Letter to the Editor Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Aug 15, 2025; 17(8): 103473
Published online Aug 15, 2025. doi: 10.4251/wjgo.v17.i8.103473
Colorectal cancer liver metastases: A radiologic point of view
Alfonso Reginelli, Vittorio Patanè, Salvatore Cappabianca, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Campania, Italy
ORCID number: Alfonso Reginelli (0000-0003-4809-6235); Vittorio Patanè (0000-0003-0767-3884); Salvatore Cappabianca (0000-0002-5417-2268).
Author contributions: All three authors contributed equally to the conception and development of this letter to the editor; Reginelli A conceptualized the manuscript, led the literature review, and drafted the initial version; Patanè V contributed significantly to the analysis of the literature, critically revised the manuscript for intellectual content, and assisted in refining the key messages; Cappabianca S provided substantial input on data interpretation, coordinated collaborative revisions, and ensured the overall coherence of the final version; all authors reviewed and approved the final manuscript for submission.
Conflict-of-interest statement: Authors have no conflict of interest to disclose.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Vittorio Patanè, MD, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, Naples 80138, Campania, Italy. vittorio.patane@unicampania.it
Received: November 20, 2024
Revised: February 23, 2025
Accepted: March 13, 2025
Published online: August 15, 2025
Processing time: 267 Days and 10.6 Hours

Abstract

Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Despite advances in early detection and treatment, approximately half of patients with CRC develop liver metastases (LM), complicating therapeutic strategies and reducing survival rates. Radiological imaging is critical in managing colorectal LM by guiding detection, staging, treatment planning, and response evaluation. This letter to the editor provides a comprehensive overview of both traditional and emerging imaging modalities, including computed tomography, magnetic resonance imaging, and positron emission tomography, and their specific roles in clinical decision-making. It further explores advanced techniques such as radiomics, artificial intelligence, and radiogenomics, which integrate quantitative imaging features with genetic and clinical data to enhance prognostication and tailor personalized treatment approaches. Specific examples of how these innovations are applied in treatment response assessment and pre-surgical planning are highlighted. The discussion also emphasizes the need for large-scale prospective clinical trials and standardized protocols to validate current predictive models and fully integrate these advanced methodologies into clinical practice.

Key Words: Colorectal cancer; Liver metastases; Radiology; Radiomics; Artificial intelligence; Radiogenomics; Precision oncology

Core Tip: This letter underscores the pivotal role of radiological imaging in managing colorectal liver metastases (CRLM). It details advanced imaging techniques, radiomics, artificial intelligence, and radiogenomics, illustrating how integrating imaging biomarkers with genomic and clinical data enhances detection, treatment planning, and prognostication. Such innovations pave the way for precision oncology, enabling more personalized and effective therapeutic strategies for CRLM patients.



TO THE EDITOR

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality globally[1-4]. Despite advances in early detection and treatment, approximately 50% of patients with CRC develop liver metastases (LM), which significantly impacts survival and complicates treatment options[5-8].

As the liver is often the first and sometimes only metastatic site due to direct venous drainage from the gastrointestinal tract, radiological imaging plays a pivotal role in managing colorectal LM (CRLM), from detection and staging to treatment planning and monitoring treatment response[9-12].

In this editorial, we provide an overview of the key subtopics that will be discussed: the role of imaging modalities in detection and staging; advanced radiological techniques for treatment planning and response evaluation; the application of radiomics and machine learning in CRLM management with specific examples; the integration of artificial intelligence (AI) and radiogenomics for prognostication and treatment personalization; and finally, the use of imaging in pre-surgical planning and surveillance. This structured summary is intended to help readers follow the discussion and understand how each principle is specifically applied in CRLM.

The role of imaging modalities in detection and staging

Accurate detection and staging of LM are fundamental for determining treatment pathways. Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) with iodinated or intracellular (hepatocyte-specific) contrast agents are the most commonly used imaging modalities[13,14]. CT is often the initial modality due to its accessibility and speed, making it valuable for staging and for assessing distant metastasis. However, MRI has a higher sensitivity and specificity for detecting smaller, less vascular liver lesions, which can remain elusive on CT[15-17]. Thanks to its unique multiparametric capabilities, such as diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping, MRI can reveal subtle changes in tumour microenvironment, providing a more nuanced assessment of metastatic lesion[18].

