1
|
Sun W, Hu K, Song Z, An R, Liang X. One-Pot Detection of miRNA by Dual Rolling Circle Amplification at Ambient Temperature with High Specificity and Sensitivity. BIOSENSORS 2025; 15:317. [PMID: 40422056 DOI: 10.3390/bios15050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025]
Abstract
Rolling circle amplification (RCA) at ambient temperature is prone to false positive signals during nucleic acid detection, which makes it challenging to establish an efficient RCA detection method. The false positive signals are primarily caused by binding of non-target nucleic acids to the circular single-stranded template, leading to non-specific amplification. Here, we present an RCA method for miRNA detection at 37 °C using two circular ssDNAs, each of which is formed by ligating the intramolecularly formed nick (without any splint) in a secondary structure. The specific target recognition is realized by utilizing low concentrations (0.1 nM) of circular ssDNA1 (C1). A phosphorothioate modification is present at G*AATTC on C1 to generate a nick for primer extension during the primer self-generated rolling circle amplification (PG-RCA). The fragmented amplification products are used as primers for the following RCA that serves as signal amplification using circular ssDNA2 (C2). Notably, the absence of splints and the low concentration of C1 significantly inhibits non-target binding, thus minimizing false positive signals. A high concentration (10 nM) of C2 is used to carry out linear rolling circle amplification (LRCA), which is highly specific. This strategy demonstrates a good linear response to 0.01-100 pM of miRNA with a detection limit of 7.76 fM (miR-155). Moreover, it can distinguish single-nucleotide mismatch in the target miRNA, enabling the rapid one-pot detection of miRNA at 37 °C. Accordingly, this method performs with high specificity and sensitivity. This approach is suitable for clinical serum sample analysis and offers a strategy for developing specific biosensors and diagnostic tools.
Collapse
Affiliation(s)
- Wenhua Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Kunling Hu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Ziting Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Ran An
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
2
|
Fioravanti A, Cheleschi S, Cavalier E, Reginster JY, Alokail M, Ladang A, Tenti S, Bedogni G. Can Circulating MicroRNAs, Cytokines, and Adipokines Help to Differentiate Psoriatic Arthritis from Erosive Osteoarthritis of the Hand? A Case-Control Study. Int J Mol Sci 2025; 26:4621. [PMID: 40429765 PMCID: PMC12111288 DOI: 10.3390/ijms26104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
The differential diagnosis of erosive osteoarthritis of the hand (EHOA) and psoriatic arthritis (PsA) is challenging, especially considering the absence of specific diagnostic biomarkers. The aim of the present study was to evaluate whether a pattern of microRNAs (miRNAs) (miR-21, miR-140, miR-146a, miR-155, miR-181a, miR-223), pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-17a, IL-23a, and tumor necrosis factor (TNF)-α], and adipokines (adiponectin, chemerin, leptin, resistin, and visfatin) could help to differentiate EHOA from PsA. Fifty patients with EHOA, fifty patients with PsA, and fifty healthy subjects (HS) were studied. The gene expression of miRNAs and cytokines were evaluated by real-time PCR from peripheral blood mononuclear cells and serum levels of cytokines and adipokines were quantified by ELISA in PsA and EHOA patients and HS. Gene expression showed the significant up-regulation of the analyzed miRNAs in EHOA and PsA patients as compared to HS and higher miR-155 in EHOA vs. PsA patients. The expression levels of IL-1β and IL-6 did not show any significant differences between EHOA and PsA, while IL-17a and IL-23a were significantly up-regulated in PsA compared to EHOA. Circulating TNF-α levels were higher in EHOA compared to PsA, while PsA patients exhibited significantly elevated levels of IL-23a. The combination of miR-155 with C-reactive protein enhanced the ability to differentiate EHOA from PsA, further supporting the potential of miR-155 as a diagnostic biomarker.
Collapse
Affiliation(s)
- Antonella Fioravanti
- Independent Researcher, 53100 Siena, Italy (Previously Responsible for the Clinic for the Diagnosis and Management of Hand Osteoarthritis, of the Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy)
| | - Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, 4000 Liege, Belgium; (E.C.); (A.L.)
| | - Jean-Yves Reginster
- Biochemistry Department, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (J.-Y.R.); (M.A.)
| | - Majed Alokail
- Biochemistry Department, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (J.-Y.R.); (M.A.)
| | - Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, 4000 Liege, Belgium; (E.C.); (A.L.)
| | - Sara Tenti
- Azienda USL Toscana Sud Est, 52100 Arezzo, Italy (Previously Responsible for the Clinic for the Diagnosis and Management of Hand Osteoarthritis, of the Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy)
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Primary Health Care, Internal Medicine Unit Addressed to Frailty and Aging, S. Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
3
|
Hering C, Conover GM. Advancing Ischemic Stroke Prognosis: Key Role of MiR-155 Non-Coding RNA. Int J Mol Sci 2025; 26:3947. [PMID: 40362186 PMCID: PMC12071504 DOI: 10.3390/ijms26093947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemic stroke (IS) is the leading cause of long-term disability and the second leading cause of death worldwide. It remains a significant clinical problem because only supportive therapies exist, such as thrombolytic agents and surgical thrombectomy, which do not restore function. Understanding the molecular pathogenesis of IS, including dysfunction in oxidative homeostasis, apoptosis, neuroinflammation and neuroprotection, is crucial to developing therapies. Non-coding RNAs (ncRNAs) are master regulators, and one ncRNA that stands out is miR-155, a pro-inflammatory micro-RNA elevated in stroke. This review addresses the biological mechanisms reported in the literature that support using miR-155 as a biomarker and therapeutic agent to treat IS in patients.
