1
|
Ul-Haq A, Lee KA, Seo H, Kim S, Jo S, Ko KM, Moon SJ, Kim YS, Choi JR, Song HY, Kim HS. Characteristic alterations of gut microbiota in uncontrolled gout. J Microbiol 2022; 60:1178-1190. [PMID: 36422845 DOI: 10.1007/s12275-022-2416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Microbiome research has been on the rise recently for a more in-depth understanding of gout. Meanwhile, there is a need to understand the gut microbiome related to uric acid-lowering drug resistance. In this study, 16S rRNA gene-based microbiota analysis was performed for a total of 65 stool samples from 17 healthy controls and 48 febuxostat-treated gout patients (including 28 controlled subjects with decreased uric acid levels and 20 uncontrolled subjects with non-reduced uric acid levels). Alpha diversity of bacterial community decreased in the healthy control, controlled, and uncontrolled groups. In the case of beta diversity, the bacterial community was significantly different among groups (healthy control, controlled, and uncontrolled groups). Taxonomic biomarker analysis revealed the increased population of g-Bifidobacterium in healthy controls and g-Prevotella in uncontrolled patients. PCR further confirmed this result at the species level. Additionally, functional metagenomics predictions led to the exploration of various functional biomarkers, including purine metabolism. The results of this study can serve as a basis for developing potential new strategies for diagnosing and treating gout from microbiome prospects.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea
| | - Sujin Jo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Kyung Min Ko
- Division of Rheumatology, Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, 22711, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, Republic of Korea
| | - Yun Sung Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University College of Medicine, Gwangju, 61452, Republic of Korea
| | - Jung Ran Choi
- Divison of Rheumatology, Department of Internal Medicine, Pohang St. Mary's Hospital, Pohang, 37661, Republic of Korea
| | - Ho-Yeon Song
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea.
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea.
| | - Hyun-Sook Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea.
| |
Collapse
|
2
|
Shen X, Wang C, Liang N, Liu Z, Li X, Zhu ZJ, Merriman TR, Dalbeth N, Terkeltaub R, Li C, Yin H. Serum Metabolomics Identifies Dysregulated Pathways and Potential Metabolic Biomarkers for Hyperuricemia and Gout. Arthritis Rheumatol 2021; 73:1738-1748. [PMID: 33760368 DOI: 10.1002/art.41733] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To systematically profile metabolic alterations and dysregulated metabolic pathways in hyperuricemia and gout, and to identify potential metabolite biomarkers to discriminate gout from asymptomatic hyperuricemia. METHODS Serum samples from 330 participants, including 109 with gout, 102 with asymptomatic hyperuricemia, and 119 normouricemic controls, were analyzed by high-resolution mass spectrometry-based metabolomics. Multivariate principal components analysis and orthogonal partial least squares discriminant analysis were performed to explore differential metabolites and pathways. A multivariate methods with Unbiased Variable selection in R (MUVR) algorithm was performed to identify potential biomarkers and build multivariate diagnostic models using 3 machine learning algorithms: random forest, support vector machine, and logistic regression. RESULTS Univariate analysis demonstrated that there was a greater difference between the metabolic profiles of patients with gout and normouricemic controls than between the metabolic profiles of individuals with hyperuricemia and normouricemic controls, while gout and hyperuricemia showed clear metabolomic differences. Pathway enrichment analysis found diverse significantly dysregulated pathways in individuals with hyperuricemia and patients with gout compared to normouricemic controls, among which arginine metabolism appeared to play a critical role. The multivariate diagnostic model using MUVR found 13 metabolites as potential biomarkers to differentiate hyperuricemia and gout from normouricemia. Two-thirds of the samples were randomly selected as a training set, and the remainder were used as a validation set. Receiver operating characteristic analysis of 7 metabolites yielded an area under the curve of 0.83-0.87 in the training set and 0.78-0.84 in the validation set for distinguishing gout from asymptomatic hyperuricemia by 3 machine learning algorithms. CONCLUSION Gout and hyperuricemia have distinct serum metabolomic signatures. This diagnostic model has the potential to improve current gout care through early detection or prediction of progression to gout from hyperuricemia.
Collapse
Affiliation(s)
- Xia Shen
- ShanghaiTech University, Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China, and University of Chinese Academy of Sciences, Beijing, China
| | - Can Wang
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, and Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Ningning Liang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China, and University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, and Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Xinde Li
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, and Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tony R Merriman
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China, University of Alabama at Birmingham, and University of Otago, Dunedin, New Zealand
| | | | - Robert Terkeltaub
- VA San Diego Healthcare System and University of California, San Diego
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, and Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Huiyong Yin
- ShanghaiTech University, Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China, and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, Spandidos DA, Kyriakopoulos AM, Zoumpourlis V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). MEDICINE INTERNATIONAL 2021; 1:3. [PMID: 36699147 PMCID: PMC9855276 DOI: 10.3892/mi.2021.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.
