1
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
2
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Xu X, Zhuang X, Yu H, Li P, Li X, Lin H, Teoh JP, Chen Y, Yang Y, Cheng Y, Chen W, Fu X. FSH induces EMT in ovarian cancer via ALKBH5-regulated Snail m6A demethylation. Theranostics 2024; 14:2151-2166. [PMID: 38505602 PMCID: PMC10945345 DOI: 10.7150/thno.94161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Background: The therapeutic benefits of targeting follicle-stimulating hormone (FSH) receptor in treatment of ovarian cancer are significant, whereas the role of FSH in ovarian cancer progresses and the underlying mechanism remains to be developed. Methods: Tissue microarray of human ovarian cancer, tumor xenograft mouse model, and in vitro cell culture were used to investigate the role of FSH in ovarian carcinogenesis. siRNA, lentivirus and inhibitors were used to trigger the inactivation of genes, and plasmids were used to increase transcription of genes. Specifically, pathological characteristic was assessed by histology and immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Results: Histology and IHC of human normal ovarian and tumor tissue confirmed the association between FSH and Snail in ovarian cancer metastasis. Moreover, in epithelial ovarian cancer cells and xenograft mice, FSH was showed to promote epithelial mesenchymal transition (EMT) progress and metastasis of ovarian cancer via prolonging the half-life of Snail mRNA in a N6-methyladenine methylation (m6A) dependent manner, which was mechanistically through the CREB/ALKBH5 signaling pathway. Conclusions: These findings indicated that FSH induces EMT progression and ovarian cancer metastasis via CREB/ALKBH5/Snail pathway. Thus, this study provided new insight into the therapeutic strategy of ovarian cancer patients with high level of FSH.
Collapse
Affiliation(s)
- Xingyan Xu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuefen Zhuang
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haowei Yu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huiping Lin
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian-peng Teoh
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Chen
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuanlan Yang
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Guangzhou First People's Hospital, Guangzhou, China
| | - Weiyu Chen
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
5
|
Ameri A, Ahmed HM, Pecho RDC, Arabnozari H, Sarabadani H, Esbati R, Mirabdali S, Yazdani O. Diverse activity of miR-150 in Tumor development: shedding light on the potential mechanisms. Cancer Cell Int 2023; 23:261. [PMID: 37924077 PMCID: PMC10625198 DOI: 10.1186/s12935-023-03105-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
There is a growing interest to understand the role and mechanism of action of microRNAs (miRNAs) in cancer. The miRNAs are defined as short non-coding RNAs (18-22nt) that regulate fundamental cellular processes through mRNA targeting in multicellular organisms. The miR-150 is one of the miRNAs that have a crucial role during tumor cell progression and metastasis. Based on accumulated evidence, miR-150 acts as a double-edged sword in malignant cells, leading to either tumor-suppressive or oncogenic function. An overview of miR-150 function and interactions with regulatory and signaling pathways helps to elucidate these inconsistent effects in metastatic cells. Aberrant levels of miR-150 are detectable in metastatic cells that are closely related to cancer cell migration, invasion, and angiogenesis. The ability of miR-150 in regulating of epithelial-mesenchymal transition (EMT) process, a critical stage in tumor cell migration and metastasis, has been highlighted. Depending on the cancer cells type and gene expression profile, levels of miR-150 and potential target genes in the fundamental cellular process can be different. Interaction between miR-150 and other non-coding RNAs, such as long non-coding RNAs and circular RNAs, can have a profound effect on the behavior of metastatic cells. MiR-150 plays a significant role in cancer metastasis and may be a potential therapeutic target for preventing or treating metastatic cancer.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
6
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
7
|
Arora R, Kim JH, Getu AA, Angajala A, Chen YL, Wang B, Kahn AG, Chen H, Reshi L, Lu J, Zhang W, Zhou M, Tan M. MST4: A Potential Oncogene and Therapeutic Target in Breast Cancer. Cells 2022; 11:cells11244057. [PMID: 36552828 PMCID: PMC9777386 DOI: 10.3390/cells11244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian STE 20-like protein kinase 4 (MST4) gene is highly expressed in several cancer types, but little is known about the role of MST4 in breast cancer, and the function of MST4 during epithelial-mesenchymal transition (EMT) has not been fully elucidated. Here we report that overexpression of MST4 in breast cancer results in enhanced cell growth, migration, and invasion, whereas inhibition of MST4 expression significantly attenuates these properties. Further study shows that MST4 promotes EMT by activating Akt and its downstream signaling molecules such as E-cadherin/N-cadherin, Snail, and Slug. MST4 also activates AKT and its downstream pro-survival pathway. Furthermore, by analyzing breast cancer patient tissue microarray and silicon datasets, we found that MST4 expression is much higher in breast tumor tissue compared to normal tissue, and significantly correlates with cancer stage, lymph node metastasis and a poor overall survival rate (p < 0.05). Taken together, our findings demonstrate the oncogenic potential of MST4 in breast cancer, highlighting its role in cancer cell proliferation, migration/invasion, survival, and EMT, suggesting a possibility that MST4 may serve as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ritu Arora
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jin-Hwan Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Ayechew A. Getu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Yih-Lin Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Andrea G. Kahn
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hong Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Latif Reshi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jianrong Lu
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wenling Zhang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
9
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
10
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
11
|
CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1481-1497. [PMID: 35696016 DOI: 10.1007/s11427-022-2108-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The CREB1 gene encodes an exceptionally pleiotropic transcription factor that frequently dysregulated in human cancers. CREB1 can regulate tumor cell status of proliferation and/or migration; however, the molecular basis for this switch involvement in cell plasticity has not fully been understood yet. Here, we first show that knocking out CREB1 triggers a remarkable effect of epithelial-mesenchymal transition (EMT) and leads to the occurrence of inhibited proliferation and enhanced motility in HCT116 colorectal cancer cells. By monitoring 45 cellular signaling pathway activities, we find that multiple growth-related pathways decline significantly while inflammatory pathways including NF-κB are largely upregulated in comparing between the CREB1 wild-type and knocked out cells. Mechanistically, cells with CREB1 knocked out show downregulation of MYC as a result of impaired CREB1-dependent transcription of the oncogenic lncRNA CCAT1. Interestingly, the unbalanced competition between the coactivator CBP/p300 for CREB1 and p65 leads to the activation of the NF-κB pathway in cells with CREB1 disrupted, which induces an obvious EMT phenotype of the cancer cells. Taken together, these studies identify previously unknown mechanisms of CREB1 in CRC cell plasticity via regulating lncRNA CCAT1 and NF-κB pathways, providing a critical insight into a combined strategy for CREB1-targeted tumor therapies.
Collapse
|
12
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
13
|
Selvam M, Bandi V, Ponne S, Ashok C, Baluchamy S. microRNA-150 targets major epigenetic repressors and inhibits cell proliferation. Exp Cell Res 2022; 415:113110. [DOI: 10.1016/j.yexcr.2022.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
|
14
|
Zhang J, Starkuviene V, Erfle H, Wang Z, Gunkel M, Zeng Z, Sticht C, Kan K, Rahbari N, Keese M. High-content analysis of microRNAs involved in the phenotype regulation of vascular smooth muscle cells. Sci Rep 2022; 12:3498. [PMID: 35241704 PMCID: PMC8894385 DOI: 10.1038/s41598-022-07280-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022] Open
Abstract
In response to vascular injury vascular smooth muscle cells (VSMCs) alternate between a differentiated (contractile) and a dedifferentiated (synthetic) state or phenotype. Although parts of the signaling cascade regulating the phenotypic switch have been described, the role of miRNAs is still incompletely understood. To systematically address this issue, we have established a microscopy-based quantitative assay and identified 23 miRNAs that induced contractile phenotypes when over-expressed. These were then correlated to miRNAs identified from RNA-sequencing when comparing cells in the contractile and synthetic states. Using both approaches, six miRNAs (miR-132-3p, miR-138-5p, miR-141-3p, miR-145-5p, miR-150-5p, and miR-22-3p) were filtered as candidates that induce the phenotypic switch from synthetic to contractile. To identify potentially common regulatory mechanisms of these six miRNAs, their predicted targets were compared with five miRNAs sharing ZBTB20, ZNF704, and EIF4EBP2 as common potential targets and four miRNAs sharing 16 common potential targets. The interaction network consisting of these 19 targets and additional 18 hub targets were created to facilitate validation of miRNA-mRNA interactions by suggesting the most plausible pairs. Furthermore, the information on drug candidates was integrated into the network to predict novel combinatorial therapies that encompass the complexity of miRNAs-mediated regulation. This is the first study that combines a phenotypic screening approach with RNA sequencing and bioinformatics to systematically identify miRNA-mediated pathways and to detect potential drug candidates to positively influence the phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Jian Zhang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Heidelberg, Germany. .,Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania.
