1
|
Amer H, Flanagan KL, Kampan NC, Itsiopoulos C, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Is a Crucial Factor in Shaping the Inflammatory Tumor Microenvironment in Ovarian Cancer and Determining Its Hot or Cold Nature with Diagnostic and Prognostic Utilities. Cancers (Basel) 2025; 17:1691. [PMID: 40427188 PMCID: PMC12109964 DOI: 10.3390/cancers17101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Ovarian cancer (OC) remains the leading cause of cancer-related deaths among women, often diagnosed at advanced stages due to the lack of effective early diagnostic procedures. To reduce the high mortality rates in OC, reliable biomarkers are urgently needed, especially to detect OC at its earliest stage, predict specific drug responses, and monitor patients. The cytokine interleukin-6 (IL6) is associated with low survival rates, treatment resistance, and recurrence. In this review, we summarize the role of IL6 in inflammation and how IL6 contributes to ovarian tumorigenesis within the tumor microenvironment, influencing whether the tumor is subsequently classified as "hot" or "cold". We further dissect the molecular and cellular mechanisms through which IL6 production and downstream signaling are regulated, to enhance our understanding of its involvement in OC development, as well as OC resistance to treatment. We highlight the potential of IL6 to be used as a reliable diagnostic biomarker to help detect OC at its earliest stage, and as a part of predictive and prognostic signatures to improve OC management. We further discuss ways to leverage artificial intelligence and machine learning to integrate IL6 into diverse biomarker-based strategies.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia
- School of Medicine and Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | | | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia
| |
Collapse
|
2
|
Lin EJ, Prost S, Lin HJ, Shah S, Li R. Combined General/Epidural Anesthesia vs. General Anesthesia on Postoperative Cytokines: A Review and Meta-Analysis. Cancers (Basel) 2025; 17:1667. [PMID: 40427164 PMCID: PMC12109670 DOI: 10.3390/cancers17101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Local and systemic inflammation is common after surgery and is associated with morbidity and mortality. Inflammatory cytokines have been implicated in cancer metastasis following cancer surgery. The present study aimed to analyze inflammatory cytokines levels after surgery under combined epidural/general anesthesia (EA + GA) vs. general anesthesia (GA). METHODS We systematically searched PubMed, Central, EMBASE, CINAHL, Google Scholar, and Web of Science citation indexes for clinical studies (cancer and non-cancer surgery) comparing the two techniques. We carried out a meta-analysis to evaluate the postoperative plasma levels of cytokines, C-reactive protein (CRP), and cortisol levels. RESULTS The literature search was last updated on 2 January 2025. We identified a total of 21 studies which compared postoperative inflammatory mediators with EA plus GA compared to GA alone. EA plus GA was associated with significantly lower serum levels of IL-6, TNF-α, CRP, as well as cortisol and other pro-inflammatory cytokines. In cancer surgery, EA plus GA was also associated with lower postoperative cytokines. CONCLUSIONS Our meta-analysis indicates that EA plus GA is associated with diminished postoperative inflammatory response. This offers an alternative explanation for the benefit of epidural analgesia on postoperative outcomes. Considering the link between postoperative inflammation and recurrence after cancer surgery, this is an area that warrants further research.
Collapse
Affiliation(s)
| | | | | | | | - Ru Li
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794-8480, USA; (E.J.L.); (S.P.); (H.J.L.); (S.S.)
| |
Collapse
|
3
|
Alqahtani S, Alqahtani T, Venkatesan K, Sivadasan D, Ahmed R, Sirag N, Elfadil H, Abdullah Mohamed H, T.A. H, Elsayed Ahmed R, Muralidharan P, Paulsamy P. SASP Modulation for Cellular Rejuvenation and Tissue Homeostasis: Therapeutic Strategies and Molecular Insights. Cells 2025; 14:608. [PMID: 40277933 PMCID: PMC12025513 DOI: 10.3390/cells14080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Cellular senescence regulates aging, tissue maintenance, and disease progression through the Senescence-Associated Secretory Phenotype (SASP), a secretory profile of cytokines, chemokines, growth factors, and matrix-remodeling enzymes. While transient SASP aids wound healing, its chronic activation drives inflammation, fibrosis, and tumorigenesis. This review examines SASP's molecular regulation, dual roles in health and pathology, and therapeutic potential. The following two main strategies are explored: senescence clearance, which eliminates SASP-producing cells, and SASP modulation, which refines secretion to suppress inflammation while maintaining regenerative effects. Key pathways, including NF-κB, C/EBPβ, and cGAS-STING, are discussed alongside pharmacological, immunotherapeutic, gene-editing, and epigenetic interventions. SASP heterogeneity necessitates tissue-specific biomarkers for personalized therapies. Challenges include immune interactions, long-term safety, and ethical considerations. SASP modulation emerges as a promising strategy for aging, oncology, and tissue repair, with future advancements relying on multi-omics and AI-driven insights to optimize clinical outcomes.
Collapse
Affiliation(s)
- Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hanem Abdullah Mohamed
- Pediatric Nursing, College of Nursing, King Khalid University, Abha 62521, Saudi Arabia;
- Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Haseena T.A.
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia; (H.T.); (P.P.)
| | - Rasha Elsayed Ahmed
- Medical Surgical Nursing, Tanta University, Tanta 31527, Egypt;
- College of Nursing, King Khalid University, Khamis Mushait 61421, Saudi Arabia
| | - Pooja Muralidharan
- Undergraduate Program, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, India;
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia; (H.T.); (P.P.)
| |
Collapse
|
4
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Çelebi G, Gunenc D, Karaca B. C-reactive protein kinetics as prognostic biomarkers in advanced melanoma treated with immune checkpoint inhibitors. Melanoma Res 2025:00008390-990000000-00203. [PMID: 40202929 DOI: 10.1097/cmr.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
C-reactive protein (CRP) kinetics has emerged as a potential biomarker for predicting treatment response and survival in various tumors treated with immune checkpoint inhibitors (ICIs). However, data on CRP kinetics in melanoma are limited. This study evaluates the relationship between CRP kinetic groups and progression-free survival (PFS) and overall survival (OS) in 104 advanced melanoma patients treated with ICIs from 2015 to 2023. Patients were classified into four CRP kinetic groups: CRP flare responders, defined as patients whose CRP at least doubles within 1 month and then falls below baseline by 3 months; CRP responders, whose CRP decreases by ≥30% from baseline within 3 months without doubling; all-normal CRP, whose CRP remains below the upper limit of normal throughout the first 3 months; and CRP nonresponders, who do not meet these criteria. Amongst patients, 64.4% received anti-programmed death-1 monotherapy and 35.6% received the nivolumab-ipilimumab combination. Median PFS was 4.80 months in CRP nonresponders, 10.90 months in CRP responders, 8.83 months in CRP flare responders and 33.57 months in all-normal CRP patients (P < 0.001). Similarly, median OS was 11.9 months in CRP nonresponders, 38.1 months in CRP responders, 21.5 months in CRP flare responders and 54.5 months in all-normal CRP patients (P < 0.001). Multivariate analysis confirmed CRP kinetic groups as an independent predictor of PFS, OS and objective response. CRP kinetic classification is a simple prognostic tool for advanced melanoma patients treated with ICIs and is associated with improved survival outcomes, underscoring the clinical value of CRP monitoring.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Departmant of Internal Medicine
| | | | - Gökhan Şahin
- Division of Medical Oncology, Departmant of Internal Medicine
| | | | - Gülçin Çelebi
- Departmant of İnternal Medicine, Ege University Medical Faculty, Izmir, Turkey
| | - Damla Gunenc
- Division of Medical Oncology, Departmant of Internal Medicine
| | - Burçak Karaca
- Division of Medical Oncology, Departmant of Internal Medicine
| |
Collapse
|
5
|
Palmer EP, Cronise KE, Haines LA, Das S, Offermann A, Easton CP, Regan DP. Osteosarcoma Exosome Priming of Primary Human Lung Fibroblasts Induces an Immune Modulatory and Protumorigenic Phenotype. CANCER RESEARCH COMMUNICATIONS 2025; 5:594-608. [PMID: 40099972 PMCID: PMC11987067 DOI: 10.1158/2767-9764.crc-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
SIGNIFICANCE These findings provide a critical first step in characterizing the capacity of OS-derived exosomes to reprogram primary LFs toward a tumor-promoting inflammatory phenotype in vitro, offering novel molecular targets for the modulation of fibroblasts in the lung microenvironment as potential therapeutic strategies to prevent OS metastasis.