Positron emission tomography (PET)-CT and PET/MRI provide additional layers of information by assessing metabolic activity. While not all CRLM lesions are FDG-avid, PET imaging complements CT and MRI by detecting occult extrahepatic metastases, which may alter therapeutic plans[19-22].

Advanced radiological techniques for treatment planning and response evaluation

The assessment of therapeutic response in CRLM has traditionally relied on size-based criteria, such as response evaluation criteria in solid tumours. However, as treatments like chemotherapy, targeted therapy (anti- vascular endothelial grow factor) and radiofrequency ablation may induce changes in the vascularization of metastases or necrosis without immediate tumour shrinkage, these criteria do not always correlate with therapeutic efficacy[23,24]. In this context, MRI offers significant advantages; techniques such as DWI and ADC mapping provide detailed insights into changes in cellular density and can identify necrotic regions within lesions, thereby serving as reliable indicators of treatment response even in the absence of tumour size reduction[25-28].

Radiomics and machine learning models add another dimension to response evaluation by analysing imaging biomarkers that reflect tumour heterogeneity. Studies have shown that textural features extracted from CT and MRI images can identify treatment response patterns beyond mere size reduction, offering a more comprehensive understanding of therapy effects[29,30]. Radiologists can now evaluate subtle changes in tumour biology that precede macroscopic alterations, which is particularly useful in early response assessment and in cases where conventional metrics fail to capture complex therapeutic effects[31-34].

Moreover, minimal residual disease (MRD) detection via circulating tumour DNA (ctDNA) analysis has demonstrated the capacity to identify signs of recurrence 3.8 to 10 months earlier than conventional imaging modalities (e.g., CT and MRI), thereby facilitating timely clinical intervention[35,36]. MRD status can be dynamically monitored postoperatively on a regular basis (e.g., every 3 months); if ctDNA remains undetectable, the risk of recurrence within 2 years is minimal, whereas a positive ctDNA result necessitates an intensified imaging surveillance protocol (e.g., every 2 months) to enhance the probability of successful secondary surgical resection. Notably, early intervention based on ctDNA monitoring has been associated with a 72% rate of patients with recurrent LM undergoing a second radical treatment, which significantly prolongs survival[37].

Radiomics and machine learning in CRLM management

Radiomics—the extraction of quantitative data from medical images—has gained momentum as a tool to capture and analyse complex tumour characteristics[30,38-43]. For CRLM, radiomic features derived from texture, intensity, and shape provide insights into tumour heterogeneity and microenvironment, enabling the identification of aggressive lesions that may require intensified therapy[44]. Radiomics applied to MRI, particularly using hepatocyte-specific contrast and DWI, has shown promising results in distinguishing between mucinous and non-mucinous metastatic lesions[45]. This is clinically significant, as mucinous metastases tend to respond differently to treatments and carry distinct prognostic implications.

When combined with machine learning, radiomics enables predictive modelling that surpasses traditional visual assessment. For instance, algorithms trained on radiomic features from baseline CT or MRI scans have demonstrated high accuracy in forecasting treatment outcomes and recurrence risk[46-48]. These models are invaluable for early identification of high-risk patients, informing treatment intensification or alternative approaches before conventional signs of progression emerge. For example, a radiomics model based on texture analysis of CT images was applied in a cohort of CRLM patients to predict response to neoadjuvant chemotherapy, thereby directly informing clinical decision-making[49]. This shift toward predictive radiology marks an important step in precision oncology, enabling personalized management plans that align closely with each patient's disease profile.

AI for prognostication and treatment personalization

AI has revolutionized radiology, especially in the prognostication of CRLM[44]. AI algorithms process vast datasets, including imaging and clinical information, to identify patterns associated with disease progression, recurrence risk, and patient survival[50]. In CRLM, AI-driven models have shown high accuracy in predicting post-treatment recurrence, a critical factor in determining follow-up frequency and adjuvant therapy plans[51-53]. Moreover, AI has proven effective in assessing genetic and molecular characteristics of tumours, such as KRAS mutation status, which influences prognosis and treatment response[54,55].

By integrating imaging biomarkers with genetic and clinical data, AI enhances the ability to create highly personalized treatment plans. In addition, a multicentre study in 2024 showed a significant decline in the predictive performance of radiomics models in independent cohorts (c statistic from 0.78 to 0.50), suggesting the need for more standardized datasets[56]. Moreover, large-scale prospective clinical trials should be promoted to verify the clinical utility of these models and gradually incorporate them into clinical guidelines.