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Zhaohui Wang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ziwei Zeng
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Keese
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
15
|
Nemati R, Valizadeh M, Mohammadi M, Kamali A. Bioinformatic analysis reveals in common genes between colorectal cancer and recurrent colorectal malignancy. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Lai Q, Wang M, Hu C, Tang Y, Li Y, Hao S. Circular RNA regulates the onset and progression of cancer through the mitogen-activated protein kinase signaling pathway. Oncol Lett 2021; 22:817. [PMID: 34671431 PMCID: PMC8503804 DOI: 10.3892/ol.2021.13078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
The rapid increase in cancer morbidity and mortality worldwide is a major challenge for public health providers. Therefore, there is an urgent need to explore the molecular mechanism of tumorigenesis and identify potential diagnostic biomarkers and therapeutic methods. Circular RNA (circRNA) is characterized by a stable structure and tissue-specific expression; these features are useful in medical research and clinical applications. In recent years, with the development of high-throughput sequencing technology, the potential use of circRNA in cancer prognosis and treatment has been extensively explored. Abnormal circRNA expression interferes with specific signaling pathways such as the MAPK pathway; this phenomenon may provide potential diagnostic biomarkers and new therapeutic targets. The present article discusses the research progress on the regulatory roles of MAPK/ERK pathway-related circRNA molecules in the development and progression of different types of tumors. This review may provide insight into the development of circRNA-based cancer management strategies.
Collapse
Affiliation(s)
- Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
17
|
Jafarzadeh M, Soltani BM. MiRNA-Wnt signaling regulatory network in colorectal cancer. J Biochem Mol Toxicol 2021; 35:e22883. [PMID: 34382723 DOI: 10.1002/jbt.22883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is one of the common malignancies worldwide and the Wnt signaling pathway is recognized as the main disrupted pathway in this malignancy. MicroRNAs (miRNAs) are recognized to contribute to the pathogenesis of CRC by triggering or impeding the Wnt signaling pathway. In addition, transcriptional regulation of miRNAs by canonical Wnt signaling also participates in CRC cell progression. In this review, we present comprehensive literature of the existing data on the interaction of miRNAs and Wnt signaling that could be useful in future studies in the field of CRC management.
Collapse
Affiliation(s)
- Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Xu C, Ding YH, Wang K, Hao M, Li H, Ding L. Claudin-7 deficiency promotes stemness properties in colorectal cancer through Sox9-mediated Wnt/β-catenin signalling. J Transl Med 2021; 19:311. [PMID: 34281572 PMCID: PMC8287764 DOI: 10.1186/s12967-021-02983-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumour of the digestive tract that is characterized by high patient morbidity and mortality rates. Claudin-7 (Cldn7), a tight junction protein, was recently reported to function as a candidate tumour suppressor gene in CRC. Our previous study demonstrated that the large intestine of C57/BL6 mice showed intestinal adenomas and abnormal Ki67 expression and distribution in the intestinal crypt when Cldn7 was knocked out. The aim of this study was to further investigate whether Cldn7 deficiency has non-tight junction functions, affects intestinal stemness properties, promotes CRC and to determine the specific mechanism. METHODS Cell proliferation assays, migration assays, apoptosis assays, tumour sphere formation assays in vitro, and subcutaneous xenograft models in vivo were used to determine the effects of Cldn7 knockdown on the biological characteristics of CRC stem cells. Western blotting, qPCR and immunofluorescence staining were performed to identify the epithelial-mesenchymal transition and the activation of Wnt/β-catenin pathway in CRC stem cells. Cldn7 inducible conditional gene knockout mice and immunohistochemical staining further verified this hypothesis in vivo. The mechanism and target of Cldn7 were determined by performing a chromatin immunoprecipitation (ChIP) assay and coimmunoprecipitation (CoIP) assay. RESULTS Cldn7 knock down in CRC stem cells promoted cell proliferation, migration, and globular growth in serum-free medium and the ability to form xenograft tumours; cell apoptosis was inhibited, while the cellular epithelial-mesenchymal transition was also observed. These changes in cell characteristics were achieved by activating the Wnt/β-catenin pathway and promoting the expression of downstream target genes after β-catenin entry into the nucleus, as observed in CRC cell lines and Cldn7 gene knockout mouse experiments. Using ChIP and CoIP experiments, we initially found that Cldn7 and Sox9 interacted at the protein level to activate the Wnt/β-catenin pathway. CONCLUSIONS Based on our research, Cldn7 deficiency confers stemness properties in CRC through Sox9-mediated Wnt/β-catenin signalling. This result clarifies that Cldn7 plays an inhibitory role in CRC and reveals a possible molecular mechanism, which is conducive to further research on Cldn7 and cancer stem cells.
Collapse
Affiliation(s)
- Chang Xu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
- Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing
, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu-han Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
19
|
Umwali Y, Yue CB, Gabriel ANA, Zhang Y, Zhang X. Roles of exosomes in diagnosis and treatment of colorectal cancer. World J Clin Cases 2021; 9:4467-4479. [PMID: 34222415 PMCID: PMC8223826 DOI: 10.12998/wjcc.v9.i18.4467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles that mediate intercellular communication. They contain different molecules, such as DNA, RNA, lipid, and protein, playing essential roles in the pathogenesis of colorectal cancer (CRC). Exosomes derived from CRC are implicated in tumorigenesis, chemotherapy resistance, and metastasis. Besides, they can enhance CRC progression by increasing tumor cell proliferation, reducing apoptosis mechanistically through altering particular essential regulatory genes, or controlling several signaling pathways. Therefore, exosomes derived from CRC are essential biomarkers and can be used in the diagnosis. Indeed, it is crucial to understand the role of exosomes in CRC, which is necessary to develop diagnostic and therapeutic strategies for early detection and treatment. In the present review, we discuss the roles of exosomes in the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Yvette Umwali
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Cong-Bo Yue
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Abakundana Nsenga Ariston Gabriel
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
20
|
Sur D, Balacescu L, Cainap SS, Visan S, Pop L, Burz C, Havasi A, Buiga R, Cainap C, Irimie A, Balacescu O. Predictive Efficacy of MiR-125b-5p, MiR-17-5p, and MiR-185-5p in Liver Metastasis and Chemotherapy Response Among Advanced Stage Colorectal Cancer Patients. Front Oncol 2021; 11:651380. [PMID: 34084747 PMCID: PMC8167052 DOI: 10.3389/fonc.2021.651380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs represent potential biomarkers for colorectal cancer (CRC). The study hypothesized that miRNAs associated with liver metastases may also contribute to assessing treatment response when associated to plasma exosomes. In this study, we used two sets of biological samples, a collection of tumor tissues harvested from patients with CRC with and without liver metastases, and a collection of plasma from CRC patients with and without response to FOLFOX4/FOLFIRI regimens. We investigated 10 target miRNAs in the tissue of 28 CRC patients and identified miR-125b-5p, miR-17-5p, and miR-185-5p to be associated with liver metastasis. Further, we investigated the three miRNAs at the exosomal level in a plasma collection to test their association with chemotherapy response. Our data suggest that the elevated plasma levels of miR-17-5p and miR-185-5p could be predictive of treatment response. Overexpression of miR-17-5p and underexpression of miR-125b-5p and miR-185-5p in CRC tissue seem to be associated with metastatic potential. On the other hand, an increased expression of miR-125b-5p in plasma exosomes was potentially correlated with a more aggressive CRC phenotype.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Loredana Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Simona S Cainap
- Department of Pediatric Cardiology, Emergency County Hospital for Children, Pediatric Clinic no 2, Cluj-Napoca, Romania.,Department of Mother and Child, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Immunology and Allergology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Rares Buiga
- Department of Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Pathology, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
21
|