Collapse
Affiliation(s)
- Eric P. Palmer
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kathryn E. Cronise
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laurel A. Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sunetra Das
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Aaron Offermann
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Carina P. Easton
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel P. Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
6
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Gunenc D, Karaca B. Prognostic utility of the CALLY index in metastatic melanoma: building a nomogram for Patients on Anti-PD-1 therapy. Clin Transl Oncol 2025:10.1007/s12094-025-03888-z. [PMID: 40091005 DOI: 10.1007/s12094-025-03888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Despite the success of immune checkpoint inhibitors (ICIs) in metastatic melanoma, many patients fail to derive meaningful benefit, underscoring the urgent need for accessible prognostic biomarkers. The C-reactive protein (CRP)-albumin-lymphocyte (CALLY) index, an immunonutritional index, has shown prognostic value in various cancers. Previous studies indicate that systemic inflammation and nutritional status influence ICI efficacy, suggesting the potential relevance of the CALLY index in metastatic melanoma. This study evaluates the CALLY index's role in metastatic melanoma patients treated with anti-PD-1 therapy. METHODS This retrospective study analysed 92 patients with metastatic melanoma who were treated with anti-PD-1 monotherapy at Ege University's Faculty of Medicine between 2015 and 2023. The CALLY index was calculated using the pre-treatment CRP, albumin and lymphocyte levels. Kaplan-Meier analysis was used to estimate survival outcomes, and univariate and multivariate Cox regression models were employed to identify independent prognostic factors. A predictive nomogram incorporating the CALLY index and other significant variables was then developed. RESULTS The optimal CALLY index cutoff was determined to be 2. Patients with a low CALLY index (≤ 2) had worse median overall survival (OS) and progression-free survival (PFS) when compared with those who had a high CALLY index (> 2) (median OS: 9.6 vs 31.3 months, p < 0.001; median PFS: 3.8 vs 10.6 months, p = 0.001). Multivariate analysis identified the CALLY index, lactate dehydrogenase above the upper limit of normal, Eastern Cooperative Oncology Group score ≥ 2, M1c/M1d staging and acral/mucosal melanoma subtypes to be independent predictors of OS. A nomogram was then constructed based on these factors, yielding a concordance index of 0.705 (95% confidence interval: 0.634-0.776). This model stratified patients into low-, intermediate- and high-risk groups, with the high-risk group showing significantly worse OS than the intermediate- and the low-risk groups (p < 0.001). CONCLUSION The CALLY index is a cost-effective and independent prognostic biomarker that can aid in risk stratification and guide treatment decisions in patients with metastatic melanoma receiving anti-PD-1 therapy.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, 35100, Izmir, Turkey.
| | - Haydar Çağatay Yüksel
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, 35100, Izmir, Turkey
| | - Gökhan Şahin
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, 35100, Izmir, Turkey
| | - Fatma Pinar Açar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, 35100, Izmir, Turkey
| | - Damla Gunenc
- Division of Medical Oncology, Hatay Training and Research Hospital, 3100, Hatay, Turkey
| | - Burçak Karaca
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, 35100, Izmir, Turkey
| |
Collapse
|
7
|
Jeong H, Koh J, Kim S, Yim J, Song SG, Kim H, Li Y, Lee SH, Chung YK, Kim H, Lee CH, Kim HY, Keam B, Lee SH, Chung DH, Jeon YK. Cell-intrinsic PD-L1 signaling drives immunosuppression by myeloid-derived suppressor cells through IL-6/Jak/Stat3 in PD-L1-high lung cancer. J Immunother Cancer 2025; 13:e010612. [PMID: 40050048 PMCID: PMC11887297 DOI: 10.1136/jitc-2024-010612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Some patients with non-small-cell lung cancer (NSCLC) benefit from immune checkpoint inhibitors (ICIs) despite programmed death-ligand 1 (PD-L1) expression. To address the mechanism of ICI resistance in PD-L1-positive NSCLC, we investigated the role of tumor-cell-intrinsic function of PD-L1 in interleukin (IL)-6-mediated immunosuppression. METHODS Cohorts of NSCLC patients treated with ICI and public datasets were analyzed. PD-L1-overexpressing and PD-L1-knockdown NSCLC cells were submitted to RNA-seq, in vitro analyses, chromatin immunoprecipitation-qPCR, CUT&Tag, and biochemical assays. Human myeloid-derived suppressor cells (MDSCs) sorted from peripheral blood mononuclear cells were co-cultured with NSCLC cells and then assessed for their immunosuppressive activity on T-cells. Mouse Lewis lung carcinoma (LLC) cells with PD-L1 overexpression or knockdown were subcutaneously injected into wild-type or PD-1-knockout C57BL/6 mice in the presence of IL-6 and/or PD-1 blockade. RESULTS In the ICI cohort with RNA-seq data, the IL-6/Jak/Stat3 pathway was enriched, and IL-6 expression was higher in patients with PD-L1-high NSCLCs who did not respond to ICIs. In another cohort, a higher baseline serum IL-6 level was associated with poor clinical outcomes after ICI therapy. IL-6 expression and the IL-6/Jak/Stat3 pathway were enhanced in PD-L1-high NSCLCs in the ICI cohorts and The Cancer Genome Atlas analysis. IL-6 expression correlated positively with tumor-infiltrating MDSCs in NSCLCs. In NSCLC cells, PD-L1 activated Jak2/Stat3 signaling by binding to and inhibiting protein tyrosine phosphatase 1B. PD-L1 also bound to p-Stat3 in the nucleus, thus promoting the activity of p-Stat3 in the transcription of several cytokines (IL-6, TGF-β, TNF-α, IL-1β) and chemokines. PD-L1-overexpressing NSCLC cells enhanced the migration and immunosuppressive activity of human MDSCs in vitro, mediated by IL-6 and CXCL1. In both wild-type and PD-1-knockout mice, PD-L1-overexpressing LLC tumors were infiltrated by increased MDSCs with high immunosuppressive function, increased Tregs, and decreased granzyme B+ or IFNγ+ CD8 T-cells. These responses were mediated by IL-6 secreted from PD-L1-overexpressing tumor cells. Combined blockade of PD-1 and IL-6 was effective in tumor control and decreased MDSCs while increasing granzyme B+ or IFNγ+ CD8 T-cells. CONCLUSIONS The tumor-cell-intrinsic function of PD-L1 drives immunosuppression and tumor progression through the PD-L1/Jak/Stat3/IL-6/MDSC axis. This pathway represents a potential therapeutic target to improve ICI efficacy in PD-L1-high NSCLC.
Collapse
Affiliation(s)
- Hyein Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Korea (the Republic of)
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Sehui Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea (the Republic of)
| | - Jeemin Yim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Pathology, Boramae Medical Center, Seoul National University, Seoul, Korea (the Republic of)
| | - Seung Geun Song
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Hanbyeol Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Yingying Li
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Soo Hyun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Yeon Kyu Chung
- Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Hongsoon Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Korea (the Republic of)
| | - Chul-Hwan Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea (the Republic of)
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Gangnam-gu, Korea (the Republic of)
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea (the Republic of)
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Yoon Kyung Jeon
- Cancer Research Institute, Seoul National University, Seoul, Korea (the Republic of)
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Korea (the Republic of)
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- BK21 FOUR Smart Healthcare, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
8
|
Oguni K, Goshima Y, Tatsushima K, Hayashida M, Urakami S, Ito S, Yamazaki Y, Sasano H, Takeuchi Y, Takeshita A. A Rare Case of Interleukin-6-producing Adrenocortical Carcinoma Presenting with a Persistent Fever. Intern Med 2025:4599-24. [PMID: 39894501 DOI: 10.2169/internalmedicine.4599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
A 16-year-old girl presented with a high fever that had persisted for more than 4 weeks. Computed tomography (CT) revealed a 4-cm mass in the left adrenal gland. Clinically, there were no obvious symptoms of adrenal hormone excess; however, serum interleukin-6 (IL-6) and C-reactive protein levels were significantly elevated. After laparoscopic left adrenalectomy, the fever subsided, and her IL-6 level normalized. The tumor was pathologically diagnosed as adrenocortical carcinoma (ACC), with a Weiss score of 5/9. The tumor cells were immunoreactive for IL-6. To our knowledge, this is the first case report of symptomatic IL-6-producing ACC that initially presented with a persistent fever.
