1
|
Togni A, Piermartiri T, Tasca CI, Nedel CB. The intricate relationship between SUMOylation and gliomas: a review with a perspective on natural compounds. Nat Prod Res 2025:1-12. [PMID: 39849680 DOI: 10.1080/14786419.2025.2456093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed. Targeting SUMOylation, a post-translational modification involving the attachment of Small Ubiquitin-like Modifier (SUMO) proteins to lysine residues in target proteins, is emerging as a promising strategy. SUMOylation regulates various biological processes, including the cell cycle, apoptosis, and senescence. Dysregulation of this pathway has been linked to glioblastoma tumorigenesis, as well as the invasion and proliferation of glioblastoma cells. Therefore, focusing on the SUMOylation pathway offers the potential for developing innovative therapeutic strategies, including the use of natural compounds as adjuvant therapies, to address glioblastoma more effectively.
Collapse
Affiliation(s)
- Anderson Togni
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia Beatriz Nedel
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
2
|
Villegas-Vazquez EY, Marín-Carrasco FP, Reyes-Hernández OD, Báez-González AS, Bustamante-Montes LP, Padilla-Benavides T, Quintas-Granados LI, Figueroa-González G. Revolutionizing ovarian cancer therapy by drug repositioning for accelerated and cost-effective treatments. Front Oncol 2025; 14:1514120. [PMID: 39876896 PMCID: PMC11772297 DOI: 10.3389/fonc.2024.1514120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Drug repositioning, the practice of identifying novel applications for existing drugs beyond their originally intended medical indications, stands as a transformative strategy revolutionizing pharmaceutical productivity. In contrast to conventional drug development approaches, this innovative method has proven to be exceptionally effective. This is particularly relevant for cancer therapy, where the demand for groundbreaking treatments continues to grow. This review focuses on drug repositioning for ovarian cancer treatment, showcasing a comprehensive exploration grounded in thorough in vitro experiments across diverse cancer cell lines, which are validated through preclinical in vivo models. These insights not only shed light on the efficacy of these drugs but also expand in potential synergies with other pharmaceutical agents, favoring the development of cost-effective treatments for cancer patients.
Collapse
Affiliation(s)
- Edgar Yebran Villegas-Vazquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Pável Marín-Carrasco
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrea S. Báez-González
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | | | | | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Crestani M, Kakogiannos N, Iori S, Iannelli F, Dini T, Maderna C, Giannotta M, Pelicci G, Maiuri P, Monzo P, Gauthier NC. Biomimetic Approach of Brain Vasculature Rapidly Characterizes Inter- and Intra-Patient Migratory Diversity of Glioblastoma. SMALL METHODS 2024; 8:e2400210. [PMID: 38747088 PMCID: PMC11671864 DOI: 10.1002/smtd.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Indexed: 12/28/2024]
Abstract
Glioblastomas exhibit remarkable heterogeneity at various levels, including motility modes and mechanoproperties that contribute to tumor resistance and recurrence. In a recent study using gridded micropatterns mimicking the brain vasculature, glioblastoma cell motility modes, mechanical properties, formin content, and substrate chemistry are linked. Now is presented, SP2G (SPheroid SPreading on Grids), an analytic platform designed to identify the migratory modes of patient-derived glioblastoma cells and rapidly pinpoint the most invasive sub-populations. Tumorspheres are imaged as they spread on gridded micropatterns and analyzed by this semi-automated, open-source, Fiji macro suite that characterizes migration modes accurately. SP2G can reveal intra-patient motility heterogeneity with molecular correlations to specific integrins and EMT markers. This system presents a versatile and potentially pan-cancer workflow to detect diverse invasive tumor sub-populations in patient-derived specimens and offers a valuable tool for therapeutic evaluations at the individual patient level.
Collapse
Affiliation(s)
- Michele Crestani
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Present address:
Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyInstitute of Translational MedicineETH ZurichZurichCH‐8093Switzerland
| | - Nikolaos Kakogiannos
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Institute of ImmunologyBiomedical Sciences Research Centre “Alexander Fleming”34 Fleming StreetVari16672Greece
| | - Simone Iori
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Fabio Iannelli
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Department of Experimental OncologyIEOEuropean Institute of Oncology IRCCSMilan20139Italy
| | - Tania Dini
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Claudio Maderna
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Monica Giannotta
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Giuliana Pelicci
- Department of Experimental OncologyIEOEuropean Institute of Oncology IRCCSMilan20139Italy
- Department of Translational MedicinePiemonte Orientale University ‘‘Amedeo Avogadro’’Novara28100Italy
| | - Paolo Maiuri
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi diNapoli Federico IIVia S. Pansini 5Naples80131Italy
| | - Pascale Monzo
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Nils C. Gauthier
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| |
Collapse
|
4
|
Wang M, Graner AN, Knowles B, McRae C, Fringuello A, Paucek P, Gavrilovic M, Redwine M, Hanson C, Coughlan C, Grimaldo-Garcia S, Metzger B, Bolus V, Kopper TJ, Smith M, Zhou W, Lenz M, Abosch A, Ojemann S, Lillehei KO, Yu X, Graner MW. Differential Effects of Extracellular Vesicles from Two Different Glioblastomas on Normal Human Brain Cells. Neurol Int 2024; 16:1355-1384. [PMID: 39585062 PMCID: PMC11587087 DOI: 10.3390/neurolint16060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Background/Objectives: Glioblastomas (GBMs) are dreadful brain tumors with abysmal survival outcomes. GBM extracellular vesicles (EVs) dramatically affect normal brain cells (largely astrocytes) constituting the tumor microenvironment (TME). We asked if EVs from different GBM patient-derived spheroid lines would differentially alter recipient brain cell phenotypes. This turned out to be the case, with the net outcome of treatment with GBM EVs nonetheless converging on increased tumorigenicity. Methods: GBM spheroids and brain slices were derived from neurosurgical patient tissues following informed consent. Astrocytes were commercially obtained. EVs were isolated from conditioned culture media by ultrafiltration, concentration, and ultracentrifugation. EVs were characterized by nanoparticle tracking analysis, electron microscopy, biochemical markers, and proteomics. Astrocytes/brain tissues were treated with GBM EVs before downstream analyses. Results: EVs from different GBMs induced brain cells to alter secretomes with pro-inflammatory or TME-modifying (proteolytic) effects. Astrocyte responses ranged from anti-viral gene/protein expression and cytokine release to altered extracellular signal-regulated protein kinase (ERK1/2) signaling pathways, and conditioned media from EV-treated cells increased GBM cell proliferation. Conclusions: Astrocytes/brain slices treated with different GBM EVs underwent non-identical changes in various omics readouts and other assays, indicating "personalized" tumor-specific GBM EV effects on the TME. This raises concern regarding reliance on "model" systems as a sole basis for translational direction. Nonetheless, net downstream impacts from differential cellular and TME effects still led to increased tumorigenic capacities for the different GBMs.