Peng Y, Zhang X, Lin H, Deng S, Qin Y, He J, Hu F, Zhu X, Feng X, Wang J, Wei Y, Fan X, Lin H, Ashktorab H, Smoot D, Lv Y, Li S, Meltzer SJ, Jin Z. Dual activation of Hedgehog and Wnt/β-catenin signaling pathway caused by downregulation of SUFU targeted by miRNA-150 in human gastric cancer. Aging (Albany NY) 2021; 13:10749-10769. [PMID: 33848981 PMCID: PMC8064165 DOI: 10.18632/aging.202895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mounting evidence has shown that miRNA-150 expression is upregulated in gastric cancer (GC) and is associated with gastric carcinogenesis, but the underlying oncogenic mechanism remains elusive. Here, we discovered that miRNA-150 targets the tumor suppressor SUFU to promote cell proliferation, migration, and the epithelial-mesenchymal transition (EMT) via the dual activation of Hedgehog (Hh) and Wnt signaling. MiRNA-150 was highly expressed in GC tissues and cell lines, and the level of this miRNA was negatively related to that of SUFU. In addition, both the miRNA-150 and SUFU levels were associated with tumor differentiation. Furthermore, miRNA-150 activated GC cell proliferation and migration in vitro. We found that miRNA-150 inhibitors repressed not only Wnt signaling by promoting cytoplasmic β-catenin localization, but also repressed Hh signaling and EMT. MiRNA-150 inhibition also resulted in significant tumor volume reductions in vivo, suggesting the potential application of miRNA-150 inhibitors in GC therapy. The expression of genes downstream of Hh and Wnt signaling was also reduced in tumors treated with miRNA-150 inhibitors. Notably, anti-SUFU siRNAs rescued the inhibitory effects of miRNA-150 inhibitors on Wnt signaling, Hh activation, EMT, cell proliferation, cell migration, and colony formation. Taken together, these findings indicate that miRNA-150 is oncogenic and promotes GC cell proliferation, migration, and EMT by activating Wnt and Hh signaling via the suppression of SUFU expression.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong, P.R. China
| | - Huijuan Lin
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou 510000, Guangdong, P.R. China,Department of Pathology and Pathophysiology, Guangzhou Medical University, Guangzhou 510000, Guangdong, P.R. China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, P.R. China
| | - Jieqiong He
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Xiaohui Zhu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Jian Wang
- Department of Pathology and Pathophysiology, Guangzhou Medical University, Guangzhou 510000, Guangdong, P.R. China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen 518000, Guangdong, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Huan Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Yansi Lv
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Song Li
- Shenzhen Science and Technology Development Exchange Center, Shenzhen 518060, Guangdong, P.R. China
| | - Stephen J. Meltzer
- Department of Medicine, GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| |
Collapse
|
22
|
Bai J, Zhang X, Shi D, Xiang Z, Wang S, Yang C, Liu Q, Huang S, Fang Y, Zhang W, Song J, Xiong B. Exosomal miR-128-3p Promotes Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells by Targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 Signaling. Front Cell Dev Biol 2021; 9:568738. [PMID: 33634112 PMCID: PMC7900423 DOI: 10.3389/fcell.2021.568738] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key process that occurs during tumor metastasis, affecting a variety of malignancies including colorectal cancer (CRC). Exosomes mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including microRNAs (miRNAs). Exosomal delivery of miRNAs plays an important role in tumor initiation, development, and progression. In this study, we investigated the effect of exosomal transfer between CRC cells and aimed to identify specific miRNAs and downstream targets involved in EMT and metastasis in CRC cells. High expression of miR-128-3p was identified in exosomes derived from EMT-induced HCT-116 cells. Altered miR-128-3p expression in CRC cells led to distinct changes in proliferation, migration, invasion, and EMT. Mechanistically, miR-128-3p overexpression downregulated the expression of FOXO4 and induced the activation of TGF-β/SMAD and JAK/STAT3 signaling in CRC cells and xenografted tumors, which led to EMT. Clinically, high expression of miR-128-3p was significantly associated with perineural invasion, lymphovascular invasion, tumor stage, and CA 19-9 content in CRC patients. We revealed that exosomal miR-128-3p regulates EMT by directly suppressing its downstream target gene FOXO4 to activate TGF-β/SMAD and JAK/STAT3 signaling, and the properties of the miR-128-3p/FOXO4 axis were horizontally transferred via exosomal delivery. In turn, exosomal miR-128-3p could be considered as a new therapeutic vehicle for CRC.
Collapse
Affiliation(s)
- Jian Bai
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xue Zhang
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yan Fang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Weisong Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jialin Song
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
23
|
Maminezhad H, Ghanadian S, Pakravan K, Razmara E, Rouhollah F, Mossahebi-Mohammadi M, Babashah S. A panel of six-circulating miRNA signature in serum and its potential diagnostic value in colorectal cancer. Life Sci 2020; 258:118226. [PMID: 32771555 DOI: 10.1016/j.lfs.2020.118226] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
AIM Colorectal carcinoma (CRC) is one of the most prevalent cancers throughout the world. Circulating serum-derived microRNAs (miRNAs, miRs) can be used as non-invasive biomarkers for CRC diagnosis. This study aimed to identify a panel of six serum exosomal miRNAs as novel diagnostic biomarkers for CRC. MAIN METHODS Exosomes were isolated and characterized from the conditioned media of the human colon adenocarcinoma cells (HCT-116 and Caco2). Sera were isolated from peripheral blood of 45 CRC and also 45 healthy individuals. The expression levels and diagnostic value of candidate circulating miRNAs (miR-19a, miR-20a, miR-150, miR-143, miR-145, and let-7a) were measured through quantitative real-time PCR. Receiver operating characteristic (ROC) curves were applied to evaluate the diagnostic accuracy of selected miRNAs. The association of candidate miRNAs and clinicopathological characteristics e.g. tumor node metastasis (TNM) staging and lymph node metastasis (LNM) were further evaluated. KEY FINDINGS Circulating serum miR-19a, miR-20a, miR-150, and let-7a were significantly up-regulated in CRC patients, while miR-143 and miR-145 showed a significant down-regulation. The higher levels of miR-143 and miR-145 in patients with TNM stage I-II were detected, whereas miR-19a, miR-20a, miR-150, and let-7a were highly expressed in TNM stage III. The expression levels of miR-19a, miR-20a, and miR-150 were positively correlated with LNM status, while the expression levels of miR-143 and miR-145 were lower in patients with LNM. Area under the ROC curves of miR-19a, miR-20a, miR-150, miR-143, miR-145, and let-7a were 0.87, 0.83, 0.75, 0.76, 0.78 and 0.71, respectively. SIGNIFICANCE We established a panel of six-circulating miRNA signature (i.e. miR-19a, miR-20a, miR-143, miR-145, miR-150, and let-7a) in serum as a non-invasive biomarker for CRC diagnosis. These findings confirm that serum-derived miRNAs have a strong potential to be a diagnostic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Hamidreza Maminezhad
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Ghanadian
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences of Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
24
|
Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review). Oncol Rep 2020; 44:1299-1313. [PMID: 32700744 PMCID: PMC7448411 DOI: 10.3892/or.2020.7703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT), during which cancer cells lose the epithelial phenotype and gain the mesenchymal phenotype, has been verified to result in tumor migration and invasion. Numerous studies have shown that dysregulation of the Wnt/β‑catenin signaling pathway gives rise to EMT, which is characterized by nuclear translocation of β‑catenin and E‑cadherin suppression. Wnt/β‑catenin signaling was confirmed to be affected by microRNAs (miRNAs), several of which are down‑ or upregulated in metastatic cancer cells, indicating their complex roles in Wnt/β‑catenin signaling. In this review, we demonstrated the targets of various miRNAs in altering Wnt/β‑catenin signaling to promote or inhibit EMT, which may elucidate the underlying mechanism of EMT regulation by miRNAs and provide evidence for potential therapeutic targets in the treatment of invasive tumors.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Ge Zhang
- Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Liang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiayu Sun
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xin Liao
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Changfeng Zhu
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
25
|
Kalaimani L, Devarajan B, Subramanian U, Ayyasamy V, Namperumalsamy VP, Veerappan M, Chidambaranathan GP. MicroRNA Profiling of Highly Enriched Human Corneal Epithelial Stem Cells by Small RNA Sequencing. Sci Rep 2020; 10:7418. [PMID: 32366885 PMCID: PMC7198595 DOI: 10.1038/s41598-020-64273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
The objective of the study was to elucidate the microRNA (miRNA) profile of an enriched human corneal epithelial stem cell (CESC) population in comparison to differentiated central corneal epithelial cells (CCECs) by small RNA sequencing. The CESCs were enriched by differential enzymatic treatment to isolate the basal limbal epithelial cells followed by laser capture microdissection of cells with nucleus to cytoplasm ratio ≥0.7, from donor tissues. Small RNA sequencing was carried out using Illumina NextSeq. 500 platform and the validation of differentially expressed miRNAs by quantitative real-time PCR (qPCR) and locked nucleic acid miRNA in-situ hybridization (LNA-ISH). The sequencing identified 62 miRNAs in CESCs and 611 in CCECs. Six miRNAs: hsa-miR-21-5p, 3168, 143-3p, 10a-5p, 150-5p and 1910-5p were found to be significantly upregulated in enriched CESCs, which was further confirmed by qPCR and LNA-ISH. The expression of hsa-miR-143-3p was exclusive to clusters of limbal basal epithelial cells. The targets of the upregulated miRNAs were predicted to be associated with signaling pathways -Wnt, PI3K-AKT, MAPK and pathways that regulate pluripotency of stem cells, cell migration, growth and proliferation. Further studies are essential to elucidate their functional role in maintenance of stemness. The findings of the study also hypothesize the inherent potential of hsa-miR-143-3p to serve as a biomarker for identifying CESCs.