Collapse
Affiliation(s)
- Kohei Oguni
- Department of Endocrinology and Metabolism, Toranomon Hospital, Japan
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yukiko Goshima
- Department of Endocrinology and Metabolism, Toranomon Hospital, Japan
| | - Keita Tatsushima
- Department of Endocrinology and Metabolism, Toranomon Hospital, Japan
| | | | | | - Shinji Ito
- Department of Pathology, Toranomon Hospital, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yasuhiro Takeuchi
- Department of Endocrinology and Metabolism, Toranomon Hospital, Japan
- Okinaka Memorial Institute for Medical Research, Japan
| | - Akira Takeshita
- Department of Endocrinology and Metabolism, Toranomon Hospital, Japan
- Okinaka Memorial Institute for Medical Research, Japan
| |
Collapse
|
9
|
Saeheng T, Karbwang J, Na-bangchang K. Immunomodulatory Effects of Atractylodes lancea in Healthy Volunteers with Dosage Prediction for Cholangiocarcinoma Therapy: A Modelling Approach. Pharmaceuticals (Basel) 2025; 18:198. [PMID: 40006012 PMCID: PMC11860138 DOI: 10.3390/ph18020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Aims: According to a recent study on the immunomodulatory activity of Atractylodes lancea (Thunb.) DC. (AL) in healthy Thai subjects, AL significantly inhibited the production of key pro-inflammatory cytokines while stimulating the production of immune cells. However, no maximum tolerated dose (MTD) and phase 2A dosage regimens were reported. The study aimed to evaluate the immunomodulatory effects of Atractylodes lancea (Thunb.) DC. (AL) in healthy subjects, and to recommend optimal dose regimens for intrahepatic cholangiocarcinoma (iCCA) based on toxicity criteria. Methods: A physiologically based pharmacokinetic (PBPK) model, combined with the toxicological approach and the immunomodulatory effect, was used for dose-finding. The safety and efficacy of each AL regimen were evaluated based on the previous study. At least a once-daily dose of 1000 mg AL significantly suppressed the production of all pro-inflammatory cytokines while significantly increasing the number of peripheral immune cells. Results: The developed PBPK model predicted the clinically observed data well. No significant differences in SII index values were found, but a difference in the lymphocyte-monocyte ratio was found on day 4. The dosage regimen for phase 2A is a once-daily dose of 1500 or 2000 mg. Preliminary results in phase 2A revealed that a once-daily dose of 2000 mg had a significantly higher median overall survival, progression-free survival, disease control rate, and inhibition of increased tumor size without toxicities compared with control. Conclusions: A PBPK model, in conjunction with a toxicological approach, could assist in finding the potential dosage regimens for a clinical study, including herbal medicine.
Collapse
Affiliation(s)
- Teerachat Saeheng
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
- Graduate Program in Bioclinical Science, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| | - Kesara Na-bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
- Graduate Program in Bioclinical Science, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4354-4367. [PMID: 39471283 PMCID: PMC11758792 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
| | - Kang-Yun Lee
- Division
of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho
Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division
of Pulmonary Medicine, Department of Internal Medicine, School of
Medicine, College of Medicine, Taipei Medical
University, Taipei 110, Taiwan, R.O.C
- TMU
Research Center for Thoracic Medicine, Taipei
Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia
Biotech LTD., New Taipei City 23561, Taiwan,
R.O.C
| | - Amir Asri Kojabad
- Department
of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- Department
of Power Mechanical Engineering, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
11
|
Gao X, Zhang Z, Ma Y, Hao L, Huang W, Liu Z, Li Y. Mandarin Fish Ranavirus (MRV) Infection Induced Inflammation and Histologic Lesions in the Gut of Mandarin Fish. JOURNAL OF FISH DISEASES 2025; 48:e14029. [PMID: 39460386 DOI: 10.1111/jfd.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Mandarin fish ranavirus (MRV) is widely spread in China and causes huge economic losses to the mandarin fish (Siniperca chuatsi) aquaculture. However, the pathogenesis of MRV is still unclear. In the present study, mandarin fish were artificially infected with MRV, and then different gut compartments from diseased fish were subjected to histologic analysis by H&E staining, quantification of proinflammatory genes and MRV copies by qPCR. MRV-MCP protein expression was assessed using indirect fluorescence assay (IFA) and immunohistochemistry. Proliferation of IgM+ B cells was evaluated by indirect fluorescence assay (IFA). Then, we found that MRV infection caused serious histologic lesions along with inflammatory cell infiltration, especially in the foregut. A significant accumulation of IgM+ B cells was detected in the foregut (~6.5-fold) and hindgut (~3.3-fold), respectively. The expression of inflammation-related genes such as IL-1β, IL-6, IL-8, TNF-α, CSF1r and NCF1 was significantly upregulated in the foregut, varying from ~2.8-fold to ~11.9-fold. In addition, MRV exhibited foregut tropism, according to the investigation of viral loads and MCP protein expression. Overall, our findings indicated that MRV-induced hyperinflammation in the gut eventually led to enteritis. This study provided new insights into uncovering the pathogenesis of MRV infection.
Collapse
Affiliation(s)
- Xinru Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
| | - Ziye Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Perez-Penco M, Byrdal M, Lara de la Torre L, Ballester M, Khan S, Siersbæk M, Lecoq I, Madsen CO, Kjeldsen JW, Svane IM, Hansen M, Donia M, Johansen JS, Olsen LR, Grøntved L, Chen IM, Arnes L, Holmström MO, Andersen MH. The antitumor activity of TGFβ-specific T cells is dependent on IL-6 signaling. Cell Mol Immunol 2025; 22:111-126. [PMID: 39653766 PMCID: PMC11685413 DOI: 10.1038/s41423-024-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/10/2024] [Indexed: 01/01/2025] Open
Abstract
Although interleukin (IL)-6 is considered immunosuppressive and tumor-promoting, emerging evidence suggests that it may support antitumor immunity. While combining immune checkpoint inhibitors (ICIs) and radiotherapy in patients with pancreatic cancer (PC) has yielded promising clinical results, the addition of an anti-IL-6 receptor (IL-6R) antibody has failed to elicit clinical benefits. Notably, a robust TGFβ-specific immune response at baseline in PC patients treated solely with ICIs and radiotherapy correlated with improved survival. Recent preclinical studies demonstrated the efficacy of a TGFβ-based immune modulatory vaccine in controlling PC tumor growth, underscoring the important role of TGFβ-specific immunity in PC. Here, we explored the importance of IL-6 for TGFβ-specific immunity in PC. In a murine model of PC, coadministration of the TGFβ-based immune modulatory vaccine with an anti-IL-6R antibody rendered the vaccine ineffective. IL-6R blockade hampered the development of vaccine-induced T-cells and tumoral T-cell infiltration. Furthermore, it impaired the myeloid population, resulting in increased tumor-associated macrophage infiltration and an enhanced immunosuppressive phenotype. In PC patients, in contrast to those receiving only ICIs and radiotherapy, robust TGFβ-specific T-cell responses at baseline did not correlate with improved survival in patients receiving ICIs, radiotherapy and IL-6R blockade. Peripheral blood immunophenotyping revealed that IL-6R blockade altered the T-cell and monocytic compartments, which was consistent with the findings in the murine model. Our data suggest that the antitumor efficacy of TGFβ-specific T cells in PC depends on the presence of IL-6 within the tumor. Consequently, caution should be exercised when employing IL-6R blockade in patients receiving cancer immunotherapy.