Taking a higher-dimensional perspective, combining genomics (such as TMB and PD-L1 expression), metabolomics, and radiomics can build a more comprehensive prediction system, representing a promising avenue for future research.

Radiogenomics in CRLM management

Radiogenomics, which integrates quantitative imaging features with genomic data, represents a cutting-edge approach in CRLM management. For example, specific radiomic features extracted from hepatocyte-specific contrast-enhanced MRI, when combined with molecular markers such as KRAS mutation status, have been shown to improve the stratification of patients in terms of recurrence risk and survival outcomes[5,51,53]. This integrated approach not only enhances prognostication but also informs personalized treatment strategies by predicting response to targeted therapies. Further studies focusing on radiogenomics in CRLM are warranted to validate these promising findings and to standardize data acquisition and analysis protocols[57,58].

Imaging in pre-surgical planning and resectability assessment

Determining resectability is paramount for patients with CRLM, as surgical resection offers the best chance of long-term survival in cases where the disease is confined to the liver. MRI, especially when enhanced with hepatocyte-specific contrast, is highly effective in mapping lesion boundaries, assessing vascular involvement, and optimizing resection margins. Advanced imaging techniques, such as three-dimensional reconstructions and virtual surgical planning, have further improved the precision of hepatic surgeries, ensuring that enough healthy liver tissue is preserved, thus reducing the risk of postoperative complications and recurrence. For instance, in a recent cohort of CRLM patients, 3D imaging techniques enabled precise mapping of tumour boundaries and vascular structures, leading to improved resection margins and a reduction in postoperative complications.

For patients with borderline resectable lesions, radiological imaging plays a key role in determining the need for neoadjuvant therapies to downstage tumours, increasing the likelihood of complete resection. Radiomics and texture analysis offer an additional layer of prognostic information by identifying imaging biomarkers associated with higher recurrence risk or poor therapeutic response, allowing clinicians to tailor pre-surgical interventions more effectively[59].

Abbreviated imaging protocols and surveillance

The demand for imaging in monitoring CRLM has led to the development of abbreviated MRI protocols, which provide sufficient sensitivity for detecting recurrence with shorter scan times and reduced healthcare costs. These protocols, which often include only the most critical sequences, such as T2-weighted and DWI, maintain diagnostic accuracy while reducing patient discomfort and resource usage. However, it is crucial to note that these abbreviated protocols may be best suited for follow-up in stable cases, while full MRI protocols remain preferable for initial staging and complex cases that require detailed lesion characterization[60].

Conclusion

The landscape of radiological assessment for hepatic metastases from CRC is advancing rapidly, with innovative imaging techniques, radiomics, and AI transforming the detection, characterization, and management of CRLM. These advancements hold great potential for improving outcomes by enabling more accurate staging, precise treatment planning, and personalized follow-up strategies. The integration of predictive models, AI-based radiomics, and an expanded focus on radiogenomics—coupled with the critical need for large-scale prospective trials and the promise of combining genomics, metabolomics, and radiomics to form comprehensive prediction systems—represents a new frontier in precision oncology. Moving forward, it is essential to continue investing in multi-center trials and developing standardized protocols to ensure these tools can be seamlessly integrated into routine clinical practice. As these innovations mature, they promise to make radiology an even more powerful contributor to personalized care in CRLM.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Oncology