Collapse
Affiliation(s)
- Lavanya Kalaimani
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Biotechnology, Aravind Medical Research Foundation -Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Bharanidharan Devarajan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Umadevi Subramanian
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Vanniarajan Ayyasamy
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Muthukkaruppan Veerappan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India.
- Department of Biotechnology, Aravind Medical Research Foundation -Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
26
|
Xu Z, He W, Ke T, Zhang Y, Zhang G. DHRS12 inhibits the proliferation and metastasis of osteosarcoma via Wnt3a/β-catenin pathway. Future Oncol 2020; 16:665-674. [PMID: 32250163 DOI: 10.2217/fon-2019-0432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This experimental design was based on DHRS12 to explore its biological effects on osteosarcoma (OS). Materials & methods: The expression level of endogenous DHRS12 was analyzed by immunohistochemical analysis. DHRS12 was overexpressed in MG-63 and HOS cells by plasmid transfection. Cell proliferation, invasion, migration, apoptosis and western blot were used in the experiment. Results: The expression of DHRS12 was significantly reduced in OS. Overexpression of DHRS12 inhibited the proliferation, migration and invasion of MG-63 and HOS cells and induced apoptosis of OS cells. Overexpression of DHRS12 upregulated Bax, Caspase 9 and Caspase 3. Overexpression of DHRS12 resulted in inactivation of the Wnt3a/β-catenin signaling pathway. Conclusion: Overexpression of DHRS12 inhibited the progression of OS via the Wnt3a/β-catenin pathway.
Collapse
Affiliation(s)
- Zhixian Xu
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Wubing He
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Tie Ke
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Yongfa Zhang
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Guifeng Zhang
- Department of Medical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| |
Collapse
|
27
|
Angioregulatory microRNAs in Colorectal Cancer. Cancers (Basel) 2019; 12:cancers12010071. [PMID: 31887997 PMCID: PMC7016698 DOI: 10.3390/cancers12010071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Angiogenesis is a rate-determining step in CRC development and metastasis. The balance of angiogenic and antiangiogenic factors is crucial in this process. Angiogenesis-related genes can be regulated post-transcriptionally by microRNAs (miRNAs) and some miRNAs have been shown to shuttle between tumor cells and the tumor microenvironment (TME). MiRNAs have context-dependent actions and can promote or suppress angiogenesis dependent on the type of cancer. On the one hand, miRNAs downregulate anti-angiogenic targets and lead to angiogenesis induction. Tumor suppressor miRNAs, on the other hand, enhance anti-angiogenic response by targeting pro-angiogenic factors. Understanding the interaction between these miRNAs and their target mRNAs will help to unravel molecular mechanisms involved in CRC progression. The aim of this article is to review the current literature on angioregulatory miRNAs in CRC.
Collapse
|
28
|
Tung CH, Kuo LW, Huang MF, Wu YY, Tsai YT, Wu JE, Hsu KF, Chen YL, Hong TM. MicroRNA-150-5p promotes cell motility by inhibiting c-Myb-mediated Slug suppression and is a prognostic biomarker for recurrent ovarian cancer. Oncogene 2019; 39:862-876. [PMID: 31570789 DOI: 10.1038/s41388-019-1025-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Treatment of ovarian cancer (OvCa) remains challenging owing to its high recurrence rates. Detachment of cancer cells into the peritoneal fluid plays a key role in OvCa relapse, but how this occurs remains incompletely understood. Here we examined global miRNA expression profiles of paired primary/recurrent OvCa specimens and identified a novel biomarker, microRNA-150-5p (miR-150-5p), that was significantly upregulated in 16 recurrent OvCa tissues compared with their matched primary specimens. Analyses of cohorts from two other groups confirmed that expression of miR-150-5p was associated with early relapse and poor survival of OvCa patients. Inhibition of miR-150-5p significantly inhibited the migration and invasion of OvCa cells and induced a mesenchymal-epithelial transition (MET) phenotype. We demonstrated that the proto-oncogene, MYB, is an miR-150-5p target in OvCa cells and that the miR-150-5p/c-Myb/Slug axis plays important roles in regulating epithelial-mesenchymal transition (EMT) in OvCa cells. Expression of MYB was significantly correlated with good clinical outcome in OvCa and was negatively correlated with Slug expression in late-stage clinical specimens. These results suggest that miR-150-5p upregulation mediates the progression of recurrent OvCa by targeting the c-Myb/Slug pathway. Inhibition of miR-150-5p may serve as a new therapeutic strategy for preventing recurrence of OvCa.
Collapse
Affiliation(s)
- Chia-Hao Tung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Fan Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tsung Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-En Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Clinical Medicine Research Center, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
29
|
Deng B, Xu W, Wang Z, Liu C, Lin P, Li B, Huang Q, Yang J, Zhou H, Qu L. An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep 2019; 20:e47650. [PMID: 31486214 DOI: 10.15252/embr.201847650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023] Open
Abstract
LTR retrotransposons are abundant repetitive elements in the human genome, but their functions remain poorly understood. Here, we report the function and regulatory mechanism of an ERV-9 LTR retrotransposon-derived lncRNA called p53-regulated lncRNA for homologous recombination (HR) repair 1 (PRLH1) in human cells. PRLH1 is highly expressed in p53-mutated hepatocellular carcinoma (HCC) samples and promotes cell proliferation in p53-mutated HCC cells, and its transcription is promoted by NF-Y and suppressed by p53. Mechanistically, PRLH1 specifically binds to an uncharacterized domain of RNF169 through two GCUUCA boxes in its 5' terminal region to form a DNA repair complex that supplants 53BP1 at double-strand break (DSB) sites and then promotes the initiation of HR repair. Notably, PRLH1 is essential for the stabilization of RNF169, acting as an RNA platform to recruit and assemble HR protein factors. This study characterizes PRLH1 as a novel HR-promoting factor and provides new insights into the function and mechanism of LTR retrotransposon-derived lncRNAs.
Collapse
Affiliation(s)
- Bing Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Wenli Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zelin Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Penghui Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Shi C, Xu L, Tang Z, Zhang W, Wei Y, Ni J, Zhang S, Feng J. Knockdown of Nemo‑like kinase promotes metastasis in non‑small‑cell lung cancer. Oncol Rep 2019; 42:1090-1100. [PMID: 31322229 PMCID: PMC6667924 DOI: 10.3892/or.2019.7226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved serine/threonine kinase Nemo-like kinase (NLK) serves an important role in cell proliferation, migration, invasion and apoptosis by regulating transcription factors among various cancers. In the present study, the function of NLK in human non-small cell lung cancer (NSCLC) was investigated. Immunohistochemical analysis and western blotting demonstrated that NLK expression was significantly reduced in NSCLC tissues compared with corresponding peritumoral tissues. Statistical analysis revealed that decreased NLK expression was associated with the presence of primary tumors, tumor node metastasis (TNM) staging, differentiation, lymph node metastasis, and E-cadherin and vimentin expression. Univariate analysis indicated that NLK expression, differentiation, lymph node metastasis, TNM stage, and E-cadherin and vimentin expression affected the prognosis of NSCLC. Cox regression analyses revealed NLK expression and TNM as independent factors that affected prognosis. Kaplan-Meier survival analysis revealed that patients with NSCLC and low NLK expression had relatively shorter durations of overall survival. In vitro, NLK overexpression inhibited A549 ncell migration and invasion as determined by wound healing and Transwell migration assays, respectively. Additionally, immunofluorescence staining indicated that downregulation of NLK expression could induce epithelial-mesenchymal transition in NSCLC. NLK knockdown significantly decreased the expression of the epithelial marker E-cadherin, and markedly increased that of β-catenin and the mesenchymal marker vimentin. Furthermore, NLK was reported to directly interact with β-catenin as determined by a co-immunoprecipitation assay. Collectively, the results of the present study indicated that decreased NLK expression could promote tumor metastasis in NSCLC.