Collapse
Affiliation(s)
- Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mikkel Byrdal
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lucia Lara de la Torre
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marta Ballester
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Majken Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Inés Lecoq
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Cecilie Oelvang Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Luis Arnes
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Shi Y, McKenery A, Dolan M, Mastri M, Hill JW, Dommer A, Benzekry S, Long M, Abrams SI, Puzanov I, Ebos JML. Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors. EMBO Rep 2025; 26:521-559. [PMID: 39663510 PMCID: PMC11772817 DOI: 10.1038/s44319-024-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Collapse
Affiliation(s)
- Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James W Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, USA
| | - Adam Dommer
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sebastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis-Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Faculté de Pharmacie, Aix-Marseille University, Marseille, France
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - John M L Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
14
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
15
|
Chao PH, Chan V, Li SD. Nanomedicines modulate the tumor immune microenvironment for cancer therapy. Expert Opin Drug Deliv 2024; 21:1719-1733. [PMID: 39354745 DOI: 10.1080/17425247.2024.2412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION In recent years, the evolution of immunotherapy as a means to trigger a robust antitumor immune response has revolutionized cancer treatment. Despite its potential, the effectiveness of cancer immunotherapy is hindered by low response rates and significant systemic side effects. Nanotechnology emerges as a promising frontier in shaping the future of cancer immunotherapy. AREAS COVERED This review elucidates the pivotal role of nanomedicine in reshaping the immune tumor microenvironment and explores innovative strategies pursued by diverse research groups to enhance the therapeutic efficacy of cancer immunotherapy. It discusses the hurdles encountered in cancer immunotherapy and the application of nanomedicine for small molecule immune modulators and nucleic acid therapeutics. It also highlights the advancements in DNA and mRNA vaccines facilitated by nanotechnology and outlines future trajectories in this evolving field. EXPERT OPINION Collectively, the integration of nanomedicine into cancer immunotherapy stands as a promising avenue to tackle the intricacies of the immune tumor microenvironment. Innovations such as immune checkpoint inhibitors and cancer vaccines have shown promise. Future developments will likely optimize nanoparticle design through artificial intelligence and create biocompatible, multifunctional nanoparticles, promising more effective, personalized, and durable cancer treatments, potentially transforming the field in the foreseeable future.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Vergara A, De Felice M, Cesaro A, Gragnano F, Pariggiano I, Golia E, De Pasquale A, Blasi E, Fimiani F, Monda E, Limongelli G, Calabrò P. Immune-Checkpoint Inhibitor-Related Myocarditis: Where We Are and Where We Will Go. Angiology 2024; 75:909-920. [PMID: 37699402 DOI: 10.1177/00033197231201929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are specific monoclonal antibodies directed against inhibitory targets of the immune system, mainly represented by programmed death-1 (PD1) ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4), thus enabling an amplified T-cell-mediated immune response against cancer cells. These drugs have significantly improved prognosis in patients with advanced metastatic cancer (e.g., melanoma, non-small cell lung cancer, renal cell carcinoma). However, uncontrolled activation of anti-tumor T-cells could trigger an excessive immune response, possibly responsible for multi-organ damage, including, among others, lymphocytic myocarditis. The incidence of ICIs-induced myocarditis is underestimated and the patients affected are poorly characterized. The diagnosis and management of this condition are mainly based on expert opinion and case reports. EKG and ultrasound are tests that can help identify patients at risk of myocarditis during treatment by red flags, such as QRS complex enlargement and narrowing of global longitudinal strain (GLS). Therapy of ICI-related myocarditis is based on immunosuppressors, monoclonal antibodies and fusion proteins. A future strategy could involve the use of microRNAs. This review considers the current state of the art of immune-related adverse cardiovascular events, focusing on histological and clinical features, diagnosis and management, including current treatments and future pharmacological targets.
Collapse
Affiliation(s)
- Andrea Vergara
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Marco De Felice
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Division of Oncology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Ivana Pariggiano
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Enrica Golia
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Antonio De Pasquale
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Ettore Blasi
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Naples, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| |
Collapse
|
17
|
Håkansson L, Dunér P, Broströmer E, Gustavsson B, Wettergren Y, Ghafouri B, Håkansson A, Clinchy B. A New IL-6-Inducing Mechanism in Cancer with New Therapeutic Possibilities. Cancers (Basel) 2024; 16:3588. [PMID: 39518029 PMCID: PMC11545478 DOI: 10.3390/cancers16213588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Interleukin-6 is dysregulated in multiple pathological conditions, e.g., cancer and inflammatory diseases. Aim: To investigate new mechanisms for the regulation of pathological IL-6 production. Methods: PBMCs (peripheral blood mononuclear cells) stimulated by cancer serum factors or specific peptides produce interleukin-6 (IL-6). Immunoregulatory albumin neo-structures and peptides were identified with 2D gel electrophoresis and MALDI-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) analyses. Il-6 and albumin neo-structures were determined by ELISA (enzyme-linked immunosorbent assay). Results: Conformational changes in normal serum albumin by proteolytic degradation generates an IL-6-inducing neo-structure, IL-6-inducing factor (IL-6IF). This neo-structure is immunogenic which results in the production of autoantibodies. IL-6 production induced by IL-6IF and cancer patient sera is inhibited by specific antibodies. The serum concentration of IL-6IF is significantly higher in advanced cancer stages, and its presence is significantly correlated with the survival of the patients. Conclusions: A new mechanism for the induction IL-6 synthesis is presented. Based on this mechanism, the pathological IL-6 production related to enhanced proteolytic activity can be diagnosed and selectively inhibited by specific antibodies. Such antibodies were identified and purified. Thus, the neo-structure, inducing pathological IL-6 production, associated with a reduced survival of cancer patients, can be selectively removed by the therapeutic administration of antibodies leaving the function of IL-6 needed for the normal activity of the immune system intact.
Collapse
Affiliation(s)
- Leif Håkansson
- Division of Clinical Tumorimmunology, Department of Oncology, University Hospital of Linkoping, 581 85 Linkoping, Sweden
- Therim Diagnostica AB, 236 37 Höllviken, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden
| | | | - Bengt Gustavsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden;
| | - Annika Håkansson
- Department of Oncology, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Birgitta Clinchy
- Department of Clinical and Experimental Medicine, Division of Clinical Immunology, Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
18
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
19
|
van der Laan P, van der Graaf WTA, van den Broek D, van Boven H, Heeres BC, Schrage Y, Haas RL, Steeghs N, van Houdt WJ. Interleukin-6 in relation to early recurrence in primary, localized soft tissue sarcoma: An addition for existing risk classification systems? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108530. [PMID: 39083882 DOI: 10.1016/j.ejso.2024.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Several inflammatory markers have gained interest as prognostic factors for cancer. The aim of this study is to evaluate the inflammatory markers interleukin-6 (IL-6), C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as predictive markers for aggressive behavior and early recurrences in primary, localized soft tissue sarcoma (STS). METHODS 115 STS patients were retrospectively reviewed. IL-6 and CRP blood levels, NLR and PLR were obtained prior to treatment. Early recurrence was defined as disease relapse (local or distant) within the first year after surgery. Cox regression analysis was used to identify prognostic factors for early recurrence. RESULTS IL-6 elevation was associated with a higher tumor grade, increased size, tumor necrosis and a higher mitotic count. NLR elevation was associated with a higher tumor grade, PLR elevation with a larger tumor size. Early recurrences were found in 24 patients (21 %). Univariable analysis revealed that tumor grade (p = 0.029), tumor size (p = 0.030, >10 cm vs < 5 cm), tumor depth (p = 0.036), necrosis on imaging (p = 0.008), mitotic count (p = 0.045, ≥20 mitoses vs 0-9 mitoses), and IL-6 level (p = 0.044) were associated with early recurrence. The factors age at diagnosis, tumor location, necrosis at pathology, (neo)adjuvant radio- or chemotherapy, resection margin, CRP level, NLR and PLR were not related to early disease recurrence. CONCLUSIONS Increased inflammatory markers in STS are associated with an aggressive phenotype. STS patients with elevation of IL-6 may be at risk for early disease recurrence.