Collapse
Affiliation(s)
| | - Gloria M. Conover
- Department of Medical Education, College of Medicine, Texas A&M University, Bryan, TX 77807, USA;
| |
Collapse
|
4
|
Wang H, Liao J, Wang W, Zhang J. A crucial role of miR-155 in the pathomechanism of acute kidney injury. Front Pharmacol 2025; 16:1570000. [PMID: 40308762 PMCID: PMC12040948 DOI: 10.3389/fphar.2025.1570000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Acute kidney injury (AKI) is one of the nonnegligible causes of mortality worldwide. It is important to understand the underlying molecular mechanism of AKI to effective therapeutic targets. miR-155 has been found to play a pivotal role in the development of AKI, while a comprehensive review on this topic is currently still lacking. Based on this review, we found that miR-155and is strongly correlated with the pathophysiological development of AKI by modulating cell apoptosis, inflammation, and proliferation. Mechanistically, miR-155 exerts a promoting function in multiple types of AKI by regulating multiple proteins or signaling pathways, such as SOCS-1, ERRFI1, SOCS-1, TRF1, CDK12, and TCF4/Wnt/β-catenin pathway. The inhibition of miR-155 has a renoprotective effect in drug- or substance-induced AKI. Therefore, drugs or biological compounds targeted by miR-155 and its pathways may recover the process of AKI by altering apoptosis, inflammation, and pyroptosis. A miRNA nanocarrier system that has already been developed could offer a novel approach to treat AKI, providing a direction for future research. Further large-scale studies are necessary to elucidate the clinical significance of miR-155 as a potential therapeutic target for multiple types of AKI.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, The First People’s Hospital of Linhai, Linhai, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wei Wang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People’s Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Jianhua Zhang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People’s Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Al-Sharabass EA, El-Houseini ME, Effat H, Ibrahim SA, Abdellateif MS. The clinical potential of PDL-1 pathway and some related micro-RNAs as promising diagnostic markers for breast cancer. Mol Med 2025; 31:106. [PMID: 40108523 PMCID: PMC11921724 DOI: 10.1186/s10020-025-01137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Immune checkpoint pathways play important roles in breast cancer (BC) pathogenesis and therapy. METHODS Expression levels of programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed death-ligand 1 (PD-L1), Forkhead box P3 (FOXP3), miR-155, and miR-195 were assessed in the peripheral blood of 90 BC patients compared to 30 healthy controls using quantitative real-time PCR (qRt-PCR). The plasma level of soluble MHC class I chain related-protein B (MIC-B) protein was assessed using the enzyme linked immunosorbent assay (ELISA) technique. The data were correlated to the clinico-pathological characteristics of the patients. RESULTS There was a significant increase in the expression levels of PDL-1 [17.59 (3.24-123), p < 0.001], CTLA-4 [23.34 (1.3-1267), p = 0.006], PD-1 [10.25 (1-280), p < 0.001], FOXP3 [11.5 (1-234.8), p = 0.001], miR-155 [87.3 (1.5-910), p < 0.001] in BC patients compared to normal controls. The miR-195 was significantly downregulated in BC patients [0.23 (0-0.98, p < 0.001]. The plasma level of MIC-B was significantly increased in the BC patients [0.941 (0.204-6.38) ng/ml], compared to the control group [0.351 (0.211-0.884) ng/mL, p < 0.00]. PDL-1, CTLA-4, PD-1, and FOXP3 achieved a specificity of 100% for distinguishing BC patients, at a sensitivity of 93.3%, 82.2%, 62.2%, and 71.1% respectively. The combined expression of PDL-1 and CTLA-4 scored a 100% sensitivity and 100% specificity for diagnosing BC (p < 0.001). The sensitivity, specificity, and AUC of miR-155 were 88.9%, 96.7%, and 0.934; respectively (p < 0.001). While those of miR-195 were 73.3%, 60%, and 0.716; respectively (p = 0.001). MIC-B expression showed a 77.8% sensitivity, 80% specificity, and 0.811 AUC at a cutoff of 1.17 ng/ml (p < 0.001). Combined expression of miR-155 and miR-195 achieved a sensitivity of 91.1%, a specificity of 96.7%, and AUC of 0.926 (p < 0.001). Multivariate analysis showed that PDL-1 (OR:13.825, p = 0.004), CTLA-4 (OR: 20.958, p = 0.010), PD-1(OR:10.550, p = 0.044), MIC-B (OR: 17.89, p = 0.003), miR-155 (OR: 211.356, P < 0.001), and miR-195(OR:0.006, P < 0.001) were considered as independent risk factors for BC. CONCLUSIONS The PB levels of PDL-1, CTLA-4, PD-1, FOXP3, MIC-B, miR-155, and miR-195 could be used as promising diagnostic markers for BC patients.