Collapse
Affiliation(s)
- Cui Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weishuai Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yulin Wei
- Department of Respiratory Medicine, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, P.R. China
| | - Jun Ni
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuwen Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
31
|
Wang P, Gao XY, Yang SQ, Sun ZX, Dian LL, Qasim M, Phyo AT, Liang ZS, Sun YF. Jatrorrhizine inhibits colorectal carcinoma proliferation and metastasis through Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2235-2247. [PMID: 31371920 PMCID: PMC6627180 DOI: 10.2147/dddt.s207315] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 01/29/2023]
Abstract
Purpose Jatrorrhizine (JAT) is a natural protoberberine alkaloid, possesses detoxification, bactericidal and hypoglycemic activities. However, its anti-cancer mechanism is not clear. This study aimed to investigate the mechanism of JAT through which inhibits colorectal cancer in HCT-116 and HT-29 cells. Methods MTT assay and colony formation assay were used to check the cell proliferation ability. Cell apoptosis and cell cycle were measured by Hoechst 33342 staining and flow cytometry, respectively. Cell migration and invasion were detected by scratch wound healing assay and trans-well assay, respectively. Further, expression of related proteins was examined via Western blotting and the in vivo anti-cancer effect of JAT was confirmed by nude mice xenograft model. Results The research showed that JAT inhibited the proliferation of HCT-116 and HT-29 cells with IC50 values of 6.75±0.29 μM and 5.29±0.13 μM, respectively, for 72 hrs. It has also showed a time dependently, cell cycle arrested in S phase, promoted cell apoptosis and suppressed cell migration and invasion. In addition, JAT inhibited Wnt signaling pathway by reducing β-catenin and increasing GSK-3β expressions. Increased expression of E-cadherin, while decreased N-cadherin, indicating that JAT treatment suppressed the process of cell epithelial–mesenchymal transition (EMT). In HCT-116 nude mice xenograft model, JAT inhibited tumor growth and metastasis, and induced apoptosis of tumor cells. Conclusion This study demonstrated that JAT efficiently inhibited colorectal cancer cells growth and metastasis, which provides a new point for clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Pan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiao-Yan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Si-Qian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhi-Xin Sun
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.,Department of Life Sciences, Zaozhuang No.1 Middle School, Zaozhuang, 277100, People's Republic of China
| | - Lu-Lu Dian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Muhammad Qasim
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Aung Thu Phyo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Department of Biotechnology, Mandalay Technological University, Mandalay 05072, Myanmar
| | - Zong-Suo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yan-Fang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
32
|
Cheng B, Rong A, Zhou Q, Li W. CLDN8 promotes colorectal cancer cell proliferation, migration, and invasion by activating MAPK/ERK signaling. Cancer Manag Res 2019; 11:3741-3751. [PMID: 31118793 PMCID: PMC6498432 DOI: 10.2147/cmar.s189558] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Claudin 8 (CLDN8), an integral membrane protein that constitutes tight junctions in cell membranes, was recently implicated in tumor progression. However, its roles in colorectal cancer (CRC) progression and metastasis remain unknown. Methods In this study, we examined the effect of CLDN8 on the progression of CRC, including cell proliferation, migration, and invasion, and determines its underlying molecular mechanism using in vitro CRC cell lines and in vivo mouse xenograft models. Results We found that CLDN8 expression in human CRC tissues was significantly higher than that in adjacent normal tissues. The knockdown of CLDN8 markedly suppressed the proliferation, migration, and invasion of SW480 and HT-29 CRC cells, whereas the overexpression of CLDN8 notably promoted tumor progression in SW480 and HT-29 CRC cells. Mechanistic studies revealed that CLDN8 upregulated p-ERK (p-PKB/AKT) and MMP9 in CRC cells. Notably, the MAPK/ERK inhibitor PD98095 dramatically attenuated the effects of CLDN8 on p-ERK and MMP9. Moreover, PD98095 remarkably blocked the tumor-promoting activity of CLDN8. The knockdown of CLDN8 also inhibited the in vivo tumor growth in a nude mouse xenograft model. Collectively, CLDN8 promoted CRC cell proliferation, migration, and invasion, at least in part, by activating the MAPK/ERK signaling pathway. Conclusion These findings suggest that CLDN8 exhibits an oncogenic effect in human CRC progression.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Quanbo Zhou
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China,
| |
Collapse
|
33
|
Hong X, Yu JJ. MicroRNA-150 suppresses epithelial-mesenchymal transition, invasion, and metastasis in prostate cancer through the TRPM4-mediated β-catenin signaling pathway. Am J Physiol Cell Physiol 2019; 316:C463-C480. [PMID: 30566393 DOI: 10.1152/ajpcell.00142.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths among males. The aim of the current study was to investigate the ability of microRNA-150 (miR-150) targeting transient receptor potential melastatin 4 (TRPM4) to mediate epithelial-mesenchymal transition (EMT), invasion, and metastasis through the β-catenin signaling pathway in PCa. Microarray analysis was performed to identify PCa-related differentially expressed genes, after which both the mirDIP and TargetScan databases were employed in the prediction of the miRNAs regulating TRPM4. Immunohistochemistry and RT-qPCR were conducted to determine the expression pattern of miR-150 and TRPM4 in PCa. The relationship between miR-150 and TRPM4 expression was identified. By perturbing miR-150 and TRPM4 expression in PCa cells, cell proliferation, migration, invasion, cycle, and apoptosis as well as EMT markers were determined accordingly. Finally, tumor growth and metastasis were evaluated among nude mice. Higher TRPM4 expression and lower miR-150 expression and activation of the β-catenin signaling pathway as well as EMT stimulation were detected in the PCa tissues. Our results confirmed TRPM4 as a target of miR-150. Upregulation of miR-150 resulted in inactivation of the β-catenin signaling pathway. Furthermore, the upregulation of miR-150 or knockdown of TRPM4 was observed to suppress EMT, proliferation, migration, and invasion in vitro in addition to restrained tumor growth and metastasis in vivo. The evidence provided by our study highlights the involvement of miR-150 in the translational suppression of TRPM4 and the blockade of the β-catenin signaling pathway, resulting in the inhibition of PCa progression.
Collapse
Affiliation(s)
- Xi Hong
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jian-Jun Yu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai , China
| |
Collapse
|
34
|
The Impact of miRNA in Colorectal Cancer Progression and Its Liver Metastases. Int J Mol Sci 2018; 19:ijms19123711. [PMID: 30469518 PMCID: PMC6321452 DOI: 10.3390/ijms19123711] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high incidence and mortality rate. An essential challenge in colorectal cancer management is to identify new prognostic factors that could better estimate the evolution and treatment responses of this disease. Considering their role in cancer development, progression and metastasis, miRNAs have become an important class of molecules suitable for cancer biomarkers discovery. We performed a systematic search of studies investigating the role of miRNAs in colorectal progression and liver metastasis published until October 2018. In this review, we present up-to-date information regarding the specific microRNAs involved in CRC development, considering their roles in alteration of Wnt/βcatenin, EGFR, TGFβ and TP53 signaling pathways. We also emphasize the role of miRNAs in controlling the epithelial⁻mesenchymal transition of CRC cells, a process responsible for liver metastasis in a circulating tumor cell-dependent manner. Furthermore, we discuss the role of miRNAs transported by CRC-derived exosomes in mediating liver metastases, by preparing the secondary pre-metastatic niche and in inducing liver carcinogenesis in a Dicer-dependent manner.