Country of origin: Italy

Peer-review report’s classification

Scientific Quality: Grade A, Grade C

Novelty: Grade B, Grade B

Creativity or Innovation: Grade B, Grade B

Scientific Significance: Grade B, Grade C

P-Reviewer: Wang J; Xu V S-Editor: Lin C L-Editor: A P-Editor: Zhao S

References
1.  Reginelli A, Clemente A, Sangiovanni A, Nardone V, Selvaggi F, Sciaudone G, Ciardiello F, Martinelli E, Grassi R, Cappabianca S. Endorectal Ultrasound and Magnetic Resonance Imaging for Rectal Cancer Staging: A Modern Multimodality Approach. J Clin Med. 2021;10.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 22]  [Cited by in RCA: 21]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
2.  Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14:89-103.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 444]  [Cited by in RCA: 1067]  [Article Influence: 177.8]  [Reference Citation Analysis (1)]
3.  Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, Vignat J, Ferlay J, Murphy N, Bray F. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 2023;72:338-344.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 511]  [Cited by in RCA: 909]  [Article Influence: 454.5]  [Reference Citation Analysis (1)]
4.  Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14:101174.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 687]  [Cited by in RCA: 1344]  [Article Influence: 336.0]  [Reference Citation Analysis (5)]
5.  Schadde E, Grunhagen DJ, Verhoef C, Krzywon L, Metrakos P. Limitations in resectability of colorectal liver metastases 2020 - A systematic approach for clinicians and patients. Semin Cancer Biol. 2021;71:10-20.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 22]  [Article Influence: 4.4]  [Reference Citation Analysis (0)]
6.  Ruivo A, Oliveira RC, Silva-vaz P, Tralhão JG. Colorectal Cancer Liver Metastasis—State-of-the-Art and Future Perspectives. Gastrointest Disord. 2023;5:580-608.  [PubMed]  [DOI]  [Full Text]
7.  Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow HK, Duckworth A, Heister P, Praseedom R, Jah A, Balakrishnan A, Harper S, Liau S, Kosmoliaptsis V, Huguet E. Colorectal liver metastases: Current management and future perspectives. World J Clin Oncol. 2020;11:761-808.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 111]  [Cited by in RCA: 147]  [Article Influence: 29.4]  [Reference Citation Analysis (6)]
8.  Chow FC, Chok KS. Colorectal liver metastases: An update on multidisciplinary approach. World J Hepatol. 2019;11:150-172.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 173]  [Cited by in RCA: 154]  [Article Influence: 25.7]  [Reference Citation Analysis (3)]
9.  Renzulli M, Clemente A, Ierardi AM, Pettinari I, Tovoli F, Brocchi S, Peta G, Cappabianca S, Carrafiello G, Golfieri R. Imaging of Colorectal Liver Metastases: New Developments and Pending Issues. Cancers (Basel). 2020;12.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 40]  [Cited by in RCA: 41]  [Article Influence: 8.2]  [Reference Citation Analysis (0)]
10.  Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther. 2022;7:70.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 156]  [Cited by in RCA: 162]  [Article Influence: 54.0]  [Reference Citation Analysis (0)]
11.  Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, Kelley KA, Lopez CD, Rana SR, Ruhl R, Tsikitis VL, Vaccaro GM, Wong MH, Mayo SC. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol Gastroenterol Hepatol. 2017;3:163-173.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 153]  [Cited by in RCA: 205]  [Article Influence: 25.6]  [Reference Citation Analysis (0)]
12.  Kemeny N, Kurilova I, Li J, Camacho JC, Sofocleous CT. Liver-Directed and Systemic Therapies for Colorectal Cancer Liver Metastases. Cardiovasc Intervent Radiol. 2019;42:1240-1254.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5]  [Cited by in RCA: 8]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
13.  Hazhirkarzar B, Khoshpouri P, Shaghaghi M, Ghasabeh MA, Pawlik TM, Kamel IR. Current state of the art imaging approaches for colorectal liver metastasis. Hepatobiliary Surg Nutr. 2020;9:35-48.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 13]  [Cited by in RCA: 28]  [Article Influence: 5.6]  [Reference Citation Analysis (0)]
14.  Liu MT, Zhang JY, Xu L, Qu Q, Lu MT, Jiang JF, Zhao XC, Zhang XQ, Zhang T. A multivariate model based on gadoxetic acid-enhanced MRI using Li-RADS v2018 and other imaging features for preoperative prediction of dualphenotype hepatocellular carcinoma. Radiol Med. 2023;128:1333-1346.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 6]  [Reference Citation Analysis (0)]