Collapse
Affiliation(s)
- Mary Wang
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Arin N. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Bryne Knowles
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Charlotte McRae
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Department of Cell Biology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
| | - Petr Paucek
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Michael Gavrilovic
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Department of Biomedical Sciences, Regis University, Denver, CO 80221, USA
- St Louis University School of Medicine, St. Louis, MO 63104, USA
| | - McKenna Redwine
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Department of Biomedical Sciences, Regis University, Denver, CO 80221, USA
| | - Caleb Hanson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Department of Biomedical Sciences, Regis University, Denver, CO 80221, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Stacey Grimaldo-Garcia
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Department of Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Brooke Metzger
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Occupational Therapy, Illinois College, Jacksonville, IL 62650, USA
- Neuroscience, Midwestern University, Glendale, AZ 85308, USA
| | - Vince Bolus
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Timothy J. Kopper
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Marie Smith
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Morgan Lenz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
- Occupational Therapy, Illinois College, Jacksonville, IL 62650, USA
| | - Aviva Abosch
- Department of Neurosurgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.W.); (A.N.G.); (B.K.); (C.M.); (A.F.); (P.P.); (M.G.); (M.R.); (C.H.); (S.G.-G.); (B.M.); (V.B.); (T.J.K.); (M.S.); (W.Z.); (M.L.); (S.O.); (K.O.L.); (X.Y.)
| |
Collapse
|
5
|
Sharma A, Raut SS, Shukla A, Gupta S, Singh A, Mishra A. DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay. Med Oncol 2024; 41:258. [PMID: 39368002 DOI: 10.1007/s12032-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma is one of the most aggressive and deadly forms of cancer, posing significant challenges for the medical community. This review focuses on key aspects of Glioblastoma, including its genetic differences between primary and secondary types. Temozolomide is a major first-line treatment for Glioblastoma, and this article explores its development, how it works, and the issue of resistance that limits its effectiveness, prompting the need for new treatment strategies. Gene expression profiling has greatly advanced cancer research by revealing the molecular mechanisms of tumors, which is essential for creating targeted therapies for Glioblastoma. One important protein in this context is DDX3X, which plays various roles in cancer, sometimes promoting it or otherwise suppressing it. Additionally, autophagy, a process that maintains cellular balance, has complex implications in cancer treatment. Understanding autophagy helps to identify resistance mechanisms and potential treatments, with Chloroquine showing promise in treating Glioblastoma. This review covers the interplay between Glioblastoma, DDX3X, and autophagy, highlighting the challenges and potential strategies in treating this severe disease.
Collapse
Affiliation(s)
- Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shruti S Raut
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, IMS-Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
6
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
8
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
10
|
Simonetti J, Ficili M, Sgalla G, Richeldi L. Experimental autotaxin inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2024; 33:133-143. [PMID: 38299617 DOI: 10.1080/13543784.2024.2305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Idiopathic Pulmonary Fibrosis (IPF) is a progressive, irreversible, and fatal lung disease with unmet medical needs. Autotaxin (ATX) is an extracellular enzyme involved in the generation of lysophosphatidic acid (LPA). Preclinical and clinical data have suggested the ATX-LPAR signaling axis plays an important role in the pathogenesis and the progression of IPF. AREAS COVERED The aim of this review is to provide an update on the available evidence on autotaxin inhibitors in IPF and further details on the ongoing clinical studies involving these molecules. EXPERT OPINION The development of autotaxin inhibitors as a potential therapy for idiopathic pulmonary fibrosis has gained attention due to evidence of their involvement in the disease. Preclinical and early-phase clinical studies have explored these inhibitors' efficacy and safety, offering a novel approach in treating this disease. Combining autotaxin inhibitors with existing anti-fibrotic agents is considered for enhanced therapeutic effects. Large phase III trials assessed Ziritaxestat but yielded disappointing results, highlighting the importance of long-term observation and clinical outcomes in clinical research. Patient stratification and personalized medicine are crucial, as pulmonary fibrosis is a heterogeneous disease. Ongoing research and collaboration are essential for this advancement.
Collapse
Affiliation(s)
- Jacopo Simonetti
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Ficili
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Sgalla
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Dong F, Liu Y, Yan W, Meng Q, Song X, Cheng B, Yao R. Netrin-4: Focus on Its Role in Axon Guidance, Tissue Stability, Angiogenesis and Tumors. Cell Mol Neurobiol 2023; 43:1663-1683. [PMID: 36350538 PMCID: PMC11412186 DOI: 10.1007/s10571-022-01279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Abstract
Netrin-4, a member of the Netrins family, is an important secreted protein that plays a role in axonal outgrowth and migration orientation. It was initially described that Netrin-4 had a high correlation with the laminin β-chain and promoted the growth of neurites in cultured olfactory bulb explants. Subsequently, it was discovered that Netrin-4 is involved in regulating various physiological processes, including angiogenesis, the occurrence and metastasis of various tumors, and the development of the kidney and alveoli. This paper reviews the current research on Netrin-4 since its discovery and provides a theoretical basis for further research on the biological characteristics of Netrin-4. Effects of Netrin-4. Netrin-4 regulates axon guidance, angiogenesis and the development of various tumors.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Miyai M, Iwama T, Hara A, Tomita H. Exploring the Vital Link Between Glioma, Neuron, and Neural Activity in the Context of Invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:669-679. [PMID: 37286277 DOI: 10.1016/j.ajpath.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Because of their ability to infiltrate normal brain tissue, gliomas frequently evade microscopic surgical excision. The histologic infiltrative property of human glioma has been previously characterized as Scherer secondary structures, of which the perivascular satellitosis is a prospective target for anti-angiogenic treatment in high-grade gliomas. However, the mechanisms underlying perineuronal satellitosis remain unclear, and therapy remains lacking. Our knowledge of the mechanism underlying Scherer secondary structures has improved over time. New techniques, such as laser capture microdissection and optogenetic stimulation, have advanced our understanding of glioma invasion mechanisms. Although laser capture microdissection is a useful tool for studying gliomas that infiltrate the normal brain microenvironment, optogenetics and mouse xenograft glioma models have been extensively used in studies demonstrating the unique role of synaptogenesis in glioma proliferation and identification of potential therapeutic targets. Moreover, a rare glioma cell line is established that, when transplanted in the mouse brain, can replicate and recapitulate the human diffuse invasion phenotype. This review discusses the primary molecular causes of glioma, its histopathology-based invasive mechanisms, and the importance of neuronal activity and interactions between glioma cells and neurons in the brain microenvironment. It also explores current methods and models of gliomas.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Neurosurgery, Hashima City Hospital, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
13
|
Garcia-Diaz C, Pöysti A, Mereu E, Clements MP, Brooks LJ, Galvez-Cancino F, Castillo SP, Tang W, Beattie G, Courtot L, Ruiz S, Roncaroli F, Yuan Y, Marguerat S, Quezada SA, Heyn H, Parrinello S. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumor bulk and infiltrative margin. Cell Rep 2023; 42:112472. [PMID: 37149862 DOI: 10.1016/j.celrep.2023.112472] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.