Collapse
|
35
|
Wang LQ, Yu P, Li B, Guo YH, Liang ZR, Zheng LL, Yang JH, Xu H, Liu S, Zheng LS, Zhou H, Qu LH. miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol 2018; 12:1949-1964. [PMID: 30171794 PMCID: PMC6210048 DOI: 10.1002/1878-0261.12376] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/28/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
miR‐372/373, a cluster of stem cell‐specific microRNAs transactivated by the Wnt pathway, has been reported to be dysregulated in various cancers, particularly colorectal cancer (CRC); however, the unique role of these microRNAs in cancer remains to be discovered. In the present study, we characterized the upregulation in expression of miR‐372/373 in CRC tissues from The Cancer Genome Atlas data, and then showed that overexpression of miR‐372/373 enhanced the stemness of CRC cells by enriching the CD26/CD24‐positive cell population and promoting self‐renewal, chemotherapy resistance and the invasive potential of CRC cells. To clarify the mechanism underlying microRNA‐induced stemness, we profiled 45 cell signaling pathways in CRC cells overexpressing miR‐372/373 and found that stemness‐related pathways, such as Nanog and Hedgehog, were upregulated. Instead, differentiation‐related pathways, such as NFκB, MAPK/Erk and VDR, were markedly repressed by miR‐372/373. Numerous new targets of miR‐372/373 were identified, including SPOP, VDR and SETD7, all of which are factors important for cell differentiation. Furthermore, in contrast to the increase in miR‐372/373 expression in CRC tissues, the expression levels of SPOP and VDR mRNA were significantly downregulated in these tissues, indicative of the poor differentiation status of CRC. Taken together, our findings suggest that miR‐372/373 enhance CRC cell stemness by repressing the expression of differentiation genes. These results provide new insights for understanding the function and mechanisms of stem cell‐specific microRNAs in the development of metastasis and drug resistance in CRC.
Collapse
Affiliation(s)
- Lu-Qin Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Hua Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Rui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling-Ling Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shun Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Si Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Pimozide suppresses colorectal cancer via inhibition of Wnt/β-catenin signaling pathway. Life Sci 2018; 209:267-273. [PMID: 30107167 DOI: 10.1016/j.lfs.2018.08.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Wnt/β‑catenin signaling pathway plays important role in colorectal cancer (CRC) and acts as a potential therapeutic target. Pimozide is a FDA-approved clinical drug used to treat psychotic diseases and it has shown anticancer effect in some tumors partially via inhibition of Wnt/β‑catenin signaling pathway. This study aimed to investigate whether pimozide exerts anticancer effect on CRC and explore underlying mechanism. METHODS AND RESULTS Pimozide was administrated to treat HCT116 and SW480 cells. Quantitative real-time polymerase chain reaction and western blot were used to detect the expression of epithelial-to-mesenchymal transition markers and Wnt/β‑catenin signaling pathway-related proteins. Cell proliferation and migration were measured by Cell Counting Kit-8 and Transwell assays respectively. HCT116 and SW480 cells were subcutaneously injected into nude mice and when the volume of tumor grown measureable (approximately 100 mm3) animals were treated with vehicle saline or pimozide at a dose of 25 mg/kg·d by oral gavage and then tumor size was measured at 7, 14, 21 and 28 days post treatment. Pimozide dose-dependently inhibited cell proliferation and migration in both HCT116 and SW480 cells, increased expression of E-cadherin and decreased expression of N‑cadherin, vimentin and Snail. In addition, tumor growth was inhibited by pimozide in both HCT116 and SW480 xenografts in vivo. Expression of β‑catenin and Wnt target genes c-Myc, cyclin D1, Axin 2 and survivin was reduced by pimozide treatment in both HCT 116 and SW480 cells. CONCLUSION Pimozide exerts anticancer effect in CRC via inhibition of wnt/β‑catenin signaling pathway, suggesting it as a potential therapeutic drug for CRC.
Collapse
|
37
|
To KKW, Tong CWS, Wu M, Cho WCS. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World J Gastroenterol 2018; 24:2949-2973. [PMID: 30038463 PMCID: PMC6054943 DOI: 10.3748/wjg.v24.i27.2949] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs that can post-transcriptionally regulate the expression of various oncogenes and tumor suppressor genes. Dysregulated expression of many miRNAs have been shown to mediate the signaling pathways critical in the multistep carcinogenesis of colorectal cancer (CRC). MiRNAs are stable and protected from RNase-mediated degradation, thereby enabling its detection in biological fluids and archival tissues for biomarker studies. This review focuses on the role and application of miRNAs in the prognosis and therapy of CRC. While stage II CRC is potentially curable by surgical resection, a significant percentage of stage II CRC patients do develop recurrence. MiRNA biomarkers may be used to stratify such high-risk population for adjuvant chemotherapy to provide better prognoses. Growing evidence also suggests that miRNAs are involved in the metastatic process of CRC. Certain of these miRNAs may thus be used as prognostic biomarkers to identify patients more likely to have micro-metastasis, who could be monitored more closely after surgery and/or given more aggressive adjuvant chemotherapy. Intrinsic and acquired resistance to chemotherapy severely hinders successful chemotherapy in CRC treatment. Predictive miRNA biomarkers for response to chemotherapy may identify patients who will benefit the most from a particular regimen and also spare the patients from unnecessary side effects. Selection of patients to receive the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Lastly, forced expression of tumor suppressor miRNA or silencing of oncogenic miRNA in tumors by gene therapy can also be adopted to treat CRC alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kenneth KW To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Christy WS Tong
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - William CS Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
38
|
Chen W, You J, Zheng Q, Zhu YY. Downregulation of lncRNA OGFRP1 inhibits hepatocellular carcinoma progression by AKT/mTOR and Wnt/β-catenin signaling pathways. Cancer Manag Res 2018; 10:1817-1826. [PMID: 29997441 PMCID: PMC6033083 DOI: 10.2147/cmar.s164911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play important roles in the progression of hepatocellular carcinoma (HCC) by regulating gene expression. However, the identification of functional lncRNAs in HCC remains insufficient. Our study aimed to investigate the function of lncRNA OGFRP1, which has not been functionally researched before, in Hep3B and HepG2 cells. METHODS lncRNA OGFRP1 in HCC cells was down-regulated by using RNAi technology. Quantitative real-time polymerase chain reaction was used to determine the mRNA expression of lncRNA OGFRP1. Cell proliferation was examined by CCK8 and clone formation assays. Cell cycle and apoptosis were analyzed by flow cytometry. Cell migration and invasion were assessed by using Scratch assay and transwell assay, respectively. Protein expression of signaling pathways was determined by using Western blot. RESULTS Cell proliferation of Hep3B was significantly inhibited by down-regulation of lncRNA OGFRP1 (P<0.05). Moreover, siOGFRP1 transfection induced Hep3B cell cycle arrest and apoptosis by regulating the expression of related proteins. Cell migration and invasion of Hep3B were also significantly inhibited by down-regulation of lncRNA OGFRP1. Wnt/β-catenin signaling pathway, involved in epithelial-mesenchymal transition (EMT), was inactivated by lncRNA OGFRP1 downregulation, including decreased expression of Wnt3a, β-catenin, N-cadherin and vimentin and increased expression of E-cadherin. We also found that the inhibitory effect of lncRNA OGFRP1 knockdown on Hep3B was mediated by the AKT/mTOR signaling pathway and IGF-1, an AKT signaling activator, could rescue the cellular phenotype. However, knockdown of lncRNA OGFRP1 did not influence cell proliferation, migration and invasion in HepG2 cells. CONCLUSION We found that downregulation of lncRNA OGFRP1 suppressed the proliferation and EMT of HCC Hep3B cells through AKT and Wnt/β-catenin signaling pathways. However, lncRNA OGFRP1 exhibited a differentiated function in different HCC cell lines, which required further study in the future.
Collapse
Affiliation(s)
- Wei Chen
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| | - Jia You
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| | - Qi Zheng
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| | - Yue-Yong Zhu
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| |
Collapse
|
39
|
Couture C, Desjardins P, Zaniolo K, Germain L, Guérin SL. Enhanced wound healing of tissue-engineered human corneas through altered phosphorylation of the CREB and AKT signal transduction pathways. Acta Biomater 2018; 73:312-325. [PMID: 29656072 DOI: 10.1016/j.actbio.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
The cornea is a transparent organ, highly specialized and unique that is continually subjected to abrasive forces and occasional mechanical or chemical trauma because of its anatomical localization. Upon injury, the extracellular matrix (ECM) rapidly changes to promote wound healing through integrin-dependent activation of specific signal transduction mediators whose contribution is to favor faster closure of the wound by altering the adhesive and migratory properties of the cells surrounding the damaged area. In this study, we exploited the human tissue-engineered cornea (hTECs) as a model to study the signal transduction pathways that participate to corneal wound healing. By exploiting both gene profiling and activated kinases arrays, we could demonstrate the occurrence of important alterations in the level of expression and activation of a few mediators from the PI3K/Akt and CREB pathways in response to the ECM remodeling taking place during wound healing of damaged hTECs. Pharmacological inhibition of CREB with C646 considerably accelerated wound closure compared to controls. This process was considerably accelerated further when both C646 and SC79, an Akt agonist, were added together to wounded hTECs. Therefore, our study demonstrate that proper corneal wound healing requires the activation of Akt together with the inhibition of CREB and that wound healing in vitro can be altered by the use of pharmacological inhibitors (such as C646) or agonists (such as SC79) of these mediators. STATEMENT OF SIGNIFICANCE Corneal wounds account for a large proportion of all visual disabilities in North America. To our knowledge, this is the first time that a tissue-engineered human cornea (hTEC) entirely produced using normal untransformed human cells is used as a biomaterial to study the signal transduction pathways that are critical to corneal wound healing. Through the use of this biomaterial, we demonstrated that human corneal epithelial cells engaged in wound healing reduce phosphorylation of the signal transduction mediator CREB while, in the mean time, they increase that of AKT. By increasing the activation of AKT together with a decrease in CREB activation, we could considerably reduce wound closure time in our punch-damaged hTECs. Considering the increasing interest given to the reconstruction of different types of tissues, we believe these results will have a strong impact on the field of tissue-engineering and biomaterials. Altering the activation status of the Akt and CREB proteins might prove to be a therapeutically interesting avenue and may also find applications in wound healing of other tissues beside the cornea, such as the skin.