Collapse
Affiliation(s)
- P van der Laan
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - W T A van der Graaf
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - D van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H van Boven
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - B C Heeres
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Y Schrage
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R L Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiotherapy, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
O'Hare M, Guidon AC. Peripheral nervous system immune-related adverse events due to checkpoint inhibition. Nat Rev Neurol 2024; 20:509-525. [PMID: 39122934 DOI: 10.1038/s41582-024-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy and are increasingly used to treat a wide range of oncological conditions, with dramatic benefits for many patients. Unfortunately, the resulting increase in T cell effector function often results in immune-related adverse events (irAEs), which can involve any organ system, including the central nervous system (CNS) and peripheral nervous system (PNS). Neurological irAEs involve the PNS in two-thirds of affected patients. Muscle involvement (immune-related myopathy) is the most common PNS irAE and can be associated with neuromuscular junction involvement. Immune-related peripheral neuropathy most commonly takes the form of polyradiculoneuropathy or cranial neuropathies. Immune-related myopathy (with or without neuromuscular junction involvement) often occurs along with immune-related myocarditis, and this overlap syndrome is associated with substantially increased mortality. This Review focuses on PNS adverse events associated with immune checkpoint inhibition. Underlying pathophysiological mechanisms are discussed, including antigen homology between self and tumour, epitope spreading and activation of pre-existing autoreactive T cells. An overview of current approaches to clinical management is provided, including cytokine-directed therapies that aim to decouple anticancer immunity from autoimmunity and emerging treatments for patients with severe (life-threatening) presentations.
Collapse
Affiliation(s)
- Meabh O'Hare
- Brigham and Women's Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
| | - Amanda C Guidon
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Matsumoto H, Fukushima T, Kobayashi N, Higashino Y, Muraoka S, Ohtsu Y, Hirata M, Somekawa K, Kaneko A, Nagasawa R, Kubo S, Tanaka K, Murohashi K, Fujii H, Watanabe K, Horita N, Hara Y, Kaneko T. High red blood cell distribution width attenuates the effectiveness of Immune checkpoint inhibitor therapy: An exploratory study using a clinical data warehouse. PLoS One 2024; 19:e0299760. [PMID: 39088539 PMCID: PMC11293676 DOI: 10.1371/journal.pone.0299760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have improved outcomes in cancer treatment but are also associated with adverse events and financial burdens. Identifying accurate biomarkers is crucial for determining which patients are likely to benefit from ICIs. Current markers, such as PD-L1 expression and tumor mutation burden, exhibit limited predictive accuracy. This study utilizes a Clinical Data Warehouse (CDW) to explore the prognostic significance of novel blood-based factors, such as the neutrophil-to-lymphocyte ratio and red cell distribution width (RDW), to enhance the prediction of ICI therapy benefit. METHODS This retrospective study utilized an exploratory cohort from the CDW that included a variety of cancers to explore factors associated with pembrolizumab treatment duration, validated in a non-small cell lung cancer (NSCLC) patient cohort from electronic medical records (EMR) and CDW. The CDW contained anonymized data on demographics, diagnoses, medications, and tests for cancer patients treated with ICIs between 2017-2022. Logistic regression identified factors predicting ≤2 or ≥5 pembrolizumab doses as proxies for progression-free survival (PFS), and Receiver Operating Characteristic analysis was used to examine their predictive ability. These factors were validated by correlating doses with PFS in the EMR cohort and re-testing their significance in the CDW cohort with other ICIs. This dual approach utilized the CDW for discovery and EMR/CDW cohorts for validating prognostic biomarkers before ICI treatment. RESULTS A total of 609 cases (428 in the exploratory cohort and 181 in the validation cohort) from CDW and 44 cases from EMR were selected for study. CDW analysis revealed that elevated red cell distribution width (RDW) correlated with receiving ≤2 pembrolizumab doses (p = 0.0008), with an AUC of 0.60 for predicting treatment duration. RDW's correlation with PFS (r = 0.80, p<0.0001) and its weak association with RDW (r = -0.30, p = 0.049) were confirmed in the EMR cohort. RDW also remained significant in predicting short treatment duration across various ICIs (p = 0.0081). This dual methodology verified pretreatment RDW elevation as a prognostic biomarker for shortened ICI therapy. CONCLUSION This study suggests the utility of CDWs in identifying prognostic biomarkers for ICI therapy in cancer treatment. Elevated RDW before treatment initiation emerged as a potential biomarker of shorter therapy duration.
Collapse
Affiliation(s)
- Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuuki Higashino
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Ohtsu
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Momo Hirata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sousuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Ota Y, Inagaki R, Nagai Y, Hirose Y, Murata M, Yamamoto S. TLR7 agonist, DSP-0509, with radiation combination therapy enhances anti-tumor activity and modulates T cell dependent immune activation. BMC Immunol 2024; 25:48. [PMID: 39054418 PMCID: PMC11270965 DOI: 10.1186/s12865-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND TLR7 is a key player in the antiviral immunity. TLR7 signaling activates antigen-presenting cells including DCs and macrophages. This activation results in the adaptive immunity including T cells and B cells. Therefore, TLR7 is an important molecule of the immune system. Based on these observations, TLR7 agonists considered to become a therapy weaponize the immune system against cancer. Radiation therapy (RT) is one of the standard cancer therapies and is reported to modulate the tumor immune response. In this study, we aimed to investigate the anti-tumor activity in combination of TLR7 agonist, DSP-0509, with RT and underlying mechanism. RESULT We showed that anti-tumor activity is enhanced by combining RT with the TLR7 agonist DSP-0509 in the CT26, LM8, and 4T1 inoculated mice models. We found that once- weekly (q1w) dosing of DSP-0509 rather than biweekly (q2w) dosing is needed to achieve superior anti-tumor activities in CT26 model. Spleen cells from the mice in RT/DSP-0509 combination treatment group showed increased tumor lytic activity, inversely correlated with tumor volume, as measured by the chromium-release cytotoxicity assay. We also found the level of cytotoxic T lymphocytes (CTLs) increased in the spleens of completely cured mice. When the mice completely cured by combination therapy were re-challenged with CT26 cells, all mice rejected CT26 cells but accepted Renca cells. This rejection was not observed with CD8 depletion. Furthermore, levels of splenic effector memory CD8 T cells were increased in the combination therapy group. To explore the factors responsible for complete cure by combination therapy, we analyzed peripheral blood leukocytes (PBLs) mRNA from completely cured mice. We found that Havcr2low, Cd274low, Cd80high, and Il6low were a predictive signature for the complete response to combination therapy. An analysis of tumor-derived mRNA showed that combination of RT and DSP-0509 strongly increased the expression of anti-tumor effector molecules including Gzmb and Il12. CONCLUSION These data suggest that TLR7 agonist, DSP-0509, can be a promising concomitant when used in combination with RT by upregulating CTLs activity and gene expression of effector molecules. This combination can be an expecting new radio-immunotherapeutic strategy in clinical trials.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan.
| | | | - Yasuhiro Nagai
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Yuko Hirose
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Masashi Murata
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | | |
Collapse
|
23
|
Bjedov S, Stegnjaić G, Stanisavljević S, Lazarević M, Pilipović I, Sakač M, Miljković Đ. Anti-Neuroinflammatory Effects of a Novel Bile Acid Derivative. Int J Mol Sci 2024; 25:7136. [PMID: 39000243 PMCID: PMC11241333 DOI: 10.3390/ijms25137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In the search for novel potent immunomodulatory nuclear factor-erythroid 2 related factor 2 (Nrf2) activators, a derivative of cholic bile acid, SB140, was synthesized. The synthesis of SB140 aimed to increase the electrophilic functionality of the compound, enhancing its ability to activate Nrf2. Effects of SB140 on microglial cells, myeloid-derived cells (MDC), and T cells were explored in the context of (central nervous system) CNS autoimmunity. SB140 potently activated Nrf2 signaling in MDC and microglia. It was efficient in reducing the ability of microglial cells to produce inflammatory nitric oxide, interleukin (IL)-6, and tumor necrosis factor (TNF). Also, SB140 reduced the proliferation of encephalitogenic T cells and the production of their effector cytokines: IL-17 and interferon (IFN)-γ. On the contrary, the effects of SB140 on anti-inflammatory IL-10 production in microglial and encephalitogenic T cells were limited or absent. These results show that SB140 is a potent Nrf2 activator, as well as an immunomodulatory compound. Thus, further research on the application of SB140 in the treatment of neuroinflammatory diseases is warranted. Animal models of multiple sclerosis and other inflammatory neurological disorders will be a suitable choice for such studies.