Collapse
Affiliation(s)
- Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Elisabetta Mereu
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Simon P Castillo
- Division of Molecular Pathology & Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Wenhao Tang
- Department of Mathematics, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK; Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Lilas Courtot
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sara Ruiz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Yinyin Yuan
- Division of Molecular Pathology & Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
14
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
15
|
Méaux MN, Regnier M, Portefaix A, Borel O, Alioli C, Peyruchaud O, Legrand M, Bacchetta J. Circulating autotaxin levels in healthy teenagers: Data from the Vitados cohort. Front Pediatr 2023; 11:1094705. [PMID: 36861069 PMCID: PMC9969100 DOI: 10.3389/fped.2023.1094705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Autotaxin (ATX) is a secreted enzyme with a lysophospholipase D activity, mainly secreted by adipocytes and widely expressed. Its major function is to convert lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), an essential bioactive lipid involved in multiple cell processes. The ATX-LPA axis is increasingly studied because of its involvement in numerous pathological conditions, more specifically in inflammatory or neoplastic diseases, and in obesity. Circulating ATX levels gradually increase with the stage of some pathologies, such as liver fibrosis, thus making them a potentially interesting non-invasive marker for fibrosis estimation. Normal circulating levels of ATX have been established in healthy adults, but no data exist at the pediatric age. The aim of our study is to describe the physiological concentrations of circulating ATX levels in healthy teenagers through a secondary analysis of the VITADOS cohort. Our study included 38 teenagers of Caucasian origin (12 males, 26 females). Their median age was 13 years for males and 14 years for females, ranging from Tanner 1 to 5. BMI was at the 25th percentile for males and 54th percentile for females, and median blood pressure was normal. ATX median levels were 1,049 (450-2201) ng/ml. There was no difference in ATX levels between sexes in teenagers, which was in contrast to the male and female differences described in the adult population. ATX levels significantly decreased with age and pubertal status, reaching adult levels at the end of puberty. Our study also suggested positive correlations between ATX levels and blood pressure (BP), lipid metabolism, and bone biomarkers. However, except for LDL cholesterol, these factors were also significantly correlated with age, which might be a confounding factor. Still, a correlation between ATX and diastolic BP was described in obese adult patients. No correlation was found between ATX levels and inflammatory marker C-reactive protein (CRP), Body Mass Index (BMI), and biomarkers of phosphate/calcium metabolism. In conclusion, our study is the first to describe the decline in ATX levels with puberty and the physiological concentrations of ATX levels in healthy teenagers. It will be of utmost importance when performing clinical studies in children with chronic diseases to keep these kinetics in mind, as circulating ATX might become a non-invasive prognostic biomarker in pediatric chronic diseases.
Collapse
Affiliation(s)
- Marie-Noëlle Méaux
- INSERM, UMR 1033, Lyon, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, filière OSCAR, Lyon, France.,Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Maitena Regnier
- INSERM, UMR 1033, Lyon, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, filière OSCAR, Lyon, France.,Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Aurélie Portefaix
- Centre d'Investigation Clinique, CIC 1407, Hospices Civils de Lyon, Bron, France
| | | | | | | | - Mélanie Legrand
- INSERM, UMR 1033, Lyon, France.,Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France.,Service de Rhumatologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Justine Bacchetta
- INSERM, UMR 1033, Lyon, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, filière OSCAR, Lyon, France.,Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
16
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
17
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
18
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
19
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
20
|
Islam MK, Islam MR, Rahman MH, Islam MZ, Amin MA, Ahmed KR, Rahman MA, Moni MA, Kim B. Bioinformatics Strategies to Identify Shared Molecular Biomarkers That Link Ischemic Stroke and Moyamoya Disease with Glioblastoma. Pharmaceutics 2022; 14:1573. [PMID: 36015199 PMCID: PMC9413912 DOI: 10.3390/pharmaceutics14081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Expanding data suggest that glioblastoma is accountable for the growing prevalence of various forms of stroke formation, such as ischemic stroke and moyamoya disease. However, the underlying deterministic details are still unspecified. Bioinformatics approaches are designed to investigate the relationships between two pathogens as well as fill this study void. Glioblastoma is a form of cancer that typically occurs in the brain or spinal cord and is highly destructive. A stroke occurs when a brain region starts to lose blood circulation and prevents functioning. Moyamoya disorder is a recurrent and recurring arterial disorder of the brain. To begin, adequate gene expression datasets on glioblastoma, ischemic stroke, and moyamoya disease were gathered from various repositories. Then, the association between glioblastoma, ischemic stroke, and moyamoya was established using the existing pipelines. The framework was developed as a generalized workflow to allow for the aggregation of transcriptomic gene expression across specific tissue; Gene Ontology (GO) and biological pathway, as well as the validation of such data, are carried out using enrichment studies such as protein-protein interaction and gold benchmark databases. The results contribute to a more profound knowledge of the disease mechanisms and unveil the projected correlations among the diseases.
Collapse
Affiliation(s)
- Md Khairul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh; (M.K.I.); (M.R.I.); (M.Z.I.)
| | - Md Rakibul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh; (M.K.I.); (M.R.I.); (M.Z.I.)
| | - Md Habibur Rahman
- Department of Computer Science & Engineering, Islamic University, Kushtia 7003, Bangladesh;
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh; (M.K.I.); (M.R.I.); (M.Z.I.)
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka 1216, Bangladesh;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
21
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
22
|
Li Q, Aishwarya S, Li JP, Pan DX, Shi JP. Gene Expression Profiling of Glioblastoma to Recognize Potential Biomarker Candidates. Front Genet 2022; 13:832742. [PMID: 35571016 PMCID: PMC9091202 DOI: 10.3389/fgene.2022.832742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is an aggressive malignant tumor of the brain and spinal cord. Due to the blood-brain barrier, the accessibility of its treatments still remains significantly challenging. Unfortunately, the recurrence rates of glioblastoma upon surgery are very high too. Hence, understanding the molecular drivers of disease progression is valuable. In this study, we aimed to investigate the molecular drivers responsible for glioblastoma progression and identify valid biomarkers. Three microarray expression profiles GSE90604, GSE50601, and GSE134470 containing healthy and glioblastoma-affected samples revealed overlapping differentially expressed genes (DEGs). The interrelational pathway enrichment analysis elucidated the halt of cell cycle checkpoints and activation of signaling pathways and led to the identification of 6 predominant hub genes. Validation of hub genes in comparison with The Cancer Genome Atlas datasets identified the potential biomarkers of glioblastoma. The study evaluated two significantly upregulated genes, SPARC (secreted protein acidic and rich in cysteine) and VIM (vimentin) for glioblastoma. The genes CACNA1E (calcium voltage-gated channel subunit alpha1 e), SH3GL2 (SH3 domain-containing GRB2-like 2, endophilin A1), and DDN (dendrin) were identified as under-expressed genes as compared to the normal and pan-cancer tissues along with prominent putative prognostic biomarker potentials. The genes DDN and SH3GL2 were found to be upregulated in the proneural subtype, while CACNA1E in the mesenchymal subtype of glioblastoma exhibits good prognostic potential. The mutational analysis also revealed the benign, possibly, and probably damaging substitution mutations. The correlation between the DEG and survival in glioblastoma was evaluated using the Kaplan-Meier plots, and VIM had a greater life expectancy of 60.25 months. Overall, this study identified key candidate genes that might serve as predictive biomarkers for glioblastoma.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - S. Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India
| | - Ji-Ping Li
- Department of Neurosurgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Dong-Xiao Pan
- Department of Neurosurgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jia-Pei Shi
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
23
|
Zhu B, Li Y, Mao X. A review on the role of different ephrins in glioma. Eur J Pharmacol 2022; 917:174588. [PMID: 34688637 DOI: 10.1016/j.ejphar.2021.174588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
Gliomas, tumors of glial cells, are the most common malignant tumors of the brain. Ephrins are protein ligands that act through tyrosine kinases receptor family, Eph receptors. In glioma, an inverse relationship has been identified between ephrin A1 ligand and EphA2 receptors i.e. there has been a decrease in the expression of ephrin A1 and increase in the expression of EphA2. The forced expression of ephrin A1 decreases the proliferation of glioma by internalizing the EphA2 receptors. The ligand (ephrin A1)-independent effects of EphA2 receptors are oncogenic in nature, while the binding of EphA2 with ephrin A1 decreases the glioma proliferation. An increase in EphA4 may be important in enhancing cellular proliferation and migration of glioblastoma through FGFR-MAPK-Akt signaling pathway, while a decrease in the expression of EphA5 may be crucial in increasing the cellular proliferation and thus, ephrin A5 acts as a tumor suppressor in glioma by negatively regulating the expression of EGFR. The higher expression levels of EphB2 and its ligand, ephrin B1 may decrease the cell adhesion and increase the invasion capacity of glioma through HIF-2α-EphB2-paxillin signalling. There is also a key role of ephrin B2 and EphB2 in promoting migration, invasion and conferring resistance to glioma cell. Ephrin B2 contributes in the pathogenesis of glioma by promoting angiogenesis through VEGF-A. An increase in ephrin B3 may also be important in the increasing tumorigenicity of glioma. The present review describes the role of different ephrins in the pathogenesis of glioma.