Collapse
|
40
|
Wang Y, Li Z, Li W, Liu S, Han B. Methylation of CDX2 gene promoter in the prediction of treatment efficacy in colorectal cancer. Oncol Lett 2018; 16:195-198. [PMID: 29928401 PMCID: PMC6006183 DOI: 10.3892/ol.2018.8670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to examine the diagnosis of methylation of CDX2 gene promoter in colorectal cancer (CRC) and assessed its value in the prediction of treatment efficacy. Sixty patients who were diagnosed as CRCs for the first time, 60 patients with hyperplastic polyps (HPs) and adenomas, and 60 patients with inflammatory lesions or healthy patients (control group) were included in the present study. The methylation levels of CDX2 gene promoter were detected by methylation-specific polymerase chain reaction (MSP), and the expression levels of CDX2 mRNA were detected by fluorescence quantitative PCR. Treatment options, such as surgery, radiotherapy and chemotherapy, were chosen on the basis of TNM staging of CRC patients. The tumor-free survival, relapse rate and mortality were also recorded. The methylation rate was 71.67% (43/60) and significantly higher in the CRC group as compared to the HP/adenoma and control groups, P<0.05. Moreover, they showed further increase with higher degree of TNM staging. The expression levels of CDX2 mRNA was significantly lower in the CRC group in comparison to HP/adenoma and control groups, P<0.05, and showed a further decrease with a higher degree of TNM staging. The tumor-free survival was shorter, and the relapse rate and mortality were higher in patients with positive methylation in the CRC group, P<0.05. Multivariate logistic regression analysis demonstrated that TNM staging and positive methylation were independent risk factors of mortality. In conclusion, higher methylation degree of CDX2 gene promoter resulted in decreased expression of CDX2 gene, and was closely associated with TNM staging and prognosis. TNM staging and positive methylation were independent risk factors of mortality for CRC patients.
Collapse
Affiliation(s)
- Yunshuai Wang
- Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Zhaohui Li
- Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Wenxian Li
- Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Shuaifeng Liu
- Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Baowei Han
- Department of Gastrointestinal Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
41
|
Tang W, Xu P, Wang H, Niu Z, Zhu D, Lin Q, Tang L, Ren L. MicroRNA-150 suppresses triple-negative breast cancer metastasis through targeting HMGA2. Onco Targets Ther 2018; 11:2319-2332. [PMID: 29731640 PMCID: PMC5923219 DOI: 10.2147/ott.s161996] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Growing evidence suggests that miR-150 plays an inhibitory role in various types of cancer. However, the function and underlying mechanisms of miR-150 in triple-negative breast cancer (TNBC) remain unknown. Patients and methods miR-150 expression was detected by qRT-PCR and ISH in TNBC tumor and adjacent normal breast tissues. miR-150 function was analyzed by wound healing and transwell assay in vitro and mouse lung metastasis model in vivo. mRNA microarray, qRT-PCR, western blotting and luciferase assay were used to identify the target gene of miR-150. HMGA2 over-expression plasmid was co-transfected with miR-150 to study the role of miR-150 through regulating HMGA2. Results We found that miR-150 was down-regulated in TNBC tumor tissues compared to corresponding adjacent, normal breast tissues, and was correlated with decreased lymph-node metastasis. Ectopic expression of miR-150 suppressed TNBC cell migration in vitro and metastasis in vivo. Mechanistic study revealed that miR-150 down-regulates HMGA2 by directly targeting its mRNA. Moreover, the suppression of cell migration caused by miR-150 is relieved by over-expression of HMGA2, suggesting that miR-150 inhibits migration of TNBC cells by down-regulating HMGA2. Conclusion This work indicates that the miR-150/HMGA2 axis may serve as a treatment marker in TNBC.
Collapse
Affiliation(s)
- Wentao Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pingping Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengchuan Niu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liming Tang
- Department of General Surgery, Affiliated Changzhou No 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Guo W, Zhang J, Zhang D, Cao S, Li G, Zhang S, Wang Z, Wen P, Yang H, Shi X, Pan J, Ye H. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget 2018. [PMID: 28636993 PMCID: PMC5564635 DOI: 10.18632/oncotarget.18327] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth most common cancer and the third cause of cancer-related mortality worldwide. Recent studies identified that circ-ITCH Suppresses mutiple cancers proliferation via inhibiting the Wnt/beta-Catenin pathway. In current study, conducted a genetic association study together with epidemiological follow-up study to delineate the role of circ-ITCH in the development and progression of HCC. we found rs10485505 (adjusted OR =1.18; 95% CI=1.06-1.31; P value =3.1×10-3) and rs4911154 (adjusted OR =1.27; 95% CI=1.14-1.43; P value =3.7×10-5) were significantly associated with increased HCC risk. The expression level of circ-ITCH was significantly lower in HCC tissues, compared with that in adjacent tissues (P value < 0.001). Cox regression analysis indicated that high expression of circ-ITCH was associated with favorable survival of HCC (HR=0.45; 95% CI=0.29-0.68; P value < 0.001). These results indicate that circ-ITCH may have an inhibitory effect on HCC, and could serve as susceptibility and prognostic biomarkers for HCC patients.
Collapse
Affiliation(s)
- Wenzhi Guo
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jiakai Zhang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Dongyu Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shengli Cao
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Gongquan Li
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shuijun Zhang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhihui Wang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Peihao Wen
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Han Yang
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xiaoyi Shi
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jie Pan
- Department of Hepatic and Biliary Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
43
|
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97:1319-1330. [DOI: 10.1016/j.biopha.2017.11.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
|
44
|
Silencing of CEMIP suppresses Wnt/β-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells. Acta Histochem 2018; 120:56-63. [PMID: 29173982 DOI: 10.1016/j.acthis.2017.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Cell migration inducing hyaluronan binding protein (CEMIP) is a hyaluronic acid binding protein, the abnormal elevation of which is suggested as a contributor in the carcinogenesis of colorectal cancer (CRC). Cancer cells lose their adhesive properties and acquire an enhanced mobility by undergoing epithelial-mesenchymal transition (EMT). This study is performed to investigate whether and how CEMIP orchestrates the EMT process of CRC cells. To avoid the unexpected off-target effects possibly caused by one single shRNA, two shRNAs targeting different mRNA regions of CEMIP gene were used to knock down the mRNA and protein expression of CEMIP. Our data showed that the proliferation, migration and invasion of two CRC cell lines, HCT116 and SW480 cells, were inhibited by CEMIP shRNA. We here defined EMT as the complete or partial loss of E-cadherin and zona occludens protein 1 (ZO-1) (epithelial markers) and the gain of Vimentin and N-cadherin (mesenchymal markers), and found that the EMT process was attenuated in CEMIP-silenced SW480 cells. Snail, a direct target of β-catenin/T cell factor complex, is known to activate the EMT program during cancer metastasis. CEMIP shRNA was further found to suppress the Wnt/β-catenin/Snail signaling transduction in CRC cells as manifested by the decreased nuclear β-catenin and Snail. Collectively, our work demonstrates that CEMIP contributes to metastatic phenotype of CRC cells in vitro.