Collapse
Grants
- 451-03-66/2024-03/200007 Ministry of Science, , Technological Development, and Innovation, Republic of Serbia
- 451-03-66/2024-03/ 200125 Ministry of Science, Technological Development, and Innovation, Republic of Serbia
- 451-03-65/2024-03/200125 Ministry of Science, Technological Development, and Innovation, Republic of Serbia
Collapse
Affiliation(s)
- Srđan Bjedov
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Ivan Pilipović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| |
Collapse
|
24
|
Lu DD, Yuan L, Wang ZZ, Zhao JJ, Du YH, Ning N, Chen GQ, Huang SC, Yang Y, Zhang Z, Nan Y. To explore the mechanism of Yigong San anti-gastric cancer and immune regulation. World J Gastrointest Oncol 2024; 16:1965-1994. [PMID: 38764819 PMCID: PMC11099436 DOI: 10.4251/wjgo.v16.i5.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.
Collapse
Affiliation(s)
- Dou-Dou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Zhao-Zhao Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Jun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Qing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shi-Cong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
25
|
Maiorano BA, Schinzari G, Carbone C, Piro G, Rossi E, Di Maio M, Di Giacomo A, Maiello E. Prognostic role of circulating cytokines and inflammation indexes for avelumab maintenance in metastatic urothelial carcinoma. Front Immunol 2024; 15:1401214. [PMID: 38799450 PMCID: PMC11116647 DOI: 10.3389/fimmu.2024.1401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background Avelumab maintenance after first-line platinum-based chemotherapy represents a cornerstone for the treatment of metastatic urothelial carcinoma (mUC). However, identifying prognostic biomarkers is paramount for optimizing patients' benefits while minimizing toxicity. Cytokines represent circulating mediators of the complex interaction between cancer, the immune system, and inflammation. Inflammation, a hallmark of cancer, can be expressed by circulating factors. In different tumor subtypes, peripheral blood biomarkers, such as circulating cytokines, and systemic inflammatory indexes, have been addressed as potential prognostic factors for immune checkpoint inhibitors. However, their role in mUC still needs to be determined. Methods Between February 2021 and April 2023, we prospectively collected plasma cytokines and inflammation indexes in 28 patients with mUC before starting avelumab as first-line maintenance. The primary endpoint was the relationship between baseline cytokines and inflammatory indexes with the clinical benefit (CB), defined as the number of Responders. Secondary endpoints included the correlation of baseline cytokines and inflammatory indexes with progression-free survival (PFS), overall survival (OS), and the number and grade of immune-related adverse events. Results High pre-treatment levels of interferon (IFN)-γ and interleukin (IL)-2, and low levels of IL-6, IL-8, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and systemic-inflammation index (SII) were associated with clinical benefit and longer survival. In the multivariate analysis, low IL-8, NLR, and SII levels maintained a positive prognostic value for OS. Conclusion Our data suggest that, in mUC patients receiving avelumab, pre-treatment levels of plasma cytokines and inflammatory indexes may serve as potential prognostic biomarkers for response and efficacy. In particular, patients with signs of pre-therapeutic inflammation showed a significantly lower response and survival to avelumab. On the contrary, low systemic inflammation and high levels of cytokines characterized responders and longer survivors.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giovanni Schinzari
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Geny Piro
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | | | - Evaristo Maiello
- Oncology Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
26
|
Liu CR, Li YP, Wang YK, Zhang W, Hao M, Wang WJ, Li T, Dang SS. Peripheral blood T cell and cytokine levels in HBV-related liver disease patients. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:293-301. [DOI: 10.11569/wcjd.v32.i4.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
27
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol 2024; 131:111876. [PMID: 38493688 DOI: 10.1016/j.intimp.2024.111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; Queen Mary School, Nanchang University, 330006 Nanchang, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China
| | - Jingjing Song
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry of Nanchang University, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry of Nanchang University, China
| | - Chulin Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Shuo Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159 Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China.
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China.
| |
Collapse
|
28
|
Pasello G, Fabricio ASC, Del Bianco P, Salizzato V, Favaretto A, Piccin L, Zustovich F, Fabozzi A, De Rossi C, Pigozzo J, De Nuzzo M, Cappelletto E, Bonanno L, Palleschi D, De Salvo GL, Guarneri V, Gion M, Chiarion-Sileni V. Sex-related differences in serum biomarker levels predict the activity and efficacy of immune checkpoint inhibitors in advanced melanoma and non-small cell lung cancer patients. J Transl Med 2024; 22:242. [PMID: 38443899 PMCID: PMC10916307 DOI: 10.1186/s12967-024-04920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Immune Checkpoint Inhibitors (ICIs) lead to durable response and a significant increase in long-term survival in patients with advanced malignant melanoma (MM) and Non-Small Cell Lung Cancer (NSCLC). The identification of serum cytokines that can predict their activity and efficacy, and their sex interaction, could improve treatment personalization. METHODS In this prospective study, we enrolled immunotherapy-naïve patients affected by advanced MM and NSCLC treated with ICIs. The primary endpoint was to dissect the potential sex correlations between serum cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, GM-CSF, MCP-1, TNF-ɑ, IP-10, VEGF, sPD-L1) and the objective response rate (ORR). Secondly, we analyzed biomarker changes during treatment related to ORR, disease control rate (DCR), progression free survival (PFS) and overall survival (OS). Blood samples, collected at baseline and during treatment until disease progression (PD) or up to 2 years, were analyzed using Luminex xMAP or ELLA technologies. RESULTS Serum samples from 161 patients (98 males/63 females; 92 MM/69 NSCLC) were analyzed for treatment response. At baseline, IL-6 was significantly lower in females (F) versus males (M); lower levels of IL-4 in F and of IL-6 in both sexes significantly correlated with a better ORR, while higher IL-4 and TNF-ɑ values were predictive of a lower ORR in F versus M. One hundred and sixty-five patients were evaluable for survival analysis: at multiple Cox regression, an increased risk of PD was observed in F with higher baseline values of IL-4, sPD-L1 and IL-10, while higher IL-6 was a negative predictor in males. In males, higher levels of GM-CSF predict a longer survival, whereas higher IL-1β predicts a shorter survival. Regardless of sex, high baseline IL-8 values were associated with an increased risk of both PD and death, and high IL-6 levels only with shorter OS. CONCLUSIONS Serum IL-1β, IL-4, IL-6, IL-10, GM-CSF, TNF-ɑ, and sPD-L1 had a significant sex-related predictive impact on ORR, PFS and OS in melanoma and NSCLC patients treated with ICIs. These results will potentially pave the way for new ICI combinations, designed according to baseline and early changes of these cytokines and stratified by sex.