Collapse
Affiliation(s)
| | - Motawa E El-Houseini
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Zhang L, Wang R, Nan Y, Kong L. Molecular regulators of alcoholic liver disease: a comprehensive analysis of microRNAs and long non-coding RNAs. Front Med (Lausanne) 2025; 12:1482089. [PMID: 40130250 PMCID: PMC11931045 DOI: 10.3389/fmed.2025.1482089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Many biomolecules and signaling pathways are involved in the development of alcoholic liver disease (ALD). The molecular mechanisms of ALD are not fully understood and there is no effective treatment. Numerous studies have demonstrated the critical role of non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), in ALD. miRNAs play an important regulatory role in the pathogenesis of ALD by controlling critical biological processes such as inflammation, oxidative stress, lipid metabolism, apoptosis and fibrosis. Among them, miR-155, miR-223 and miR-34a play a central role in these processes and influence the pathological process of ALD. In addition, lncRNAs are involved in regulating liver injury and repair by interacting with miRNAs to form a complex regulatory network. These findings help to elucidate the molecular mechanisms of ALD and provide a scientific basis for the development of new diagnostic markers and therapeutic targets. In this article, we review the roles and mechanisms of LncRNAs and miRNAs in ALD and their potential use as diagnostic markers and therapeutic targets.
Collapse
|
7
|
Xia X, Liang Z, Xu G, Wei F, Yang J, Zhu X, Zhou C, Ye J, Hu Q, Zhao Z, Tang BZ, Cen Y. Split crRNA Precisely Assisted Cas12a Expansion Strategy for Simultaneous, Discriminative, and Low-Threshold Determination of Two miRNAs Associated with Multiple Sclerosis. Anal Chem 2025; 97:2873-2882. [PMID: 39894990 DOI: 10.1021/acs.analchem.4c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Multiple sclerosis (MS) can proceed into secondary progressive MS accompanied by persistent neurological deterioration; therefore, accurate diagnosis of MS is of vital significance. Irregularities of microRNAs (miRNAs) expression have been observed in MS, so miRNAs have been evaluated as novel biomarkers and therapeutic targets. Herein, a new strategy named split crRNA precisely assisted Cas12a expansion (SPACE) was developed for simultaneous, discriminative, and low-threshold determination of two MS-related miRNAs: miRNA-155 and miRNA-326. On the one hand, owing to the property that split crRNA could activate Cas12a, miRNAs were designed as the spacers of crRNA to combine with scaffold. These integrated crRNAs then recognized the activators, activating Cas12a and enabling RNA target identification. On the other hand, the SPACE strategy dexterously integrated the activator with reporter probe, and utilized Cas12a's cis-cleavage to achieve simultaneous detection and differential signal output for miRNA-155 and miRNA-326. Moreover, trans-cleavage with ultra-high efficiency was assembled in the SPACE strategy to achieve sensitive quantification of total miRNAs in blood samples at low thresholds. Overall, the diversified and integrated design of the SPACE strategy enabled simultaneous, discriminative, and low-threshold detection of dual MS-related miRNAs in one pot and one step, providing a reliable and accurate Cas12a detection tool for clinical low-threshold diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhigang Liang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Northern Jiangsu Institute of Clinical Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Jun Ye
- Clinical Medical Laboratory Center, Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Clinical Medical Laboratory Center, Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
8
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
9
|
Picco F, Zeboudj L, Oggero S, Prato V, Burgoyne T, Gamper N, Malcangio M. Macrophage to neuron communication via extracellular vesicles in neuropathic pain conditions. Heliyon 2025; 11:e41268. [PMID: 39811367 PMCID: PMC11730208 DOI: 10.1016/j.heliyon.2024.e41268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Neuropathic pain following peripheral nerve injury results from maladaptive changes in neurons and immune cells contribution to mechanisms underlying chronic pain. Specifically, in dorsal root ganglia (DRG), sensory neuron cell bodies release extracellular vesicles (EVs) which promote pro-inflammatory macrophage accumulation that facilitates nociceptive signalling. Here, we show that macrophages shuttle EVs to neurons. Indeed, bone marrow-derived macrophages (BMDMs) release EVs containing microRNA-155 (miR-155) which are taken up by cultured sensory neurons. EV-mediated transfer of miR-155 suppresses phosphatase Ship1 expression and increases cytokine interleukin-6 (IL-6) contents. Intrathecal-injected BMDM-derived EVs accumulate in lumbar DRG and EVs containing miR-155 antagomir result in Ship1 upregulation, Il6 downregulation in neurons in concomitance to attenuation of neuropathic mechanical hypersensitivity. These data suggest that, under neuropathic conditions, pro-inflammatory macrophages shuttle EV-containing miR-155 to neurons and contribute to the expression of pronociceptive IL-6 in DRG.