Collapse
Affiliation(s)
- Stella Baliou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Ioannis Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
4
|
Sak D, Erdenen F, Müderrisoglu C, Altunoglu E, Sozer V, Gungel H, Guler PA, Sak T, Uzun H. The Relationship between Plasma Taurine Levels and Diabetic Complications in Patients with Type 2 Diabetes Mellitus. Biomolecules 2019; 9:E96. [PMID: 30862074 PMCID: PMC6468751 DOI: 10.3390/biom9030096] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Taurine has an active role in providing glucose homeostasis and diabetes causes a decline in taurine levels. This paper investigates the relationship between taurine and diabetic complications, patients' demographic features, and biochemical parameters. Methods: Fifty-nine patients with type 2 diabetes mellitus (T2DM), and 28 healthy control subjects between the ages of 32 and 82 were included in the study. The mean age of subjects was 55.6 ± 10.3 and mean diabetes duration was 10.2 ± 6.0 years. The most commonly accompanying comorbidity was hypertension (HT) (64.5%, n = 38), and the most frequent diabetic complication was neuropathy (50.8%, n = 30). Plasma taurine concentrations were measured by an enzyme-linked immunoassay (ELISA) kit. Results: Plasma taurine concentrations were significantly lower in diabetic patients (0.6 ± 0.1 mmol/L) than controls (0.8 ± 0.2 mmol/L) and in hypertensive (0. 6 ± 0.1 mmol/L) patients (p = 0.000, p = 0.027 respectively). Conclusion: Plasma taurine levels were decreased in patients with T2DM and this was not related to FBG, HbA1c, and microalbuminuria. With regard to complications, we only found a correlation with neuropathy. We suggest that taurine levels may be more important in the development of diabetes; however, it may also have importance for the progression of the disease and the subsequent complications. We further assert that taurine measurement at different times may highlight whether there is a causal relationship in the development of complications.
Collapse
Affiliation(s)
- Duygu Sak
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Fusun Erdenen
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Cuneyt Müderrisoglu
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Esma Altunoglu
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey.
| | - Hulya Gungel
- Department of Ophthalmology, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Pınar Akca Guler
- Department of Ophthalmology, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Tuncer Sak
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Hafize Uzun
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, 34098, Turkey.
| |
Collapse
|
5
|
Modification by Ethanol and Taurine, Singly and in Combination, of Changes in Indices of Renal Dysfunction Caused by Diabetes in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:369-380. [DOI: 10.1007/978-981-13-8023-5_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Pandya K, Lau-Cam CA. Taurine Improves the Actions of Metformin and Lovastatin on Plasma Markers of Carbohydrate and Lipid Dysfunction of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:87-99. [DOI: 10.1007/978-981-13-8023-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Patel SN, Lau-Cam CA. The Effect of Taurine and Its Immediate Homologs on Diabetes-Induced Oxidative Stress in the Brain and Spinal Cord of Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:337-351. [PMID: 28849468 DOI: 10.1007/978-94-024-1079-2_30] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study has examined the acute effects of taurine (TAU) and of its two immediate homologs aminomethanesulfonic acid (AMSA) and homotaurine (HTAU) on the oxidative stress that develops in the brain of rats as a result of type 2 diabetes mellitus. Male Sprague-Dawley rats, 220-225 g in weight, were divided into groups of 6 each, and treated with a single intraperitoneal (i.p.) dose of streptozotocin (STZ) in 10 mM citrate buffer pH 4.5 (60 mg/kg). The treatment compound (AMSA, HTAU or TAU) was administered by the i.p. route in two equal doses (1.2 mM/kg each) at 75 and 45 min before STZ. Control rats received only 10 mM citrate buffer pH 4.5 or only STZ by the i.p. route. The rats were sacrificed at 24 h after a dosing with STZ under general anesthesia, and their brains and spinal cords collected by the freeze clamp technique. A portion of brain, of a brain area (cerebellum, cortex, brain stem) or of spinal cord from each animal was extracted into 0.1 M PBS pH 7.4, and the extract was used for the assay of malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD). An extract for the assay of the reduced (GSH) and disulfide (GGSG) forms of glutathione was prepared in similar manner but using 2% metaphosphoric acid plus 0.1 M PBS pH 8.0 as the extracting medium. Diabetes was found to markedly increase the formation of MDA (by 160-202%), NO (by 138-313%) and GSSG (by 103-241%), and to lower the values of GSH (by 57-65%), GSH/GSSG ratio (79-89%) and activities of CAT (by 61-69%), GPx (by 52-66%) and SOD (by 55-68%) in the brain, brain areas and spinal cord relative to corresponding control values (all at p < 0.001). These effects were reduced to values that were generally at least one-half of those seen in untreated diabetic rats, with TAU providing a greater attenuation of the formation of MDA and NO, an about similar action on the depletion of GSH, and a lower action on the decrease in the GSH/GSSG ratio caused by diabetes than either AMSA or HMTAU. In contrast AMSA and HMTAU were about equipotent with each other and more potent than TAU in preventing the loss of antioxidant enzyme activities associated with diabetes. In short, pretreating diabetic rats with AMSA, HMTAU or TAU is found to protect the brain against changes in biochemical parameters indicative of oxidative stress, with potency differences among the test compounds varying within a narrow range.
Collapse
Affiliation(s)
- Sanket N Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - Cesar A Lau-Cam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
8
|
Maiese K. Erythropoietin and diabetes mellitus. World J Diabetes 2015; 6:1259-1273. [PMID: 26516410 PMCID: PMC4620106 DOI: 10.4239/wjd.v6.i14.1259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder.
Collapse
|
9
|
Maiese K. FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus. Curr Neurovasc Res 2015; 12:404-13. [PMID: 26256004 PMCID: PMC4567483 DOI: 10.2174/1567202612666150807112524] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|