Collapse
Affiliation(s)
- Bochi Zhu
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Chang Chun City, Jilin Province, 130041, China.
| | - Yunfeng Li
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Chang Chun City, Jilin Province, 130041, China.
| | - Xijing Mao
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Chang Chun City, Jilin Province, 130041, China.
| |
Collapse
|
24
|
Huang Q, Wang K, Wanggou S, Tian J, Li X. A novel co-targeting strategy of EGFR/SEC61G for multi-modality fluorescence/MR/photoacoustic imaging of glioblastoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102509. [PMID: 34915180 DOI: 10.1016/j.nano.2021.102509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 05/16/2023]
Abstract
Surgical resection is often the first choice and cornerstone therapy of glioblastoma; the degree of complete resection, as an important prognostic factor, is directly related to individuals' long-term outcomes. However, current imaging approaches, subjected to its single-function and poor targeting affinity, used to have disappointing performance on preoperative diagnosis and intraoperative positioning. Herein, we have designed a nanoparticle for triple-modality NIF/MR/photoacoustic imaging and brought in a dual-targeting strategy with co-expressed EGFR and SEC61G in glioblastoma. In comparison with the dual-negative nanocarrier, the EGFR/SEC61G biotargeting nanoprobe presented a significantly enhanced contrast and durability in vivo. Furthermore, we have evaluated the safety and biocompatibility using a CCK-8 assay ex vivo, which showed negligible toxicity. Therefore, the dual-target probes hold great potentials for a comprehensive preoperative plan and durable intraoperative navigation in glioblastoma.
Collapse
Affiliation(s)
- Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
25
|
Safaee MM, Wang EJ, Jain S, Chen JS, Gill S, Zheng AC, Garcia JH, Beniwal AS, Tran Y, Nguyen AT, Trieu M, Leung K, Wells J, Maclean JM, Wycoff K, Aghi MK. CD97 is associated with mitogenic pathway activation, metabolic reprogramming, and immune microenvironment changes in glioblastoma. Sci Rep 2022; 12:1464. [PMID: 35087132 PMCID: PMC8795421 DOI: 10.1038/s41598-022-05259-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a median survival under two years. Using in silico and in vitro techniques, we demonstrate heterogeneous expression of CD97, a leukocyte adhesion marker, in human GBM. Beyond its previous demonstrated role in tumor invasion, we show that CD97 is also associated with upregulation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways in GBM. While CD97 knockout decreased Akt activation, CD97 targeting did not alter MAPK/Erk activation, did not slow GBM cell proliferation in culture, and increased levels of glycolytic and oxidative phosphorylation metabolites. Treatment with a soluble CD97 inhibitor did not alter activation of the MAPK/Erk and PI3K/Akt pathways. Tumors with high CD97 expression were associated with immune microenvironment changes including increased naïve macrophages, regulatory T cells, and resting natural killer (NK) cells. These data suggest that, while CD97 expression is associated with conflicting effects on tumor cell proliferative and metabolic pathways that overall do not affect tumor cell proliferation, CD97 exerts pro-tumoral effects on the tumor immune microenvironment, which along with the pro-invasive effects of CD97 we previously demonstrated, provides impetus to continue exploring CD97 as a therapeutic target in GBM.
Collapse
Affiliation(s)
- Michael M Safaee
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Elaina J Wang
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Saket Jain
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Jia-Shu Chen
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Sabraj Gill
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Allison C Zheng
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Joseph H Garcia
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Angad S Beniwal
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Y Tran
- Planet Biotechnology, Inc., Hayward, CA, USA
| | - Alan T Nguyen
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA
| | - Melissa Trieu
- School of Pharmacy, University of California, San Francisco (UCSF), San Francisco, USA
| | - Kevin Leung
- School of Pharmacy, University of California, San Francisco (UCSF), San Francisco, USA
| | - Jim Wells
- School of Pharmacy, University of California, San Francisco (UCSF), San Francisco, USA
| | | | | | - Manish K Aghi
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, USA.
| |
Collapse
|
26
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
27
|
Wesley UV, Sutton I, Clark PA, Cunningham K, Larrain C, Kuo JS, Dempsey RJ. Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Res 2021; 1776:147752. [PMID: 34906547 DOI: 10.1016/j.brainres.2021.147752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GB) is highly invasive and resistant to multimodal treatment partly due to distorted vasculature and exacerbated inflammation. The aggressiveness of brain tumors may be attributed to the dysregulated release of angiogenic and inflammatory factors. The glycoprotein pentraxin-3 (PTX3) is correlated with the severity of some cancers. However, the mechanism responsible for the invasive oncogenic role of PTX3 in GB malignancy remains unclear. In this study, we examined the role of PTX3 in GB growth, angiogenesis, and invasion using in vitro and in vivo GB models, proteomic profiling, molecular and biochemical approaches. Under in vitro conditions, PTX3 over-expression in U87 cells correlated with cell cycle progression, increased migratory potential, and proliferation under hypoxic conditions. Conditioned media containing PTX3 enhanced the angiogenic potential of endothelial cells. While silencing of PTX3 by siRNA decreased the proliferation, migration, and angiogenic potential of U87 cells in vitro. Importantly, PTX3 over-expression increased tumor growth, angiogenesis, and invasion in an orthotopic mouse model. Higher levels of PTX3 in these tumors were associated with the upregulation of inflammatory and angiogenic markers including interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), but decreased levels of thrombospondin-1, an anti-angiogenic factor. Mechanistically, exogenous production of PTX3 triggered an IKK/NFκB signaling pathway that enhances the expression of the motility genes AHGEF7 and Rac1. Taken together, PTX3 expression is dysregulated in GB. PTX3 may augment invasion through enhanced angiogenesis in the GB microenvironment through the IL8-VEGF axis. Thus, PTX3 may represent a potential therapeutic target to mitigate the aggressive behavior of gliomas.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| | - Ian Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Paul A Clark
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Human Oncology, University of Wisconsin, Madison, WI 53792, United States
| | - Katelin Cunningham
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Carolina Larrain
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - John S Kuo
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, TAIWAN
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| |
Collapse
|
28
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
29
|
Singh S, Drude N, Blank L, Desai PB, Königs H, Rütten S, Langen K, Möller M, Mottaghy FM, Morgenroth A. Protease Responsive Nanogels for Transcytosis across the Blood-Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells. Adv Healthc Mater 2021; 10:e2100812. [PMID: 34490744 PMCID: PMC11468667 DOI: 10.1002/adhm.202100812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Despite profound advances in treatment approaches, gliomas remain associated with very poor prognoses. The residual cells after incomplete resection often migrate and proliferate giving a seed for highly resistant gliomas. The efficacy of chemotherapeutic drugs is often strongly limited by their poor selectivity and the blood brain barrier (BBB). Therefore, the development of therapeutic carrier systems for efficient transport across the BBB and selective delivery to tumor cells remains one of the most complex problems facing molecular medicine and nano-biotechnology. To address this challenge, a stimuli sensitive nanogel is synthesized using pre-polymer approach for the effective delivery of nano-irradiation. The nanogels are cross-linked via matrix metalloproteinase (MMP-2,9) substrate and armed with Auger electron emitting drug 5-[125 I]Iodo-4"-thio-2"-deoxyuridine ([125 I]ITdU) which after release can be incorporated into the DNA of tumor cells. Functionalization with diphtheria toxin receptor ligand allows nanogel transcytosis across the BBB at tumor site. Functionalized nanogels efficiently and increasingly explore transcytosis via BBB co-cultured with glioblastoma cells. The subsequent nanogel degradation correlates with up-regulated MMP2/9. Released [125 I]ITdU follows the thymidine salvage pathway ending in its incorporation into the DNA of tumor cells. With this concept, a highly efficient strategy for intracellular delivery of radiopharmaceuticals across the challenging BBB is presented.