Collapse
Affiliation(s)
- Francesca Picco
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| | - Lynda Zeboudj
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| | - Silvia Oggero
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| | - Vincenzo Prato
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, United Kingdom
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Nikita Gamper
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Marzia Malcangio
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Jinnouchi T, Henmi R, Watanabe K, Suyama Y, Sakama R, Idezuki T, Hayashi M. Systemic lupus erythematosus and pulmonary tuberculosis in a patient developing acute-onset type 1 diabetes. Diabetol Int 2025; 16:175-181. [PMID: 39877438 PMCID: PMC11769924 DOI: 10.1007/s13340-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
A 73-year-old Japanese woman was admitted to our hospital with anorexia, weight loss, and fever. A few weeks prior to admission, she became aware of anorexia. She was leukopenic, complement-depleted, and positive for antinuclear antibodies and anti-double stranded DNA antibodies. She was also found to have chronic airway inflammation on computed tomography. At the time of admission, she had multiple erythematous plaques on face and neck. She had blood glucose 343 mg/dL, HbA1c 12.7%, serum C-peptide 0.74 ng/mL, urinary C-peptide 17 μg/day, and urinary ketone 3+; and was positive for anti-glutamic acid decarboxylase antibodies and anti-zinc transporter 8 antibodies. Her human leukocyte antigen type was DRB1* 09:01-DQB1* 03:03, which is a susceptibility haplotype for acute-onset type 1 diabetes (T1D). Therefore, she was diagnosed as having concomitant T1D and SLE. Initial treatment with insulin and prednisolone alleviated her symptoms. However, sputum culture revealed Mycobacterium tuberculosis 23 days later, and she was treated with a multidrug regimen. The timing of onset of the SLE and T1D was estimated to be 4-7 weeks prior to admission. No imaging findings were available prior to 3 weeks of admission, making it difficult to determine the timing of onset of pulmonary tuberculosis (TB). In summary, SLE and T1D are both autoimmune diseases, but rarely occur together. Environmental and genetic factors are involved in the development of T1D and SLE, but TB is rarely thought of as a causative environmental factor. In the present case, SLE, T1D, and TB may have interacted during their respective onsets.
Collapse
Affiliation(s)
- Takanobu Jinnouchi
- Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan
| | - Riko Henmi
- Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan
| | - Kaoru Watanabe
- Department of Respiratory Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yasuhiro Suyama
- Department of Rheumatology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Reiko Sakama
- Department of General Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Takeo Idezuki
- Department of Dermatology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Michio Hayashi
- Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan
| |
Collapse
|
11
|
Wang K, Zhu J, Gao W, Guo W, Guo Y. The Effect of Hybrid Blood Purification Combined with Ulinastatin for the Treatment of Severe Sepsis on APACHE II Score and Levels of miR-146a and miR-155. Int J Gen Med 2024; 17:5897-5905. [PMID: 39678685 PMCID: PMC11645247 DOI: 10.2147/ijgm.s491193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Background Severe sepsis is a systemic inflammatory response syndrome caused by infection, and the Acute Physiological Assessment and Chronic Health Evaluation II (APACHE II) scoring system is widely used to assess the severity of severe patients. Hybrid blood purification treatment (HBPT) and ulinastatin (UTI) have shown good efficacy in a variety of inflammatory diseases, and miR-146a and miR-155 were found to be closely related to inflammatory reaction. The purpose of this study was to investigate the effect of HBPT combined with UTI in the treatment of patients with severe sepsis, especially the effects on APACHE II score and miR-146a and miR-155 levels. Methods We carried out a retrospective analysis of clinical data with severe sepsis admitted to our hospital from January 2020 to June 2022. The patients were divided into an HBPT or HBPT+UTI group according to the treatment records. The APACHE II score, miR-146a level, miR-155 level, inflammatory factors, and rehabilitation status of both groups were analyzed and compared before and after treatment. Results A total of 150 were included in the analysis, there were 77 participants in HBPT+UTI and 73 in HBPT group. After treatment, the APACHE II score and levels of miR-146a, miR-155, and inflammatory factors were significantly lower than that before treatment. Furthermore, the HBPT+UTI group showed significantly lower values than the HBPT group (all P < 0.05). The recovery time of serum amylase, the disappearance time of abdominal pain, and the length of hospitalization in the HBPT+UTI group were significantly shorter than those in the HBPT group (all P < 0.05). Conclusion UTI treatment combined with the administration of HBPT could improve the APACHE II score, alleviate the inflammatory reaction, and significantly improve the short-term prognosis of the patients with severe sepsis.
