45
|
Gajjala PR, Fliser D, Speer T, Jankowski V, Jankowski J. Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrol Dial Transplant 2015; 30:1814-1824. [DOI: 10.1093/ndt/gfv048] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
46
|
Anguizola J, Debolt E, Suresh D, Hage DS. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:175-181. [PMID: 26468085 DOI: 10.1016/j.jchromb.2015.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/01/2022]
Abstract
The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems.
Collapse
Affiliation(s)
- Jeanethe Anguizola
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Erin Debolt
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - D Suresh
- Home Department: Department of Chemistry, Tumkur University, Tumkur, Karnataka 572103, India
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
47
|
Greifenhagen U, Nguyen VD, Moschner J, Giannis A, Frolov A, Hoffmann R. Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma. J Proteome Res 2015; 14:768-77. [PMID: 25423611 DOI: 10.1021/pr500799m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycation refers to a nonenzymatic post-translational modification formed by the reaction of amino groups and reducing sugars. Consecutive oxidation and degradation can produce advanced glycation end products (AGEs), such as N(ε)-(carboxyethyl)lysine (CEL) and N(ε)-(carboxymethyl)lysine (CML). Although CEL and CML are considered to be markers of arteriosclerosis, diabetes mellitus, and aging, the modified proteins and the exact modification sites are mostly unknown due to their low frequency and a lack of enrichment strategies. Here, we report characteristic fragmentation patterns of CML- and CEL-containing peptides and two modification-specific reporter ions for each modification (CML, m/z 142.1 and 187.1; CEL, m/z 156.1 and 201.1). The protocol allowed sensitive and selective precursor ion scans to detect the modified peptides in complex sample mixtures. The corresponding m/z values identified eight CEL/CML-modification sites in glycated human serum albumin (HSA) by targeted nano-RPC-MS/MS. The same strategy revealed 21 CML sites in 17 different proteins, including modified lysine residues 88 and 396 of human serum albumin, in a pooled plasma sample that was obtained from patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Uta Greifenhagen
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, ‡Center for Biotechnology and Biomedicine (BBZ), §Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig , 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Kijewska M, Radziszewska K, Kielmas M, Stefanowicz P, Szewczuk Z. Nonenzymatic modification of Ubiquitin under high-pressure and -temperature treatment: mass spectrometric studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:614-619. [PMID: 25521393 DOI: 10.1021/jf505628e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of high-pressure and/or high-temperature on the glycation of a model protein (ubiquitin) was investigated by mass spectrometry. This paper reports the impact of high pressure (up to 1200 MPa) on the modification of a ubiquitin using ESI-MS measurements. The application of glucose labeled with stable isotope allows a quantitative assessment of modification under the conditions of high-pressure (HPG) and high-temperature (HTG) glycation. A higher degree of modification was observed for the sample heated at 80 °C for 25 min under atmospheric pressure than for sample treated under high pressure. In samples treated at pressure below 400 MPa an insignificant increase of glycation level was observed, whereas high pressure (>600 MPa) has only a minor effect on the number of hexose moieties (Fru) attached to the lysine residue side chain.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław , Wrocław, Poland
| | | | | | | | | |
Collapse
|
49
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
50
|
Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Jaramillo Ortiz S, Ramirez Segovia AS, Wrobel K. Effect of different glycation agents on Cu(II) binding to human serum albumin, studied by liquid chromatography, nitrogen microwave-plasma atomic-emission spectrometry, inductively-coupled-plasma mass spectrometry, and high-resolution molecular-mass spectrometry. Anal Bioanal Chem 2014; 407:1149-57. [PMID: 25428457 DOI: 10.1007/s00216-014-8335-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 01/15/2023]
Abstract
The ability of human serum albumin to capture unbound copper under different clinical conditions is an important variable potentially affecting homeostasis of this element. Here, we propose a simple procedure based on size-exclusion chromatography with on-line UV and nitrogen microwave-plasma atomic-emission spectrometry (MP-AES) for quantitative evaluation of Cu(II) binding to HSA upon its glycation in vitro. The Cu-to-protein molar ratio for non-glycated albumin was 0.98 ± 0.09; for HSA modified with glyoxal (GO), methylglyoxal (MGO), oxoacetic acid (GA), and glucose (Glc), the ratios were 1.30 ± 0.22, 0.72 ± 0.14, 0.50 ± 0.06, and 0.95 ± 0.12, respectively. The results were confirmed by using ICP-MS as an alternative detection system. A reduced ability of glycated protein to coordinate Cu(II) was associated with alteration of the N-terminal metal-binding site during incubation with MGO and GA. In contrast, glycation with GO seemed to generate new binding sites as a result of tertiary structural changes in HSA. Capillary reversed-phase liquid chromatography with electrospray-ionization quadrupole-time-of-flight tandem mass spectrometry enabled detection and identification of Cu(II) coordinated to the N-terminal metal-binding site (Cu(II)-DAHK) in all tryptic digests analyzed. This is the first report confirming Cu(II)-DAHK species in HSA by means of high-resolution tandem mass spectrometry, and the first report on the use of MP-AES in combination with chromatographic separation.
Collapse
Affiliation(s)
- Alma Rosa Corrales Escobosa
- Chemistry Department, Division of Natural and Exact Sciences, University of Guanajuato, L. de Retana 5, 36000, Guanajuato, Mexico
| | | | | | | | | | | |
Collapse
|