Collapse
Affiliation(s)
- Smriti Singh
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
- Max Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
| | - Natascha Drude
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
| | - Lena Blank
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
| | - Prachi Bharat Desai
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
| | - Hiltrud Königs
- Pathology–Department of Electron MicroscopyRWTH Aachen UniversityAachen52074Germany
| | - Stephan Rütten
- Pathology–Department of Electron MicroscopyRWTH Aachen UniversityAachen52074Germany
| | - Karl‐Josef Langen
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
- Institute of Neuroscience and MedicineForschungszentrum JülichJülich52428Germany
| | - Martin Möller
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
| | - Felix M. Mottaghy
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastricht6229 HXThe Netherlands
| | | |
Collapse
|
30
|
Alavian F, Ghasemi S. The Effectiveness of Nanoparticles on Gene Therapy for Glioblastoma Cells Apoptosis: A Systematic Review. Curr Gene Ther 2021; 21:230-245. [PMID: 33655831 DOI: 10.2174/1566523221666210224110454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and fatal type of glioma. Nanoparticles (NPs) are used in new approaches for the delivery of gene therapy in the treatment of GBM. INTRODUCTION The purpose of this article was to review the efficacy of NPs as the targeted carriers in the gene therapy aimed at apoptosis in GBM. METHODS The appropriate keywords such as nanoparticle, glioblastoma, gene therapy, apoptosis, and related words were used to search from PubMed, ISI Web of Science, and Scopus for relevant publications up to September 4, 2020, with no language restrictions. The present systematic review was performed based on PRISMA protocol and reviewed the articles evaluating the effects of nanoparticles, carriers of various gene therapies essentials, on GBM cells apoptosis in vitro and in vivo. The selected articles were considered using specific scores on the quality of the articles. Data extraction and quality evaluation were performed by two reviewers. RESULTS Of 101 articles retrieved, forty-two met the inclusion criteria and were, therefore, subjected to the final deduction. The most widely used NP in GBM gene therapy studies is polyamidoamine (PAMAM). The most common gene therapy approach for apoptosis in GBM is using siRNAs. CONCLUSION In conclusion, these studies validated that NPs could be a practical choice to enhance the efficiency and specific delivery in gene therapies for GBM cell apoptosis. However, the choice of NP type and gene therapy mechanism affect the GBM cell apoptotic efficiency.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Department of Biology, School of Basic Sciences, Farhangian University, Tehran, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
31
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
32
|
Zhang X, Li M, Yin N, Zhang J. The Expression Regulation and Biological Function of Autotaxin. Cells 2021; 10:cells10040939. [PMID: 33921676 PMCID: PMC8073485 DOI: 10.3390/cells10040939] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein and functions as a key enzyme to produce extracellular lysophosphatidic acid (LPA). LPA interacts with at least six G protein-coupled receptors, LPAR1-6, on the cell membrane to activate various signal transduction pathways through distinct G proteins, such as Gi/0, G12/13, Gq/11, and Gs. The ATX-LPA axis plays an important role in physiological and pathological processes, including embryogenesis, obesity, and inflammation. ATX is one of the top 40 most unregulated genes in metastatic cancer, and the ATX-LPA axis is involved in the development of different types of cancers, such as colorectal cancer, ovarian cancer, breast cancer, and glioblastoma. ATX expression is under multifaceted controls at the transcription, post-transcription, and secretion levels. ATX and LPA in the tumor microenvironment not only promote cell proliferation, migration, and survival, but also increase the expression of inflammation-related circuits, which results in poor outcomes for patients with cancer. Currently, ATX is regarded as a potential cancer therapeutic target, and an increasing number of ATX inhibitors have been developed. In this review, we focus on the mechanism of ATX expression regulation and the functions of ATX in cancer development.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Correspondence: ; Tel.: +86-10-58802137; Fax: +86-10-58807720
| |
Collapse
|
33
|
Brooks LJ, Clements MP, Burden JJ, Kocher D, Richards L, Devesa SC, Zakka L, Woodberry M, Ellis M, Jaunmuktane Z, Brandner S, Morrison G, Pollard SM, Dirks PB, Marguerat S, Parrinello S. The white matter is a pro-differentiative niche for glioblastoma. Nat Commun 2021; 12:2184. [PMID: 33846316 PMCID: PMC8042097 DOI: 10.1038/s41467-021-22225-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023] Open
Abstract
Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency. Tumour cells in contact with white matter acquire pre-oligodendrocyte fate, resulting in decreased proliferation and invasion. Differentiation is a response to white matter injury, which is caused by tumour infiltration itself in a tumoursuppressive feedback loop. Mechanistically, tumour cell differentiation is driven by selective white matter upregulation of SOX10, a master regulator of normal oligodendrogenesis. SOX10 overexpression or treatment with myelination-promoting agents that upregulate endogenous SOX10, mimic this response, leading to niche-independent pre-oligodendrocyte differentiation and tumour suppression in vivo. Thus, glioblastoma recapitulates an injury response and exploiting this latent programme may offer treatment opportunities for a subset of patients.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Daniela Kocher
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Luca Richards
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sara Castro Devesa
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Leila Zakka
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Megan Woodberry
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Michael Ellis
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, WC1N 3BG, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, WC1N 3BG, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Gillian Morrison
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Peter B Dirks
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
34
|
Nimbalkar VP, Kruthika BS, Sravya P, Rao S, Sugur HS, Verma BK, Chickabasaviah YT, Arivazhagan A, Kondaiah P, Santosh V. Differential gene expression in peritumoral brain zone of glioblastoma: role of SERPINA3 in promoting invasion, stemness and radioresistance of glioma cells and association with poor patient prognosis and recurrence. J Neurooncol 2021; 152:55-65. [PMID: 33389566 DOI: 10.1007/s11060-020-03685-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Glioblastoma (GBM) is a highly invasive tumor. Despite advances in treatment modalities, tumor recurrence is common, seen mainly in the peritumoral brain zone (PBZ). We aimed to molecularly characterize PBZ, to understand the pathobiology of tumor recurrence. METHODS/PATIENTS We selected eight differentially regulated genes from our previous transcriptome profiling study on tumor core and PBZ. Expression of selected genes were validated in GBM (tumor core and PBZ, n = 37) and control (n = 22) samples by real time quantitative polymerase chain reaction (qPCR). Serine protease inhibitor clade A, member 3 (SERPINA3) was selected for further functional characterization in vitro by gene knockdown approach in glioma cells. Its protein expression by immunohistochemistry (IHC) was correlated with other clinically relevant GBM markers, patient prognosis and tumor recurrence. RESULTS The mRNA expression of selected genes from the microarray data validated in tumor core and PBZ and was similar to publicly available databases. SERPINA3 knock down in vitro showed decreased tumor cell proliferation, invasion, migration, transition to mesenchymal phenotype, stemness and radioresistance. SERPINA3 protein expression was higher in PBZ compared to tumor core and also was higher in older patients, IDH wild type and recurrent tumors. Finally, its expression showed positive correlation with poor patient prognosis. CONCLUSIONS SERPINA3 expression contributes to aggressive GBM phenotype by regulating pro-tumorigenic actions in vitro and is associated with adverse clinical outcome.