Collapse
|
45
|
Vu T, Datta PK. Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis. Cancers (Basel) 2017; 9:cancers9120171. [PMID: 29258163 PMCID: PMC5742819 DOI: 10.3390/cancers9120171] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a process during which cells lose their epithelial characteristics, for instance cell polarity and cell-cell contact, and gain mesenchymal properties, such as increased motility. In colorectal cancer (CRC), EMT is associated with an invasive or metastatic phenotype. In this review, we discuss recent studies exploring novel regulation mechanisms of EMT in CRC, including the identification of new CRC EMT regulators. Upregulation of inducers can promote EMT, leading to increased invasiveness and metastasis in CRC. These inducers can downregulate E-cadherin and upregulate N-cadherin and vimentin (VIM) through modulating EMT-related signaling pathways, for instance WNT/β-catenin and TGF-β, and EMT transcription factors, such as zinc finger E-box binding homeobox 1 (ZEB1) and ZEB2. In addition, several microRNAs (miRNAs), including members of the miR-34 and miR-200 families, are found to target mRNAs of EMT-transcription factors, for example ZEB1, ZEB2, or SNAIL. Downregulation of these miRNAs is associated with distant metastasis and advanced stage tumors. Furthermore, the role of EMT in circulating tumor cells (CTCs) is also discussed. Mesenchymal markers on the surface of EMT CTCs were found to be associated with metastasis and could serve as potential biomarkers for metastasis. Altogether, these studies indicate that EMT is orchestrated by a complicated network, involving regulators of different signaling pathways. Further studies are required to understand the mechanisms underlying EMT in CRC.
Collapse
Affiliation(s)
- Trung Vu
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
46
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
47
|
Higuita-Castro N, Nelson MT, Shukla V, Agudelo-Garcia PA, Zhang W, Duarte-Sanmiguel SM, Englert JA, Lannutti JJ, Hansford DJ, Ghadiali SN. Using a Novel Microfabricated Model of the Alveolar-Capillary Barrier to Investigate the Effect of Matrix Structure on Atelectrauma. Sci Rep 2017; 7:11623. [PMID: 28912466 PMCID: PMC5599538 DOI: 10.1038/s41598-017-12044-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 11/25/2022] Open
Abstract
The alveolar-capillary barrier is composed of epithelial and endothelial cells interacting across a fibrous extracelluar matrix (ECM). Although remodeling of the ECM occurs during several lung disorders, it is not known how fiber structure and mechanics influences cell injury during cyclic airway reopening as occurs during mechanical ventilation (atelectrauma). We have developed a novel in vitro platform that mimics the micro/nano-scale architecture of the alveolar microenvironment and have used this system to investigate how ECM microstructural properties influence epithelial cell injury during airway reopening. In addition to epithelial-endothelial interactions, our platform accounts for the fibrous topography of the basal membrane and allows for easy modulation of fiber size/diameter, density and stiffness. Results indicate that fiber stiffness and topography significantly influence epithelial/endothelial barrier function where increased fiber stiffness/density resulted in altered cytoskeletal structure, increased tight junction (TJ) formation and reduced barrier permeability. However, cells on rigid/dense fibers were also more susceptible to injury during airway reopening. These results indicate that changes in the mechanics and architecture of the lung microenvironment can significantly alter cell function and injury and demonstrate the importance of implementing in vitro models that more closely resemble the natural conditions of the lung microenvironment.
Collapse
Affiliation(s)
- N Higuita-Castro
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - M T Nelson
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States
| | - V Shukla
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - P A Agudelo-Garcia
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States
| | - W Zhang
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - S M Duarte-Sanmiguel
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Human Nutrition Program, The Ohio State University, Columbus, Ohio, United States
| | - J A Englert
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - J J Lannutti
- Department of Material Sciences and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - D J Hansford
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States
| | - S N Ghadiali
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States. .,Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.
| |
Collapse
|
48
|
Li Q, Wang Y, Lai Y, Xu P, Yang Z. HspB5 correlates with poor prognosis in colorectal cancer and prompts epithelial-mesenchymal transition through ERK signaling. PLoS One 2017; 12:e0182588. [PMID: 28796798 PMCID: PMC5552184 DOI: 10.1371/journal.pone.0182588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/18/2023] Open
Abstract
Alpha B-crystallin (HspB5) is abnormally expressed in tumor tissues and portends a poor prognosis in cancer patients. However, the role of HspB5 in colorectal cancer (CRC) is still unclear. Seventy CRC patients and 40 healthy volunteers were sampled from August 2012 to March 2015 in order to determine the clinical significance of HspB5. In vitro cellular studies were used to validate its molecular mechanisms in CRC. Our clinical data indicated that HspB5 was up-regulated, and had a positive association with TNM stage CRC patients. The expression level of HspB5 in CRC patients was closely correlated with MMP7 and E-cadherin, two core epithelial–mesenchymal transition (EMT) gene products. The in vitro studies revealed that high HspB5 expression could prompt tumor cell proliferation and invasion, as well as EMT. Gene-microarray analysis suggested three significant signaling pathways (PI3K, p38 and ERK) were involved in HspB5-induced EMT. Signal transduction pathway inhibitors and HspB5 gene knockdown models suggested that HspB5 promotes CRC tumorigenesis and EMT progression through ERK signaling pathways. In summary, HspB5 maybe trigger the EMT in CRC by activating the ERK signaling pathway. It is a potential tumor biomarker for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Qinghua Li
- Songjiang Hospital Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanlan Wang
- Songjiang Hospital Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuexing Lai
- Songjiang Hospital Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- Songjiang Hospital Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Nanjing, China
- * E-mail: (ZW); (PX)
| | - Zhiwen Yang
- Songjiang Hospital Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Nanjing, China
- * E-mail: (ZW); (PX)
| |
Collapse
|
49
|
Seo SH, Jang MS, Kim DJ, Kim SM, Oh SC, Jung CR, Park Y, Ha SJ, Jung H, Park YJ, Yoon SR, Choi I, Kim TD. MicroRNA-150 controls differentiation of intraepithelial lymphocytes through TGF-β receptor II regulation. J Allergy Clin Immunol 2017; 141:1382-1394.e14. [PMID: 28797734 DOI: 10.1016/j.jaci.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestines play pivotal roles in maintaining the integrity of the mucosa, regulating immune cells, and protecting against pathogenic invasion. Although several extrinsic factors, such as TGF-β, have been identified to contribute to IEL generation, intrinsic regulatory factors have not been determined fully. OBJECTIVE Here we investigated the regulation of IEL differentiation and the underlying mechanisms in mice. METHODS We analyzed IELs and the expression of molecules associated with IEL differentiation in wild-type control and microRNA (miRNA)-150 knockout mice. Methotrexate was administered to mice lacking miR-150 and control mice. RESULTS miR-150 deficiency reduced the IEL population in the small intestine and increased susceptibility to methotrexate-induced mucositis. Evaluation of expression of IEL differentiation-associated molecules showed that miR-150-deficient IELs exhibited decreased expression of TGF-β receptor (TGF-βR) II, CD103, CD8αα, and Runt-related transcription factor 3 in all the IEL subpopulations. The reduced expression of TGF-βRII in miR-150-deficient IELs was caused by increased expression of c-Myb/miR-20a. Restoration of miR-150 or inhibition of miR-20a recovered the TGF-βRII expression. CONCLUSION miR-150 is an intrinsic regulator of IEL differentiation through TGF-βRII regulation. miR-150-mediated IEL generation is crucial for maintaining intestinal integrity against anticancer drug-induced mucositis.
Collapse
Affiliation(s)
- Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Min Seong Jang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Cho-Rok Jung
- the Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
50
|
Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y, Li J. Circular RNAs: Regulators of Cancer-Related Signaling Pathways and Potential Diagnostic Biomarkers for Human Cancers. Theranostics 2017; 7:3106-3117. [PMID: 28839467 PMCID: PMC5566109 DOI: 10.7150/thno.19016] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/07/2017] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are newly discovered endogenous non-coding RNAs featuring structural stability, high abundance, and tissue-specific expression. CircRNAs are prevalent and conserved in mammalian cells. They are involved in cellular processes and regulate gene expression at the transcriptional or post-transcriptional level by interacting with microRNAs (miRNAs) and other molecules. Recent studies have shown that circRNAs play an important role in the progression of various human diseases including atherosclerosis, nervous system disorders, diabetes, and cancer. In this review, we summarize the advances on endogenous circRNAs in eukaryotic cells and elucidate their diagnostic and prognostic significance in human cancers. Especially, we highlight the involvement of circRNAs in signal transduction pathways as well as their clinical potential to serve as biomarkers.
Collapse
|