15.  Reginelli A, Vanzulli A, Sgrazzutti C, Caschera L, Serra N, Raucci A, Urraro F, Cappabianca S. Vascular microinvasion from hepatocellular carcinoma: CT findings and pathologic correlation for the best therapeutic strategies. Med Oncol. 2017;34:93.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 21]  [Cited by in RCA: 33]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
16.  Inoue A, Tanabe M, Ihara K, Hideura K, Higashi M, Benkert T, Imai H, Yamane M, Yamaguchi T, Ueda T, Ito K. Evaluation of diffusion-weighted magnetic resonance imaging of the rectal cancers: comparison between modified reduced field-of-view single-shot echo-planar imaging with tilted two-dimensional radiofrequency excitation pulses and conventional full field-of-view readout-segmented echo-planar imaging. Radiol Med. 2023;128:1192-1198.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 4]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
17.  Arico' FM, Trimarchi R, Portaluri A, Barilla' C, Migliaccio N, Bucolo GM, Cicero G, Sofia C, Booz C, Vogl TJ, Marino MA, Ascenti V, D'Angelo T, Mazziotti S, Ascenti G. Virtual monoenergetic dual-layer dual-energy CT images in colorectal cancer: CT diagnosis could be improved? Radiol Med. 2023;128:891-899.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 16]  [Cited by in RCA: 15]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
18.  Reginelli A, Patanè V, Urraro F, Russo A, De Chiara M, Clemente A, Atripaldi U, Balestrucci G, Buono M, D'ippolito E, Grassi R, D'onofrio I, Napolitano S, Troiani T, De Vita F, Ciardiello F, Nardone V, Cappabianca S. Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study). Diagnostics (Basel). 2023;13.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 4]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
19.  Matthews R, Choi M. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers. Diagnostics (Basel). 2016;6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 11]  [Cited by in RCA: 14]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]
20.  Zhou N, Guo X, Sun H, Yu B, Zhu H, Li N, Yang Z. The Value of (18)F-FDG PET/CT and Abdominal PET/MRI as a One-Stop Protocol in Patients With Potentially Resectable Colorectal Liver Metastases. Front Oncol. 2021;11:714948.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 11]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
21.  Miao Z, Zhao X, Li X. [18F]FDG PET/CT versus [18F]FDG PET/MRI for the diagnosis of colorectal liver metastasis: A systematic review and meta-analysis. Front Oncol. 2023;13:1114059.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 4]  [Reference Citation Analysis (0)]
22.  Scialpi M, Moschini TO, De Filippis G. PET/contrast-enhanced CT in oncology: "to do, or not to do, that is the question". Radiol Med. 2022;127:925-927.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 11]  [Reference Citation Analysis (0)]
23.  Reginelli A, Clemente A, Cardone C, Urraro F, Izzo A, Martinelli E, Troiani T, Ciardiello F, Brunese L, Cappabianca S. Computed tomography densitometric study of anti-angiogenic effect of regorafenib in colorectal cancer liver metastasis. Future Oncol. 2018;14:2905-2913.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6]  [Cited by in RCA: 11]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]
24.  Nakai Y, Gonoi W, Kurokawa R, Nishioka Y, Abe H, Arita J, Ushiku T, Hasegawa K, Abe O. MRI Findings of Liver Parenchyma Peripheral to Colorectal Liver Metastasis: A Potential Predictor of Long-term Prognosis. Radiology. 2020;297:584-594.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 15]  [Cited by in RCA: 16]  [Article Influence: 3.2]  [Reference Citation Analysis (0)]
25.  Afaq A, Andreou A, Koh DM. Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging. 2010;10 Spec no A:S179-S188.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 54]  [Cited by in RCA: 67]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
26.  Messina C, Bignone R, Bruno A, Bruno A, Bruno F, Calandri M, Caruso D, Coppolino P, Robertis R, Gentili F, Grazzini I, Natella R, Scalise P, Barile A, Grassi R, Albano D. Diffusion-Weighted Imaging in Oncology: An Update. Cancers (Basel). 2020;12.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 124]  [Cited by in RCA: 115]  [Article Influence: 23.0]  [Reference Citation Analysis (0)]
27.  Hertel A, Kuru M, Tollens F, Tharmaseelan H, Nörenberg D, Rathmann N, Schoenberg SO, Froelich MF. Comparison of diagnostic accuracy of radiomics parameter maps and standard reconstruction for the detection of liver lesions in computed tomography. Front Oncol. 2024;14:1444115.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
28.  Karagkounis G, Horvat N, Danilova S, Chhabra S, Narayan RR, Barekzai AB, Kleshchelski A, Joanne C, Gonen M, Balachandran V, Soares KC, Wei AC, Kingham TP, Jarnagin WR, Shia J, Chakraborty J, D'Angelica MI. Computed Tomography-Based Radiomics with Machine Learning Outperforms Radiologist Assessment in Estimating Colorectal Liver Metastases Pathologic Response After Chemotherapy. Ann Surg Oncol. 2024;31:9196-9204.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