Collapse
Affiliation(s)
- Kai Wang
- Department of Emergency, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Jihong Zhu
- Department of Emergency, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Weibo Gao
- Department of Emergency, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Wei Guo
- Department of Emergency, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| | - Yang Guo
- Department of Emergency, Peking University People’s Hospital, Beijing, 100044, People’s Republic of China
| |
Collapse
|
12
|
Wang Q, Yang Z, Chen X, Yang Y, Jiang K. Noncoding RNA, friend or foe for nephrolithiasis? Front Cell Dev Biol 2024; 12:1457319. [PMID: 39633711 PMCID: PMC11614778 DOI: 10.3389/fcell.2024.1457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nephrolithiasis is one of the most common diseases in urology, characterized by notable incidence and recurrence rates, leading to significant morbidity and financial burden. Despite its prevalence, the precise mechanisms underlying stone formation remain incompletely understood, thus hindering significant advancements in kidney stone management over the past three decades. Investigating the pivotal biological molecules that govern stone formation has consistently been a challenging and high-priority task. A significant portion of mammalian genomes are transcribed into noncoding RNAs (ncRNAs), which have the ability to modulate gene expression and disease progression. They are thus emerging as a novel target class for diagnostics and pharmaceutical exploration. In recent years, the role of ncRNAs in stone formation has attracted burgeoning attention. They have been found to influence stone formation by regulating ion transportation, oxidative stress injury, inflammation, osteoblastic transformation, autophagy, and pyroptosis. These findings contributes new perspectives on the pathogenesis of nephrolithiasis. To enhance our understanding of the diagnostic and therapeutic potential of nephrolithiasis-associated ncRNAs, we summarized the expression profiles, biological functions, and clinical significance of these ncRNAs in the current review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Xu H, Li X, Liu K, Huang P, Liu XJ. PM2.5 Promotes Macrophage-Mediated Inflammatory Response Through Airway Epithelial Cell-Derived Exosomal miR-155-5p. J Inflamm Res 2024; 17:8555-8567. [PMID: 39539727 PMCID: PMC11559224 DOI: 10.2147/jir.s482509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Background Airway epithelial cells (AECs) and alveolar macrophages are involved in airway inflammation. The direct effects of atmospheric fine-particulate-matter (PM2.5) on airway cells, such as AECs and alveolar macrophages, have been widely investigated, but the effect of cell-cell interaction on inflammatory response remains unclear. Exosomes play a crucial role in intercellular communication. However, the cellular interaction of exosomes in PM2.5-induced airway inflammation is unclear. Methods The PM2.5-induced human bronchial epithelial (BEAS-2B) cells and phorbol 12-myristate 13-acetate-induced macrophages (Mφ) were co-cultured and then the expression of IL-6, IL-1β, TNF-α and miRNA-155-5p were detected. Exosomes from PM2.5-exposed BEAS-2B cells were then co-cultured with Mφ to detect the expression of miR-155-5p and inflammatory cytokines, as well as cytokine signaling inhibitor-1 (SOCS1)/NFκB, and to detect the effect of the exosome inhibitor GW4869. Results After the co-culture of PM2.5-induced BEAS-2B cells and Mφ, the expression of Mφ-derived IL-6, IL-1β, and TNF-α, as well as miRNA-155-5p were upregulated. The expression of miRNA-155-5p was upregulated in BEAS-2B and BEAS-2B cell-derived exosomes after exposure to PM2.5. Furthermore, co-culturing exosomes derived from PM2.5-exposed BEAS-2B cells with Mφ, upregulated miR-155-5p and inflammatory cytokines, decreased cytokine signaling inhibitor-1 (SOCS1) expression, and activated NF-κB. In addition, adding exosome inhibitor GW4869 to PM2.5-interfered BEAS-2B cells co-culture with Mφ downregulated miRNA-155-5p expression, inhibited NF-κB, and reduced the levels of inflammatory factors. Conclusion PM2.5 promotes Mφ inflammation by upregulating miRNA-155-5P in exosomes obtained from BEAS-2B cells through miR-155-5P/SOCS1/NF-κB pathway. Exosomal miRNAs mediate cellular communication between BEAS-2B cells and Mφ, which may be a new mechanism of PM2.5-stimulated pulmonary inflammatory response.
Collapse
Affiliation(s)
- Hui Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Kai Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Ping Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xiao-Ju Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
14
|
Cichalewska-Studzinska M, Szymanski J, Stec-Martyna E, Perdas E, Studzinska M, Jerczynska H, Kulczycka-Wojdala D, Stawski R, Mycko MP. The Role of miR-155 in Modulating Gene Expression in CD4+ T Cells: Insights into Alternative Immune Pathways in Autoimmune Encephalomyelitis. Int J Mol Sci 2024; 25:11355. [PMID: 39518908 PMCID: PMC11545458 DOI: 10.3390/ijms252111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
CD4+ T cells are considered the main orchestrators of autoimmune diseases. Their disruptive effect on CD4+ T cell differentiation and the imbalance between T helper cell populations can be most accurately determined using experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis (MS). One epigenetic factor known to promote autoimmune inflammation is miRNA-155 (miR-155), which is significantly upregulated in inflammatory T cells. The aim of the present study was to profile the transcriptome of immunized mice and determine their gene expression levels based on mRNA and miRNA sequencing. No statistically significant differences in miRNA profile were observed; however, substantial changes in gene expression between miRNA-155 knockout (KO) mice and WT were noted. In miR-155 KO mice, mRNA expression in CD4+ T cells changed in response to immunization with the myeloid antigen MOG35-55. After restimulation with MOG35-55, increased Ffar1 (free fatty acid receptor 1) and Scg2 (secretogranin-2) expression were noted in the CD4+ T cells of miR-155-deficient mice; this is an example of an alternative response to antigen stimulation.