Collapse
Affiliation(s)
- Vidya P Nimbalkar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Banavathy S Kruthika
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Palavalasa Sravya
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Harsha S Sugur
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Brijesh Kumar Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
35
|
Angelucci C, D’Alessio A, Sorrentino S, Biamonte F, Moscato U, Mangiola A, Sica G, Iacopino F. Immunohistochemical Analysis of DNA Repair- and Drug-Efflux-Associated Molecules in Tumor and Peritumor Areas of Glioblastoma. Int J Mol Sci 2021; 22:ijms22041620. [PMID: 33562724 PMCID: PMC7914796 DOI: 10.3390/ijms22041620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5. We propose that the expression of these molecules in the peritumoral tissue might be crucial to promoting the development of early tumorigenic events in the tissue surrounding GBM as well as responsible for the recurrence originating in this apparently normal area and, accordingly, for the resistance to treatment with the standard chemotherapeutic regimen. Notably, the inverse correlation found between MGMT expression in peritumoral tissue and patients’ survival suggests a prognostic role for this protein.
Collapse
Affiliation(s)
- Cristiana Angelucci
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| | - Alessio D’Alessio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
- Correspondence:
| | - Silvia Sorrentino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| | - Filippo Biamonte
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Unità Operativa Complessa di Chimica, Biochimica e Biologia Molecolare, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| | - Umberto Moscato
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina del Lavoro e Igiene di Sanità Pubblica, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
- Dipartimento delle Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Annunziato Mangiola
- Unità Operativa Complessa di Neurochirurgia, Ospedale Santo Spirito, 65124 Pescara, Italy;
- Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università “G. D’Annunzio”, 66013 Chieti, Italy
| | - Gigliola Sica
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| | - Fortunata Iacopino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| |
Collapse
|
36
|
Robinson JW, Martin RM, Tsavachidis S, Howell AE, Relton CL, Armstrong GN, Bondy M, Zheng J, Kurian KM. Transcriptome-wide Mendelian randomization study prioritising novel tissue-dependent genes for glioma susceptibility. Sci Rep 2021; 11:2329. [PMID: 33504897 PMCID: PMC7840943 DOI: 10.1038/s41598-021-82169-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.
Collapse
Affiliation(s)
- Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Spiridon Tsavachidis
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan, Comprehensive Cancer Centre, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amy E Howell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Georgina N Armstrong
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Melissa Bondy
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Kathreena M Kurian
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.
- Brain Tumour Research Centre, Bristol, BS10 5NB, UK.
| |
Collapse
|
37
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
38
|
Connor K, Murray DW, Jarzabek MA, Tran NL, White K, Dicker P, Sweeney KJ, O’Halloran PJ, MacCarthy B, Shiels LP, Lodi F, Lambrechts D, Sarkaria JN, Schiffelers RM, Symons M, Byrne AT. Targeting the RhoGEF βPIX/COOL-1 in Glioblastoma: Proof of Concept Studies. Cancers (Basel) 2020; 12:cancers12123531. [PMID: 33256106 PMCID: PMC7761123 DOI: 10.3390/cancers12123531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is an incurable disease with a 14-month average life-expectancy following diagnosis, and clinical management has not improved in four decades. GBM mortality is due to rapid tumour growth and invasion into surrounding normal brain. Invasive cells make complete surgical removal of the tumour impossible, and result in disease relapse. Thus, it is imperative that any new treatment strategy takes these invading cells into consideration. Bevacizumab (Bev), which prevents the formation of new blood vessels, is an FDA approved therapy, but it has failed to increase overall survival in GBM and has even been shown to increase tumour invasion in some cases. Complementary anti-invasive therapies are therefore urgently required to enhance bevacizumab efficacy. We have identified βPIX/COOL-1, a RhoGEF protein which plays an important role in GBM cell invasion and angiogenesis and could be a useful target in this setting. Abstract Glioblastoma (GBM), a highly invasive and vascular malignancy is shown to rapidly develop resistance and evolve to a more invasive phenotype following bevacizumab (Bev) therapy. Rho Guanine Nucleotide Exchange Factor proteins (RhoGEFs) are mediators of key components in Bev resistance pathways, GBM and Bev-induced invasion. To identify GEFs with enhanced mRNA expression in the leading edge of GBM tumours, a cohort of GEFs was assessed using a clinical dataset. The GEF βPix/COOL-1 was identified, and the functional effect of gene depletion assessed using 3D-boyden chamber, proliferation, and colony formation assays in GBM cells. Anti-angiogenic effects were assessed in endothelial cells using tube formation and wound healing assays. In vivo effects of βPix/COOL-1-siRNA delivered via RGD-Nanoparticle in combination with Bev was studied in an invasive model of GBM. We found that siRNA-mediated knockdown of βPix/COOL-1 in vitro decreased cell invasion, proliferation and increased apoptosis in GBM cell lines. Moreover βPix/COOL-1 mediated endothelial cell migration in vitro. Mice treated with βPix/COOL-1 siRNA-loaded RGD-Nanoparticle and Bev demonstrated a trend towards improved median survival compared with Bev monotherapy. Our hypothesis generating study suggests that the RhoGEF βPix/COOL-1 may represent a target of vulnerability in GBM, in particular to improve Bev efficacy.
Collapse
Affiliation(s)
- Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - David W. Murray
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Monika A. Jarzabek
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Nhan L. Tran
- Department of Cancer Biology and Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ 85054, USA;
| | - Kieron White
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Patrick Dicker
- Epidemiology & Public Health, Royal College of Surgeons in Ireland, Dublin 2, Ireland;
| | - Kieron J. Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
- National Neurosurgical Department, Beaumont Hospital, Dublin 9, Ireland
| | - Philip J. O’Halloran
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
- National Neurosurgical Department, Beaumont Hospital, Dublin 9, Ireland
| | - Brian MacCarthy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Liam P. Shiels
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Francesca Lodi
- Center for Cancer Biology, Laboratory for Translational Genetics, Vlaams Instituut voor Biotechnologie (VIB), B-3000 Leuven, Belgium; (F.L.); (D.L.)
| | - Diether Lambrechts
- Center for Cancer Biology, Laboratory for Translational Genetics, Vlaams Instituut voor Biotechnologie (VIB), B-3000 Leuven, Belgium; (F.L.); (D.L.)