29.  Devoto L, Ganeshan B, Keller D, Groves A, Endozo R, Arulampalam T, Chand M. Using texture analysis in the development of a potential radiomic signature for early identification of hepatic metastasis in colorectal cancer. Eur J Radiol Open. 2022;9:100415.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 9]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
30.  Ma YQ, Wen Y, Liang H, Zhong JG, Pang PP. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. World J Gastroenterol. 2021;27:6465-6475.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 6]  [Cited by in RCA: 13]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
31.  García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Vallejo-Casas JA, Sala E, Vilanova JC, Koh DM, Herranz-Carnero M, Vargas HA. How clinical imaging can assess cancer biology. Insights Imaging. 2019;10:28.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 52]  [Cited by in RCA: 77]  [Article Influence: 12.8]  [Reference Citation Analysis (0)]
32.  Li SP, Padhani AR. Tumor response assessments with diffusion and perfusion MRI. J Magn Reson Imaging. 2012;35:745-763.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 131]  [Cited by in RCA: 138]  [Article Influence: 10.6]  [Reference Citation Analysis (0)]
33.  Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2:115-152.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 593]  [Cited by in RCA: 469]  [Article Influence: 27.6]  [Reference Citation Analysis (0)]
34.  Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang RY, Aerts HJWL. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019;69:127-157.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 848]  [Cited by in RCA: 818]  [Article Influence: 136.3]  [Reference Citation Analysis (3)]
35.  Zheng J, Qin C, Wang Q, Tian D, Chen Z. Circulating tumour DNA-Based molecular residual disease detection in resectable cancers: a systematic review and meta-analysis. EBioMedicine. 2024;103:105109.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 11]  [Reference Citation Analysis (0)]
36.  Zhang W, Guo Y, Jin Q. Radiomics and Its Feature Selection: A Review. Symmetry. 2023;15:1834.  [PubMed]  [DOI]  [Full Text]
37.  Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol. 2023;93:97-113.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6]  [Cited by in RCA: 75]  [Article Influence: 37.5]  [Reference Citation Analysis (0)]
38.  Chen W, Zhang T, Xu L, Zhao L, Liu H, Gu LR, Wang DZ, Zhang M. Radiomics Analysis of Contrast-Enhanced CT for Hepatocellular Carcinoma Grading. Front Oncol. 2021;11:660509.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 16]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
39.  Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441-446.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2415]  [Cited by in RCA: 3846]  [Article Influence: 295.8]  [Reference Citation Analysis (2)]
40.  Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, Yang G, Yan X, Zhang YD, Liu XS. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70:1133-1144.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 278]  [Cited by in RCA: 494]  [Article Influence: 82.3]  [Reference Citation Analysis (0)]
41.  Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, Fujita S, Fushimi Y, Fujima N, Matsui Y, Tatsugami F, Nozaki T, Fujioka T, Yanagawa M, Tsuboyama T, Kawamura M, Naganawa S. Clinical applications of artificial intelligence in liver imaging. Radiol Med. 2023;128:655-667.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 17]  [Reference Citation Analysis (0)]
42.  Wang Q, Nilsson H, Xu K, Wei X, Chen D, Zhao D, Hu X, Wang A, Bai G. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification. Eur J Radiol. 2024;175:111459.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 8]  [Reference Citation Analysis (0)]
43.  Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I. Machine and deep learning methods for radiomics. Med Phys. 2020;47:e185-e202.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 76]  [Cited by in RCA: 321]  [Article Influence: 80.3]  [Reference Citation Analysis (0)]
44.  Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, Lambin P, Bottari F, Tsoutzidis N, Miraglio B, Walsh S, Vos W, Hustinx R, Ferreira M, Lovinfosse P, Leijenaar RTH. A review in radiomics: Making personalized medicine a reality via routine imaging. Med Res Rev. 2022;42:426-440.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 17]  [Cited by in RCA: 164]  [Article Influence: 41.0]  [Reference Citation Analysis (0)]