Collapse
Affiliation(s)
- Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy.
| | - Aline S C Fabricio
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Adolfo Favaretto
- Medical Oncology Unit, Ca' Foncello Hospital, AULSS 2, Treviso, Italy
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Alessio Fabozzi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mattia De Nuzzo
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Elia Cappelletto
- Regional Center for Biomarkers, Department of Clinical Pathology, AULSS3 Serenissima, Venice, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Dario Palleschi
- Medical Oncology Unit, Ca' Foncello Hospital, AULSS 2, Treviso, Italy
| | - Gian Luca De Salvo
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Massimo Gion
- Regional Center for Biomarkers, Department of Clinical Pathology, AULSS3 Serenissima, Venice, Italy
| | | |
Collapse
|
29
|
Freag MS, Mohammed MT, Kulkarni A, Emam HE, Maremanda KP, Elzoghby AO. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk3074. [PMID: 38416824 PMCID: PMC10901379 DOI: 10.1126/sciadv.adk3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/β-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/β-catenin signaling constitutes a promising approach to augment immunotherapy.
Collapse
Affiliation(s)
- May S. Freag
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Investigative Toxicology, Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Anatomical and Clinical Pathology Department, Tufts Medical Center, Boston, MA, USA
| | - Arpita Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishna P. Maremanda
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ahmed O. Elzoghby
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Saylor PJ, Kozin SV, Matsui A, Goldberg SI, Aoki S, Shigeta K, Mamessier E, Smith MR, Michaelson MD, Lee RJ, Duda DG. The radiopharmaceutical radium-223 has immunomodulatory effects in patients and facilitates anti-programmed death receptor-1 therapy in murine models of bone metastatic prostate cancer. Radiother Oncol 2024; 192:110091. [PMID: 38224917 PMCID: PMC10905770 DOI: 10.1016/j.radonc.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND & PURPOSE Radium-223 (Ra223) improves survival in metastatic prostate cancer (mPC), but its impact on systemic immunity is unclear, and biomarkers of response are lacking. We examined markers of immunomodulatory activity during standard clinical Ra223 and studied the impact of Ra223 on response to immune checkpoint inhibition (ICI) in preclinical models. MATERIALS & METHODS We conducted a single-arm biomarker study of Ra223 in 22 bone mPC patients. We measured circulating immune cell subsets and a panel of cytokines before and during Ra223 therapy and correlated them with overall survival (OS). Using two murine mPC models-orthotopic PtenSmad4-null and TRAMP-C1 grafts in syngeneic immunocompetent mice-we tested the efficacy of combining Ra223 with ICI. RESULTS Above-median level of IL-6 at baseline was associated with a median OS of 358 versus 947 days for below levels; p = 0.044, from the log-rank test. Baseline PlGF and PSA inversely correlated with OS (p = 0.018 and p = 0.037, respectively, from the Cox model). Ra223 treatment was associated with a mild decrease in some peripheral immune cell populations and a shift in the proportion of MDSCs from granulocytic to myeloid. In mice, Ra223 increased the proliferation of CD8+ and CD4+ helper T cells without leading to CD8+ T cell exhaustion in the mPC lesions. In one of the models, combining Ra223 and anti-PD-1 antibody significantly prolonged survival, which correlated with increased CD8+ T cell infiltration in tumor tissue. CONCLUSION The inflammatory cytokine IL-6 and the angiogenic biomarker PlGF at baseline were promising outcome biomarkers after standard Ra223 treatment. In mouse models, Ra223 increased intratumoral CD8+ T cell infiltration and proliferation and could improve OS when combined with anti-PD-1 ICI.
Collapse
Affiliation(s)
- Philip J Saylor
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Sergey V Kozin
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aya Matsui
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saveli I Goldberg
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuichi Aoki
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kohei Shigeta
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emilie Mamessier
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew R Smith
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - M Dror Michaelson
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard J Lee
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Du J, Huang Z, Zhang E. Nomograms confirm serum IL-6 and CRP as predictors of immune checkpoint inhibitor efficacy in unresectable hepatocellular carcinoma. Front Immunol 2024; 15:1329634. [PMID: 38304429 PMCID: PMC10830723 DOI: 10.3389/fimmu.2024.1329634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Background Immunotherapy based on immune checkpoint inhibitors (ICIs) has become the first-line treatment for unresectable hepatocellular carcinoma (uHCC). However, only a small portion of patients are responsive to ICIs. It is important to identify the patients who are likely to benefit from ICIs in clinical practice. We aimed to examine the significance of serum IL-6 and CRP levels in predicting the effectiveness of ICIs for uHCC. Methods We retrospectively recruited 222 uHCC patients who received ICIs treatment (training cohort: 124 patients, validation cohort: 98 patients). In the training cohort, patients are categorized into the response group (R) and no-response group (NR). The levels of serum IL-6 and CRP were compared between the two groups. Internal validation was performed in the validation cohort. Survival analysis was carried out using the Kaplan-Meier method and Cox proportional hazard regression model. The nomograms were developed and assessed using the consistency index (C-index) and calibration curve. Results Serum levels of IL-6 and CRP were significantly lower in the R group than in the NR group (9.94 vs. 36.85 pg/ml, p< 0.001; 9.90 vs. 24.50 mg/L, p< 0.001, respectively). An ROC curve was employed to identify the optimal cut-off values for IL-6 and CRP in both groups, resulting in values of 19.82 pg/ml and 15.50 mg/L, respectively. Multivariate Cox regression analysis revealed that MVI (HR 1.751, 95%CI 1.059-2.894, p=0.029; HR 1.530, 95%CI 0.955-2.451, p=0.077), elevated IL-6 (HR 1.624, 95%CI 1.016-2.596, p=0.043; HR 2.146, 95%CI 1.361-3.383, p =0.001) and high CRP (HR 1.709, 95%CI 1.041-2.807, p=0.034; HR 1.846, 95%CI 1.128-3.022, p = 0.015) were independent risk factors for PFS and OS, even after various confounders adjustments. Nomograms are well-structured and validated prognostic maps constructed from three variables, as MVI, IL6 and CRP. Conclusion Low levels of IL-6 and CRP have a positive correlation with efficacy for uHCC patients receiving ICIs.