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 100 3584 Utrecht, The Netherlands;
| | - Marc Symons
- Department of Oncology & Cell Biology, Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, NY 11030, USA;
| | - Annette T. Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
- Correspondence: ; Tel.: +353-1-402-8673
| |
Collapse
|
39
|
Mutharasu G, Murugesan A, Konda Mani S, Yli-Harja O, Kandhavelu M. Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication. J Biomol Struct Dyn 2020; 40:2586-2599. [PMID: 33140689 DOI: 10.1080/07391102.2020.1841029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gnanavel Mutharasu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Akshaya Murugesan
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, India
| | - Saravanan Konda Mani
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Olli Yli-Harja
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, USA
| | - Meenakshisundaram Kandhavelu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Science Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
40
|
Vitovcova B, Skarkova V, Rudolf K, Rudolf E. Biology of Glioblastoma Multiforme-Exploration of Mitotic Catastrophe as a Potential Treatment Modality. Int J Mol Sci 2020; 21:ijms21155324. [PMID: 32727112 PMCID: PMC7432846 DOI: 10.3390/ijms21155324] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules. Their involvement in the important oncosuppressive process called mitotic catastrophe will next be discussed along with select examples of microtubule-targeting agents, which are currently explored in this respect such as benzimidazole carbamate compounds. Select microtubule-targeting agents, in particular benzimidazole carbamates, induce G2/M cell cycle arrest and mitotic catastrophe in tumor cells including GBM, resulting in phenotypically variable cell fates such as mitotic death or mitotic slippage with subsequent cell demise or permanent arrest leading to senescence. Their effect is coupled with low toxicity in normal cells and not developed chemoresistance. Given the lack of efficient cytostatics or modern molecular target-specific compounds in the treatment of GBM, drugs inducing mitotic catastrophe might offer a new, efficient alternative to the existing clinical management of this at present incurable malignancy.
Collapse
|
41
|
Signaling Determinants of Glioma Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:129-149. [PMID: 32034712 DOI: 10.1007/978-3-030-30651-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
42
|
Tang Z, Gillatt D, Rowe E, Koupparis A, Holly JM, Perks CM. IGFBP-2 acts as a tumour suppressor and plays a role in determining chemosensitivity in bladder cancer cells. Oncotarget 2019; 10:7043-7057. [PMID: 31903164 PMCID: PMC6925026 DOI: 10.18632/oncotarget.27355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
There are mixed reports on the role that IGFBP-2 plays in cancer progression, with some indicating a tumour suppressive role and others showing that IGFBP-2 may act as an oncogene. These apparent contradictions may be context and tissue specific. In this study we determined the role that IGFBP-2 played on the phenotype and chemosensitivity of a selection of bladder cancer cell lines and investigated how the abundance of IGFBP-2 was regulated. We found that IGFBP-2 was more abundant in the epithelial bladder cancer cells, RT4 and UMUC3 and absent in the more mesenchymal T24 and TCCSUP cells. Silencing IGFBP-2 using siRNA in epithelial RT4 cells promoted cell proliferation, invasion, colony formation, resulted in a reduction in epithelial (E-cadherin) and an increase in mesenchymal (N-cadherin) markers and increased sensitivity to cisplatin-induced cell death. Conversely, we observed the opposite effects when adding exogenous IGFBP-2 to the mesenchymal T24 cells. We determined that IGFBP-2 was epigenetically silenced via DNA methylation as the cells adopted a mesenchymal phenotype. Collectively these data suggest that IGFBP-2 acts as a tumour suppressor and marker of chemosensitivity in epithelial bladder cancer cells and that IGFBP-2 is epigenetically silenced by methylation to promote bladder cancer progression.
Collapse
Affiliation(s)
- Zhen Tang
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5N, England
| | - David Gillatt
- Department of Surgery, Macquarie University Hospital, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward Rowe
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol BS10 5NB, England
| | - Anthony Koupparis
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol BS10 5NB, England
| | - Jeff M.P. Holly
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5N, England
- Co-senior authors
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5N, England
| |
Collapse
|
43
|
PTBP1-mediated regulation of AXL mRNA stability plays a role in lung tumorigenesis. Sci Rep 2019; 9:16922. [PMID: 31729427 PMCID: PMC6858377 DOI: 10.1038/s41598-019-53097-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022] Open
Abstract
AXL is expressed in many types of cancer and promotes cancer cell survival, metastasis and drug resistance. Here, we focus on identifying modulators that regulate AXL at the mRNA level. We have previously observed that the AXL promoter activity is inversely correlated with the AXL expression levels, suggesting that post-transcriptional mechanisms exist that down-regulate the expression of AXL mRNA. Here we show that the RNA binding protein PTBP1 (polypyrimidine tract-binding protein) directly targets the 5′-UTR of AXL mRNA in vitro and in vivo. Moreover, we also demonstrate that PTBP1, but not PTBP2, inhibits the expression of AXL mRNA and the RNA recognition motif 1 (RRM1) of PTBP1 is crucial for this interaction. To clarify how PTBP1 regulates AXL expression at the mRNA level, we found that, while the transcription rate of AXL was not significantly different, PTBP1 decreased the stability of AXL mRNA. In addition, over-expression of AXL may counteract the PTBP1-mediated apoptosis. Knock-down of PTBP1 expression could enhance tumor growth in animal models. Finally, PTBP1 was found to be negatively correlated with AXL expression in lung tumor tissues in Oncomine datasets and in tissue micro-array (TMA) analysis. In conclusion, we have identified a molecular mechanism of AXL expression regulation by PTBP1 through controlling the AXL mRNA stability. These findings may represent new thoughts alternative to current approaches that directly inhibit AXL signaling and may eventually help to develop novel therapeutics to avoid cancer metastasis and drug resistance.
Collapse
|
44
|
Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling. Cancers (Basel) 2019; 11:cancers11111651. [PMID: 31731490 PMCID: PMC6896086 DOI: 10.3390/cancers11111651] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
High mortality rates of glioblastoma (GBM) patients are partly attributed to the invasive behavior of tumor cells that exhibit extensive infiltration into adjacent brain tissue, leading to rapid, inevitable, and therapy-resistant recurrence. In this study, we analyzed transcriptome of motile (dispersive) and non-motile (core) GBM cells using an in vitro spheroid dispersal model and identified SERPINE1 as a modulator of GBM cell dispersal. Genetic or pharmacological inhibition of SERPINE1 reduced spheroid dispersal and cell adhesion by regulating cell-substrate adhesion. We examined TGFβ as a potential upstream regulator of SERPINE1 expression. We also assessed the significance of SERPINE1 in GBM growth and invasion using TCGA glioma datasets and a patient-derived orthotopic GBM model. SERPINE1 expression was associated with poor prognosis and mesenchymal GBM in patients. SERPINE1 knock-down in primary GBM cells suppressed tumor growth and invasiveness in the brain. Together, our results indicate that SERPINE1 is a key player in GBM dispersal and provide insights for future anti-invasive therapy design.
