Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 106103
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.106103
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.106103
Table 1 Clinical information of patients in the training and validation sets
Variable | Training set (n = 220) | Validation set (n = 95) | t-test/Z/χ2 value | P value |
Sex | 1.9223 | 0.166 | ||
F | 90 | 31 | ||
M | 130 | 64 | ||
Age | 2.9513 | 0.229 | ||
≤ 50 years | 24 | 7 | ||
51-65 years | 109 | 41 | ||
> 65 years | 87 | 47 | ||
pT stage | 5.8273 | 0.120 | ||
T1 | 5 | 1 | ||
T2 | 41 | 29 | ||
T3 | 150 | 55 | ||
T4 | 24 | 10 | ||
pN stage | 2.9333 | 0.231 | ||
N0 | 62 | 36 | ||
N1 | 71 | 26 | ||
N2 | 87 | 33 | ||
TP | 65.14 (61.60, 69.66) | 65.30 (61.60) | -0.3752 | 0.707 |
ALB | 38.55 (35.95, 41.65) | 38.40 (36.02, 40.97) | -0.6092 | 0.543 |
ALP | 76.00 (61.27, 89.00) | 76.00 (65.20, 88.00) | -0.7362 | 0.462 |
UREA | 5.33 (4.46, 6.43) | 5.48 (4.35, 6.46) | -0.4562 | 0.649 |
CREA | 62.50 (53.53, 71.03) | 64.40 (56.00, 72.50) | -1.2812 | 0.200 |
UA | 269.73 (229.00, 331.75) | 265.00 (221.00, 314.00) | -0.8512 | 0.395 |
TC, mean ± SD | 4.11 ± 2.47 | 7.22 ± 31.31 | -1.4691 | 0.143 |
TG | 1.18 (0.93, 1.53) | 1.25 (0.92, 1.60) | -0.6002 | 0.549 |
HDL-C | 0.95 (0.83, 1.11) | 0.97 (0.79, 1.15) | -0.2382 | 0.812 |
LDL-C | 2.32 (1.90, 2.82) | 2.41 (1.77, 2.94) | -0.0422 | 0.967 |
FBG | 2.96 (2.16, 3.57) | 3.02 (2.52, 3.71) | -0.9642 | 0.335 |
D-dimer | 2.02 (0.75, 3.27) | 2.13 (0.93, 3.23) | -0.5052 | 0.614 |
WBC | 5.75 (4.70, 7.10) | 5.70 (4.70, 7.00) | -0.2182 | 0.828 |
NEUT | 3.26 (2.49, 4.48) | 3.29 (2.54, 4.59) | -0.0042 | 0.997 |
Lym | 1.67 (1.14, 2.11) | 1.59 (1.16, 2.07) | -0.4182 | 0.676 |
M | 0.46 (0.34, 0.56) | 0.45 (0.37, 0.54) | -0.1582 | 0.875 |
E | 0.10 (0.06, 0.17) | 0.11 (0.06, 0.18) | -0.0202 | 0.984 |
B | 0.03 (0.02, 0.04) | 0.02 (0.01, 0.04) | -1.3532 | 0.176 |
RBC | 4.38 (3.96, 4.80) | 4.46 (4.06, 4.81) | -0.4462 | 0.656 |
HB | 132.00 (117.25, 147.00) | 134.00 (121.00, 146.00) | -0.7342 | 0.463 |
PLT | 208.00 (167.25, 251.00) | 204.00 (163.00, 248.00) | -0.2942 | 0.769 |
BMI | 23.05 (20.82, 24.68) | 22.61 (20.81, 24.61) | -0.5722 | 0.568 |
Table 2 Information of the colorectal cancer immune score evaluation model
Number | Model | ACC | AUC | 95%CI | Sensitivity | Specificity | PPV | NPV | Precision | Recall | F1 | Threshold | Cohort |
0 | DenseNet-121 | 0.741 | 0.797 | 0.7383-0.8556 | 0.707 | 0.769 | 0.714 | 0.762 | 0.714 | 0.707 | 0.711 | 0.520 | Train |
1 | DenseNet-121 | 0.800 | 0.759 | 0.6502-0.8676 | 0.705 | 0.882 | 0.838 | 0.776 | 0.838 | 0.705 | 0.765 | 0.407 | Test |
2 | DenseNet-169 | 0.709 | 0.780 | 0.7185-0.8406 | 0.768 | 0.661 | 0.650 | 0.777 | 0.650 | 0.768 | 0.704 | 0.385 | Train |
3 | DenseNet-169 | 0.768 | 0.772 | 0.6741-0.8696 | 0.682 | 0.834 | 0.789 | 0.754 | 0.789 | 0.682 | 0.732 | 0.541 | Test |
4 | DenseNet-201 | 0.718 | 0.765 | 0.7018-0.8274 | 0.495 | 0.901 | 0.803 | 0.686 | 0.803 | 0.495 | 0.612 | 0.591 | Train |
5 | DenseNet-201 | 0.768 | 0.737 | 0.6305-0.8432 | 0.636 | 0.882 | 0.824 | 0.738 | 0.824 | 0.636 | 0.718 | 0.586 | Test |
6 | ResNet-101 | 0.786 | 0.852 | 0.8032-0.9011 | 0.859 | 0.727 | 0.720 | 0.863 | 0.720 | 0.859 | 0.783 | 0.432 | Train |
7 | ResNet-101 | 0.737 | 0.752 | 0.6503-0.8541 | 0.636 | 0.824 | 0.757 | 0.724 | 0.757 | 0.636 | 0.691 | 0.446 | Test |
8 | ResNet-152 | 0.732 | 0.816 | 0.7603-0.8718 | 0.869 | 0.620 | 0.652 | 0852 | 0.652 | 0.869 | 0.745 | 0.336 | Train |
9 | ResNet-152 | 0.737 | 0.736 | 0.6272-0.8438 | 0.614 | 0.843 | 0.771 | 0.717 | 0.771 | 0.614 | 0.684 | 0.501 | Test |
10 | ResNet-34 | 0.782 | 0.860 | 0.8120-0.9072 | 0.808 | 0.760 | 0.734 | 0.829 | 0.734 | 0.808 | 0.769 | 0.444 | Train |
11 | ResNet-34 | 0.747 | 0.741 | 0.6344-0.8474 | 0.705 | 0.784 | 0.738 | 0.755 | 0.738 | 0.705 | 0.721 | 0.498 | Test |
12 | ResNet-50 | 0.795 | 0.863 | 0.8144-0.9120 | 0.828 | 0.769 | 0.745 | 0.845 | 0.745 | 0.828 | 0.785 | 0.464 | Train |
13 | ResNet-50 | 0.747 | 0.754 | 0.6491-0.8598 | 0.614 | 0.863 | 0.794 | 0.721 | 0.794 | 0.614 | 0.692 | 0.501 | Test |
- Citation: Zhou C, Zhang YF, Yang ZJ, Huang YQ, Da MX. Computed tomography-based deep learning radiomics model for preoperative prediction of tumor immune microenvironment in colorectal cancer. World J Gastrointest Oncol 2025; 17(5): 106103
- URL: https://www.wjgnet.com/1948-5204/full/v17/i5/106103.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i5.106103