Collapse
Affiliation(s)
- Maria Cichalewska-Studzinska
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Jacek Szymanski
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Emilia Stec-Martyna
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Miroslawa Studzinska
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Hanna Jerczynska
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Dominika Kulczycka-Wojdala
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Marcin P. Mycko
- Department of Neurology, Laboratory of Neuroimmunology, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| |
Collapse
|
15
|
Iacomino N, Tarasco MC, Berni A, Ronchi J, Mantegazza R, Cavalcante P, Foti M. Non-Coding RNAs in Myasthenia Gravis: From Immune Regulation to Personalized Medicine. Cells 2024; 13:1550. [PMID: 39329732 PMCID: PMC11430632 DOI: 10.3390/cells13181550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by altered neuromuscular transmission, which causes weakness and fatigability in the skeletal muscles. The etiology of MG is complex, being associated with multiple genetic and environmental factors. Over recent years, progress has been made in understanding the immunological alterations implicated in the disease, but the exact pathogenesis still needs to be elucidated. A pathogenic interplay between innate immunity and autoimmunity contributes to the intra-thymic MG development. Epigenetic changes are critically involved in both innate and adaptive immune response regulation. They can act as (i) pathological factors besides genetic predisposition and (ii) co-factors contributing to disease phenotypes or patient-specific disease course/outcomes. This article reviews the role of non-coding RNAs (ncRNAs) as epigenetic factors implicated in MG. Particular attention is dedicated to microRNAs (miRNAs), whose expression is altered in MG patients' thymuses and circulating blood. The long ncRNA (lncRNA) contribution to MG, although not fully characterized yet, is also discussed. By summarizing the most recent and fast-growing findings on ncRNAs in MG, we highlight the therapeutic potential of these molecules for achieving immune regulation and their value as biomarkers for the development of personalized medicine approaches to improve disease care.
Collapse
Affiliation(s)
- Nicola Iacomino
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Maria Cristina Tarasco
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alessia Berni
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Jacopo Ronchi
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Paola Cavalcante
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Maria Foti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
16
|
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease? Int J Mol Sci 2024; 25:8042. [PMID: 39125612 PMCID: PMC11312210 DOI: 10.3390/ijms25158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
- Department of Surgery, University Hospital Galway, Newcastle Road, H91 YR71 Galway, Ireland
| |
Collapse
|
17
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
18
|
An YP, Yuan R, Wang SS, Yang SQ, Zhang Q. Knockdown of miR-155 alleviates skin damage in rats with chronic spontaneous urticaria by modulating the JAK/STAT signaling pathway. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:38. [PMID: 38951930 PMCID: PMC11218296 DOI: 10.1186/s13223-024-00902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the role and mechanisms of miR-155 in chronic spontaneous urticaria (CSU). METHODS The expression level of miR-155 in the skin tissues of patients with CSU and experimental rats were detected by RT-qPCR, followed by the measurement of the histamine release rate in the serum through the histamine release test. Besides, hematoxylin & eosin staining was used to observe the pathological changes of the skin tissues; Corresponding detection kits and flow cytometry to measure the changes of immunoglobulins, inflammatory cytokines and T cell subsets in the serum of rats in each group; and western blot to check the expression level of proteins related to JAK/STAT signaling pathway in the skin tissues. RESULTS Knockdown of miR-155 reduced the number and duration of pruritus, alleviated the skin damage, and decreased the number of eosinophils in CSU rats. Moreover, knockdown of miR-155 elevated the serum levels of IgG and IgM, decreased the levels of IgA and inflammatory cytokines, and reduced the proportion of CD4 + and CD4 + CD25 + T cells, as well as the CD4+/CD8 + ratio in CSU rats. However, Tyr705 intervention could reverse the effects of knockdown of miR-155 on CSU model rats. Furthermore, we found that knockdown of miR-155 significantly reduced the protein expression of IRF-9, as well as the P-JAK2/JAK2 and P-STAT3/STAT3 ratios in the skin tissues of CSU rats. CONCLUSION Knockdown of miR-155 can alleviate skin damage and inflammatory responses and relieve autoimmunity in CSU rats by inhibiting the JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yue-Peng An
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Rui Yuan
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Shan-Shan Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Su-Qing Yang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Qing Zhang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
19
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
20
|
Zhang Y, Hei F, Xiao Y, Liu Y, Han J, Hu D, Wang H. Acidic fibroblast growth factor inhibits reactive oxygen species-induced epithelial-mesenchymal transdifferentiation in vascular endothelial cells via the miR-155-5p/SIRT1/Nrf2/HO-1 pathway to promote wound healing in diabetic mice. BURNS & TRAUMA 2024; 12:tkae010. [PMID: 38803612 PMCID: PMC11129767 DOI: 10.1093/burnst/tkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/29/2024]