Collapse
|
45
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
46
|
Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases. Mol Neurobiol 2019; 57:372-392. [PMID: 31364025 DOI: 10.1007/s12035-019-01719-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Autotaxin (ATX) is a soluble extracellular enzyme that is abundant in mammalian plasma and cerebrospinal fluid (CSF). It has two known enzymatic activities, acting as both a phosphodiesterase and a phospholipase. The majority of its biological effects have been associated with its ability to liberate lysophosphatidic acid (LPA) from its substrate, lysophosphatidylcholine (LPC). LPA has diverse pleiotropic effects in the central nervous system (CNS) and other tissues via the activation of a family of six cognate G protein-coupled receptors. These LPA receptors (LPARs) are expressed in some combination in all known cell types in the CNS where they mediate such fundamental cellular processes as proliferation, differentiation, migration, chronic inflammation, and cytoskeletal organization. As a result, dysregulation of LPA content may contribute to many CNS and PNS disorders such as chronic inflammatory or neuropathic pain, glioblastoma multiforme (GBM), hemorrhagic hydrocephalus, schizophrenia, multiple sclerosis, Alzheimer's disease, metabolic syndrome-induced brain damage, traumatic brain injury, hepatic encephalopathy-induced cerebral edema, macular edema, major depressive disorder, stress-induced psychiatric disorder, alcohol-induced brain damage, HIV-induced brain injury, pruritus, and peripheral nerve injury. ATX activity is now known to be the primary biological source of this bioactive signaling lipid, and as such, represents a potentially high-value drug target. There is currently one ATX inhibitor entering phase III clinical trials, with several additional preclinical compounds under investigation. This review discusses the physiological and pathological significance of the ATX-LPA-LPA receptor signaling axis and summarizes the evidence for targeting this pathway for the treatment of CNS diseases.
Collapse
|
47
|
Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E, Locatelli F, Gallo A. ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res 2019; 46:2045-2059. [PMID: 29267965 PMCID: PMC5829642 DOI: 10.1093/nar/gkx1257] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Recent studies have reported the emerging role of microRNAs (miRNAs) in human cancers. We systematically characterized miRNA expression and editing in the human brain, which displays the highest number of A-to-I RNA editing sites among human tissues, and in de novo glioblastoma brain cancer. We identified 299 miRNAs altered in their expression and 24 miRNAs differently edited in human brain compared to glioblastoma tissues. We focused on the editing site within the miR-589–3p seed. MiR-589–3p is a unique miRNA almost fully edited (∼100%) in normal brain and with a consistent editing decrease in glioblastoma. The edited version of miR-589–3p inhibits glioblastoma cell proliferation, migration and invasion, while the unedited version boosts cell proliferation and motility/invasion, thus being a potential cancer-promoting factor. We demonstrated that the editing of this miRNA is mediated by ADAR2, and retargets miR-589–3p from the tumor-suppressor PCDH9 to ADAM12, which codes for the metalloproteinase 12 promoting glioblastoma invasion. Overall, our study dissects the role of a unique brain-specific editing site within miR-589–3p, with important anticancer features, and highlights the importance of RNA editing as an essential player not only for diversifying the genomic message but also for correcting not-tolerable/critical genomic coding sites.
Collapse
Affiliation(s)
- Valeriana Cesarini
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Domenico A Silvestris
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Valentina Tassinari
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Sara Tomaselli
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Shahar Alon
- Media Laboratory and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Franco Locatelli
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy.,Department of Pediatric Science, University of Pavia, 27100 Pavia, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| |
Collapse
|
48
|
Kim S, Choi JY, Seok HJ, Park MJ, Chung HY, Bae IH. miR-340-5p Suppresses Aggressiveness in Glioblastoma Multiforme by Targeting Bcl-w and Sox2. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:245-255. [PMID: 31272074 PMCID: PMC6610659 DOI: 10.1016/j.omtn.2019.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM), a particularly aggressive type of malignant brain tumor, has a high mortality rate. Bcl-w, an oncogene, is reported to enhance cell survival, proliferation, epithelial-mesenchymal transition (EMT), migratory and invasive abilities, and stemness maintenance in a variety of cancer cell types, including GBM. In this study, we confirmed that Bcl-w-induced conditional medium (CM) enhances tumorigenic phenotypes of migration, invasiveness, and stemness maintenance. Notably, platelet-derived growth factor-A (PDGF-A) expression, among other factors of the tumor environment, was increased by CM of Bcl-w-overexpressing cells, prompting investigation of the potential correlation between Bcl-w and PDGF-A and their effects on GBM malignancy. Bcl-w and PDGF-A levels were positively regulated and increased tumorigenicity by Sox2 activation in GBM cells. miR-340-5p was further identified as a direct inhibitor of Bcl-w and Sox2. Overexpression of miR-340-5p reduced mesenchymal traits, cell migration, invasion, and stemness in GBM through attenuating Bcl-w and Sox2 expression. Our novel findings highlight the potential utility of miR-340-5p as a therapeutic agent for glioblastoma multiforme through inhibitory effects on Bcl-w-induced PDGF-A and Sox2 activation.
Collapse
Affiliation(s)
- Sanghwa Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea
| | - Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea
| | - Hee Yong Chung
- Department of Microbiology, Collage of Medicine, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Alshabi AM, Vastrad B, Shaikh IA, Vastrad C. Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis. Biomolecules 2019; 9:biom9050201. [PMID: 31137733 PMCID: PMC6571969 DOI: 10.3390/biom9050201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the molecular mechanisms underlying glioblastoma multiform (GBM) and its biomarkers. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppGene (ToppFun) was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and TF-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs was carried out. A total of 590 DEGs, including 243 up regulated and 347 down regulated genes, were diagnosed between scrambled shRNA expression and Lin7A knock down. The up-regulated genes were enriched in ribosome, mitochondrial translation termination, translation, and peptide biosynthetic process. The down-regulated genes were enriched in focal adhesion, VEGFR3 signaling in lymphatic endothelium, extracellular matrix organization, and extracellular matrix. The current study screened the genes in the PPI network, extracted modules, miRNA-target genes regulatory network, and TF-target genes regulatory network with higher degrees as hub genes, which included NPM1, CUL4A, YIPF1, SHC1, AKT1, VLDLR, RPL14, P3H2, DTNA, FAM126B, RPL34, and MYL5. Survival analysis indicated that the high expression of RPL36A and MRPL35 were predicting longer survival of GBM, while high expression of AP1S1 and AKAP12 were predicting shorter survival of GBM. High expression of RPL36A and AP1S1 were associated with pathogenesis of GBM, while low expression of ALPL was associated with pathogenesis of GBM. In conclusion, the current study diagnosed DEGs between scrambled shRNA expression and Lin7A knock down samples, which could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new diagnostic markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka 580002, India.
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia.
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
50
|
Abstract
Stem cells are a rare subpopulation defined by the potential to self-renew and differentiate into specific cell types. A population of stem-like cells has been reported to possess the ability of self-renewal, invasion, metastasis, and engraftment of distant tissues. This unique cell subpopulation has been designated as cancer stem cells (CSC). CSC were first identified in leukemia, and the contributions of CSC to cancer progression have been reported in many different types of cancers. The cancer stem cell hypothesis attempts to explain tumor cell heterogeneity based on the existence of stem cell-like cells within solid tumors. The elimination of CSC is challenging for most human cancer types due to their heightened genetic instability and increased drug resistance. To combat these inherent abilities of CSC, multi-pronged strategies aimed at multiple aspects of CSC biology are increasingly being recognized as essential for a cure. One of the most challenging aspects of cancer biology is overcoming the chemotherapeutic resistance in CSC. Here, we provide an overview of autotaxin (ATX), lysophosphatidic acid (LPA), and their signaling pathways in CSC. Increasing evidence supports the role of ATX and LPA in cancer progression, metastasis, and therapeutic resistance. Several studies have demonstrated the ATX-LPA axis signaling in different cancers. This lipid mediator regulatory system is a novel potential therapeutic target in CSC. In this review, we summarize the evidence linking ATX-LPA signaling to CSC and its impact on cancer progression and metastasis. We also provide evidence for the efficacy of cancer therapy involving the pharmacological inhibition of this signaling pathway.
Collapse
|