45.  Guo L, Li X, Zhang C, Xu Y, Han L, Zhang L. Radiomics Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Preoperative Differentiation of Combined Hepatocellular-Cholangiocarcinoma from Hepatocellular Carcinoma: A Multi-Center Study. J Hepatocell Carcinoma. 2023;10:795-806.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 7]  [Reference Citation Analysis (0)]
46.  Miyamoto Y, Nakaura T, Ohuchi M, Ogawa K, Kato R, Maeda Y, Eto K, Iwatsuki M, Baba Y, Hirai T, Baba H. Radiomics-based Machine Learning Approach to Predict Chemotherapy Responses in Colorectal Liver Metastases. J Anus Rectum Colon. 2025;9:117-126.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
47.  Granata V, Fusco R, Barretta ML, Picone C, Avallone A, Belli A, Patrone R, Ferrante M, Cozzi D, Grassi R, Grassi R, Izzo F, Petrillo A. Radiomics in hepatic metastasis by colorectal cancer. Infect Agent Cancer. 2021;16:39.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 23]  [Cited by in RCA: 48]  [Article Influence: 12.0]  [Reference Citation Analysis (0)]
48.  Liao J, Li X, Gan Y, Han S, Rong P, Wang W, Li W, Zhou L. Artificial intelligence assists precision medicine in cancer treatment. Front Oncol. 2022;12:998222.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 46]  [Cited by in RCA: 64]  [Article Influence: 32.0]  [Reference Citation Analysis (0)]
49.  Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. Radiol Med. 2023;128:1310-1332.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 12]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
50.  Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Grassi R, Grassi F, Ottaiano A, Nasti G, Tatangelo F, Pilone V, Miele V, Brunese MC, Izzo F, Petrillo A. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases. Radiol Med. 2022;127:461-470.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 58]  [Article Influence: 19.3]  [Reference Citation Analysis (0)]
51.  Wu L, Lai Q, Li S, Wu S, Li Y, Huang J, Zeng Q, Wei D. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis. BMC Med Imaging. 2024;24:263.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
52.  Ma J, Nie X, Kong X, Xiao L, Liu H, Shi S, Wu Y, Li N, Hu L, Li X. MRI T2WI-based radiomics combined with KRAS gene mutation constructed models for predicting liver metastasis in rectal cancer. BMC Med Imaging. 2024;24:262.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
53.  Zhang XF, Wu HY, Liang XW, Chen JL, Li J, Zhang S, Liu Z. Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma. BMC Womens Health. 2024;24:182.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 5]  [Reference Citation Analysis (0)]
54.  Alshohoumi F, Al-Hamdani A, Hedjam R, AlAbdulsalam A, Al Zaabi A. A Review of Radiomics in Predicting Therapeutic Response in Colorectal Liver Metastases: From Traditional to Artificial Intelligence Techniques. Healthcare (Basel). 2022;10.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 3]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
55.  Zeng H, Chen L, Wang M, Luo Y, Huang Y, Ma X. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Aging (Albany NY). 2021;13:9960-9975.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 14]  [Cited by in RCA: 30]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
56.  Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, Zhu H, Shui P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front Oncol. 2020;10:570465.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 90]  [Cited by in RCA: 68]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
57.  Chiba N, Iida S, Nakagawa M, Gunji T, Yokozuka K, Kobayashi T, Sano T, Shigoka M, Tabuchi S, Hidaka E, Kawachi S. New definition of borderline resectable colorectal liver metastasis based on prognostic outcomes. Langenbecks Arch Surg. 2024;409:301.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
58.  Kingham TP, Pak LM, Simpson AL, Leung U, Doussot A, D'Angelica MI, DeMatteo RP, Allen PJ, Jarnagin WR. 3D image guidance assisted identification of colorectal cancer liver metastases not seen on intraoperative ultrasound: results from a prospective trial. HPB (Oxford). 2018;20:260-267.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 10]  [Cited by in RCA: 15]  [Article Influence: 2.1]  [Reference Citation Analysis (0)]
59.  Canellas R, Patel MJ, Agarwal S, Sahani DV. Lesion detection performance of an abbreviated gadoxetic acid-enhanced MRI protocol for colorectal liver metastasis surveillance. Eur Radiol. 2019;29:5852-5860.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 13]  [Cited by in RCA: 25]  [Article Influence: 4.2]  [Reference Citation Analysis (0)]
60.  Senchukova MA. Colorectal cancer and dormant metastases: Put to sleep or destroy? World J Gastrointest Oncol. 2024;16:2304-2317.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 1]  [Cited by in RCA: 3]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]