Abstract
Background Diabetic chronic wounds are among the most common and serious complications of diabetes and are associated with significant morbidity and mortality. Endothelial-to-mesenchymal transition (EndMT) is a specific pathological state in which endothelial cells are transformed into mesenchymal cells in response to various stimuli, such as high glucose levels and high oxidative stress. Acidic fibroblast growth factor (aFGF), which is a member of the fibroblast growth factor family, possesses strong antioxidant properties and can promote the differentiation of mesenchymal stem cells into angiogenic cells. Therefore, we investigated the role of aFGF in EndMT in diabetic wounds and analysed the underlying mechanisms. Methods A diabetic mouse model was used to verify the effect of aFGF on wound healing, and the effect of aFGF on vascular endothelial cells in a high-glucose environment was examined in vitro. We examined the expression of miR-155-5p in a high-glucose environment and the miR-155 downstream target gene SIRT1 by luciferase reporter assays. Results aFGF promoted wound closure and neovascularization in a mouse model of type 2 diabetes. In vitro, aFGF inhibited the production of total and mitochondrial reactive oxygen species (ROS) in vascular endothelial cells and alleviated epithelial-mesenchymal transdifferentiation in a high-glucose environment. Mechanistically, aFGF promoted the expression of SIRT1 and the downstream targets Nrf2 and HO-1 by negatively regulating miR-155-5p, thereby reducing ROS generation. Conclusions In conclusion, our results suggest that aFGF inhibits ROS-induced epithelial-mesenchymal transdifferentiation in diabetic vascular endothelial cells via the miR-155-5p/SIRT1/Nrf2/HO-1 axis, thereby promoting wound healing.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Fenghui Hei
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yujie Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
21
|
Zhang B, Bi Y, Wang K, Guo X, Liu Z, Li J, Wu M. Stem Cell-Derived Extracellular Vesicles: Promising Therapeutic Opportunities for Diabetic Wound Healing. Int J Nanomedicine 2024; 19:4357-4375. [PMID: 38774027 PMCID: PMC11108067 DOI: 10.2147/ijn.s461342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Wound healing is a sophisticated and orderly process of cellular interactions in which the body restores tissue architecture and functionality following injury. Healing of chronic diabetic wounds is difficult due to impaired blood circulation, a reduced immune response, and disrupted cellular repair mechanisms, which are often associated with diabetes. Stem cell-derived extracellular vesicles (SC-EVs) hold the regenerative potential, encapsulating a diverse cargo of proteins, RNAs, and cytokines, presenting a safe, bioactivity, and less ethical issues than other treatments. SC-EVs orchestrate multiple regenerative processes by modulating cellular communication, increasing angiogenesis, and promoting the recruitment and differentiation of progenitor cells, thereby potentiating the reparative milieu for diabetic wound healing. Therefore, this review investigated the effects and mechanisms of EVs from various stem cells in diabetic wound healing, as well as their limitations and challenges. Continued exploration of SC-EVs has the potential to revolutionize diabetic wound care.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
22
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 289] [Impact Index Per Article: 289.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Shaikh FS, Siegel RJ, Srivastava A, Fox DA, Ahmed S. Challenges and promise of targeting miRNA in rheumatic diseases: a computational approach to identify miRNA association with cell types, cytokines, and disease mechanisms. Front Immunol 2024; 14:1322806. [PMID: 38264662 PMCID: PMC10803576 DOI: 10.3389/fimmu.2023.1322806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that alter the expression of target genes at the post-transcriptional level, influencing diverse outcomes in metabolism, cell differentiation, proliferation, cell survival, and cell death. Dysregulated miRNA expression is implicated in various rheumatic conditions, including ankylosing spondylitis (AS), gout, juvenile idiopathic arthritis (JIA), osteoarthritis (OA), psoriatic arthritis, rheumatoid arthritis (RA), Sjogren's syndrome, systemic lupus erythematosus (SLE) and systemic sclerosis. For this review, we used an open-source programming language- PowerShell, to scan the massive number of existing primary research publications on PubMed on miRNAs in these nine diseases to identify and count unique co-occurrences of individual miRNAs and the disease name. These counts were used to rank the top seven most relevant immuno-miRs based on their research volume in each rheumatic disease. Individual miRNAs were also screened for publication with the names of immune cells, cytokines, and pathological processes involved in rheumatic diseases. These occurrences were tabulated into matrices to identify hotspots for research relevance. Based on this information, we summarize the basic and clinical findings for the top three miRNAs - miR-146, miR-155, and miR-21 - whose relevance spans across multiple rheumatic diseases. Furthermore, we highlight some unique miRNAs for each disease and why some rheumatic conditions lack research in this emerging epigenetics field. With the overwhelming number of publications on miRNAs in rheumatic diseases, this review serves as a 'relevance finder' to guide researchers in selecting miRNAs based on the compiled existing knowledge of their involvement in disease pathogenesis. This approach applies to other disease contexts with the end goal of developing miRNA-based therapeutics.
Collapse
Affiliation(s)
- Farheen S. Shaikh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Ruby J. Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Aayush Srivastava
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - David A. Fox
- Department of Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical System, Ann Arbor, MI, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
- Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
24
|
Papadopoulos KI, Papadopoulou A, Aw TC. MicroRNA-155 mediates endogenous angiotensin II type 1 receptor regulation: implications for innovative type 2 diabetes mellitus management. World J Diabetes 2023; 14:1334-1340. [PMID: 37771329 PMCID: PMC10523232 DOI: 10.4239/wjd.v14.i9.1334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 09/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a lifelong condition and a threat to human health. Thorough understanding of its pathogenesis is acutely needed in order to devise innovative, preventative, and potentially curative pharmacological interventions. MicroRNAs (miRNA), are small, non-coding, one-stranded RNA molecules, that can target and silence around 60% of all human genes through translational repression. MiR-155 is an ancient, evolutionarily well-conserved miRNA, with distinct expression profiles and multifunctionality, and a target repertoire of over 241 genes involved in numerous physiological and pathological processes including hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular conditions, and particularly diabetes mellitus. MiR-155 Levels are progressively reduced in aging, obesity, sarcopenia, and T2DM. Thus, the loss of coordinated repression of multiple miR-155 targets acting as negative regulators, such as C/EBPβ, HDAC4, and SOCS1 impacts insulin signaling, deteriorating glucose homeostasis, and causing insulin resistance (IR). Moreover, deranged regulation of the renin angiotensin aldo-sterone system (RAAS) through loss of Angiotensin II Type 1 receptor downregulation, and negated repression of ETS-1, results in unopposed detrimental Angiotensin II effects, further promoting IR. Finally, loss of BACH1 and SOCS1 repression abolishes cytoprotective, anti-oxidant, anti-apoptotic, and anti-inflammatory cellular pathways, and promotes β-cell loss. In contrast to RAAS inhibitor treatments that further decrease already reduced miR-155 Levels, strategies to increase an ailing miR-155 production in T2DM, e.g., the use of metformin, mineralocorticoid receptor blockers (spironolactone, eplerenone, finerenone), and verapamil, alone or in various combinations, represent current treatment options. In the future, direct tissue delivery of miRNA analogs is likely.
Collapse
Affiliation(s)
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Lund 223-63, Skåne, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore, Singapore
| |
Collapse
|
25
|
Fawzy MS, Ibrahiem AT, Bayomy NA, Makhdoom AK, Alanazi KS, Alanazi AM, Mukhlef AM, Toraih EA. MicroRNA-155 and Disease-Related Immunohistochemical Parameters in Cutaneous Melanoma. Diagnostics (Basel) 2023; 13:1205. [PMID: 36980512 PMCID: PMC10047208 DOI: 10.3390/diagnostics13061205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cutaneous melanoma is a severe and life-threatening form of skin cancer with growing incidences. While novel interventions have improved prognoses for these patients, early diagnosis of targeted treatment remains the most effective approach. MicroRNAs have grown to good use as potential biomarkers for early detection and as targets for treatment. miR-155 is well-studied for its role in tumor cell survival and proliferation in various tissues, although its role in melanoma remains controversial. In silico data analysis was performed in the dbDEMC v.3 to identify differentially expressed miRNA. We validated gene targets in melanoma using TarBase v8.0 and miRPath v3.0 and determined protein-protein interactions of the target genes. One hundred forty patients (age range 21-90 years) with cutaneous melanoma who underwent resection were included. Molecular assessment using Real-Time RT-qPCR, clinicopathological associations, and a literature review for the different roles of miR-155 in melanoma were performed. Analysis of the dbDEMC reveals controversial findings. While there is evidence of upregulation of miR-155 in primary and metastatic melanoma samples, others suggest decreased expression in later-stage melanoma and cases with brain metastasis. miR-155 has been overexpressed in prior cases of melanoma and precancerous lesions, and it was found to be dysregulated when compared to benign nevi. While miR-155 expression was associated with favorable outcomes in some studies, others showed an association with metastasis. Patients with high levels of miR-155 also noted reduction after receiving anti-PD-1 treatment, correlated with more prolonged overall survival. In our patient's cohort, 22.9% relapsed during treatment, and 45% developed recurrence, associated with factors such as lymph node infiltration, high mitotic index, and positive staining for CD117. Although overall analysis revealed miR-155 downregulation in melanoma specimens compared to non-cancer tissues, increased expression of miR-155 was associated with cases of superficial spreading melanoma subtype (p = 0.005) and any melanoma with a high mitotic rate (p = 0.010). The analysis did not identify optimum cutoff values to predict relapse, recurrence, or mortality. In conclusion, miR-155 could have, in part, a potential prognostic utility in cutaneous melanoma. Further mechanistic studies are required to unravel the multifunctional role of miR-155 in melanoma.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Naglaa A. Bayomy
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Amin K. Makhdoom
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Khalid S. Alanazi
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Abdulaziz M. Alanazi
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Abdulaziz M. Mukhlef
- Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; (A.K.M.); (K.S.A.); (A.M.A.); (A.M.M.)
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|