Collapse
Affiliation(s)
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Xiao J, Song Y, Gao R, You M, Deng C, Tan G, Li W. Changes of immune microenvironment in head and neck squamous cell carcinoma in 3D-4-culture compared to 2D-4-culture. J Transl Med 2023; 21:771. [PMID: 37907991 PMCID: PMC10617167 DOI: 10.1186/s12967-023-04650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The immune system plays a crucial role in initiating, progressing, and disseminating HNSCC. This study aims to investigate the differences in immune microenvironments between 2D-4-culture and 3D-4-culture models of head and neck squamous cell carcinoma (HNSCC) cells (FaDu), human fibroblasts (HF), human monocytes (THP-1), and human endothelial cells (HUVEC). METHODS For the 3D-4-culture model, FaDu:HF:THP-1 (2:1:1) were inoculated in an ultra-low attachment culture plate, while HUVECs were placed in a transwell chamber. The ordinary culture plate was used for the 2D-4-culture model. Tumor-associated macrophage markers (CD163), tumor-associated fibroblast markers (FAP), and epithelial-mesenchymal transition (EMT) were detected by western blot. Inflammatory cytokines (IL-4, IL-2, CXCL 10, IL-1 β, TNF-α, CCL 2, IL-17 A, IL-6, IL-10, IFN-γ, IL-12 p 70, CXCL 8, TGFβ1) in the supernatant were measured by flow cytometry. HUVEC migration was observed under a microscope. The 3D spheres were stained and observed with a confocal microscope. CCK8 assay was used to detect the resistance of mixed cells to cisplatin in both 2D-4-culture and 3D-4-culture. RESULTS After three days of co-culture, the 3D-4-culture model showed increased expression levels of CD163 and FAP proteins (both P < 0.001), increased expression of E-cadherin protein and N-cadherin protein expression (P < 0.001), decreased expression of vimentin (P < 0.01) and Twist protein (P < 0.001). HUVEC migration significantly increased (P < 0.001), as did the concentrations of IP-10, MCP-1, IL-6, and IL-8 (all P < 0.001). Confocal microscopy showed that 3D-4-culture formed loose cell clusters on day 1, which gradually became a dense sphere surrounded by FaDu cells invading the inside. After co-culturing for 24 h, 48 h, and 72 h, the resistance of mix cells to cisplatin in 3D-4-culture was significantly higher than in 2D-4-culture (P < 0.01 for all). CONCLUSION Compared to 2D-4-culture, 3D-4-culture better simulates the in vivo immune microenvironment of HNSCC by promoting fibroblast transformation into tumor-associated fibroblasts, monocyte transformation into tumor-associated macrophages, enhancing endothelial cell migration ability, partial EMT formation in HNSCC cells, and is more suitable for studying the immunosuppressive microenvironment of HNSCC.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yexun Song
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ru Gao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Mingyang You
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Changxin Deng
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Guolin Tan
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
33
|
Bhattacharya A, Fushimi A, Wang K, Yamashita N, Morimoto Y, Ishikawa S, Daimon T, Liu T, Liu S, Long MD, Kufe D. MUC1-C intersects chronic inflammation with epigenetic reprogramming by regulating the set1a compass complex in cancer progression. Commun Biol 2023; 6:1030. [PMID: 37821650 PMCID: PMC10567710 DOI: 10.1038/s42003-023-05395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Toney NJ, Schlom J, Donahue RN. Phosphoflow cytometry to assess cytokine signaling pathways in peripheral immune cells: potential for inferring immune cell function and treatment response in patients with solid tumors. J Exp Clin Cancer Res 2023; 42:247. [PMID: 37741983 PMCID: PMC10517546 DOI: 10.1186/s13046-023-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/25/2023] Open
Abstract
Tumor biopsy is often not available or difficult to obtain in patients with solid tumors. Investigation of the peripheral immune system allows for in-depth and dynamic profiling of patient immune response prior to and over the course of treatment and disease. Phosphoflow cytometry is a flow cytometry‒based method to detect levels of phosphorylated proteins in single cells. This method can be applied to peripheral immune cells to determine responsiveness of signaling pathways in specific immune subsets to cytokine stimulation, improving on simply defining numbers of populations of cells based on cell surface markers. Here, we review studies using phosphoflow cytometry to (a) investigate signaling pathways in cancer patients' peripheral immune cells compared with healthy donors, (b) compare immune cell function in peripheral immune cells with the tumor microenvironment, (c) determine the effects of agents on the immune system, and (d) predict cancer patient response to treatment and outcome. In addition, we explore the use and potential of phosphoflow cytometry in preclinical cancer models. We believe this review is the first to provide a comprehensive summary of how phosphoflow cytometry can be applied in the field of cancer immunology, and demonstrates that this approach holds promise in exploring the mechanisms of response or resistance to immunotherapy both prior to and during the course of treatment. Additionally, it can help identify potential therapeutic avenues that can restore normal immune cell function and improve cancer patient outcome.
Collapse
Affiliation(s)
- Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y, Zheng T. The present roles and future perspectives of Interleukin-6 in biliary tract cancer. Cytokine 2023; 169:156271. [PMID: 37331095 DOI: 10.1016/j.cyto.2023.156271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Biliary tract cancer (BTC) is a highly malignant tumor that originates from bile duct epithelium and is categorized into intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), distal cholangiocarcinoma (dCCA) and gallbladder cancer (GBC) according to the anatomic location. Inflammatory cytokines generated by chronic infection led to an inflammatory microenvironment which influences the carcinogenesis of BTC. Interleukin-6 (IL-6), a multifunctional cytokine secreted by kupffer cells, tumor-associated macrophages, cancer-associated fibroblasts (CAFs) and cancer cells, plays a central role in tumorigenesis, angiogenesis, proliferation, and metastasis in BTC. Besides, IL-6 serves as a clinical biomarker for diagnosis, prognosis, and monitoring for BTC. Moreover, preclinical evidence indicates that IL-6 antibodies could sensitize tumor immune checkpoint inhibitors (ICIs) by altering the number of infiltrating immune cells and regulating the expression of immune checkpoints in the tumor microenvironment (TME). Recently, IL-6 has been shown to induce programmed death ligand 1 (PD-L1) expression through the mTOR pathway in iCCA. However, the evidence is insufficient to conclude that IL-6 antibodies could boost the immune responses and potentially overcome the resistance to ICIs for BTC. Here, we systematically review the central role of IL-6 in BTC and summarize the potential mechanisms underlying the improved efficacy of treatments combining IL-6 antibodies with ICIs in tumors. Given this, a future direction is proposed for BTC to increase ICIs sensitivity by blocking IL-6 pathways.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ruisi Na
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shihui Lai
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ying Guo
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jianhua Nie
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shuyuan Zhang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Yuan Wang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China.
| |
Collapse
|
36
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
37
|
Shi Y, Ren X, Cao S, Chen X, Yuan B, Brasil da Costa FH, Rodriguez Rosario AE, Corona A, Michikawa C, Veeramachaneni R, Osman AA, Xie T, Wang W, Sikora AG, Myers JN, Rangel R. TP53 gain-of-function mutation modulates the immunosuppressive microenvironment in non-HPV-associated oral squamous cell carcinoma. J Immunother Cancer 2023; 11:e006666. [PMID: 37604640 PMCID: PMC10445354 DOI: 10.1136/jitc-2023-006666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND TP53, the most mutated gene in solid cancers, has a profound impact on most hallmarks of cancer. Somatic TP53 mutations occur in high frequencies in head and neck cancers, including oral squamous cell carcinoma (OSCC). Our study aims to understand the role of TP53 gain-of-function mutation in modulating the tumor immune microenvironment (TIME) in OSCC. METHODS Short hairpin RNA knockdown of mutant p53R172H in syngeneic oral tumors demonstrated changes in tumor growth between immunocompetent and immunodeficient mice. HTG EdgeSeq targeted messenger RNA sequencing was used to analyze cytokine and immune cell markers in tumors with inactivated mutant p53R172H. Flow cytometry and multiplex immunofluorescence (mIF) confirmed the role of mutant p53R172H in the TIME. The gene expression of patients with OSCC was analyzed by CIBERSORT and mIF was used to validate the immune landscape at the protein level. RESULTS Mutant p53R172H contributes to a cytokine transcriptome network that inhibits the infiltration of cytotoxic CD8+ T cells and promotes intratumoral recruitment of regulatory T cells and M2 macrophages. Moreover, p53R172H also regulates the spatial distribution of immunocyte populations, and their distribution between central and peripheral intratumoral locations. Interestingly, p53R172H-mutated tumors are infiltrated with CD8+ and CD4+ T cells expressing programmed cell death protein 1, and these tumors responded to immune checkpoint inhibitor and stimulator of interferon gene 1 agonist therapy. CIBERSORT analysis of human OSCC samples revealed associations between immune cell populations and the TP53R175H mutation, which paralleled the findings from our syngeneic mouse tumor model. CONCLUSIONS These findings demonstrate that syngeneic tumors bearing the TP53R172H gain-of-function mutation modulate the TIME to evade tumor immunity, leading to tumor progression and decreased survival.
Collapse
Affiliation(s)
- Yewen Shi
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyong Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaolong Cao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xi Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yuan
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Alanis E Rodriguez Rosario
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnoldo Corona
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chieko Michikawa
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ratna Veeramachaneni
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenyi Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roberto Rangel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
38
|
Han JW, Jang JW. Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:11799. [PMID: 37511558 PMCID: PMC10380709 DOI: 10.3390/ijms241411799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
A combination of atezolizumab with bevacizumab (AB) is the first regimen that has shown superiority compared to sorafenib and is now being used as the systemic treatment of choice for hepatocellular carcinoma (HCC) patients with Barcelona Liver Cancer Clinic stage C. However, a considerable number of patients do not achieve survival or significant responses, indicating the need to identify predictive biomarkers for initial and on-treatment decisions in HCC patients receiving AB. In this manuscript, we summarized the current data from both experimental and clinical studies. This review will be beneficial for both clinicians and researchers in clinical practice as well as those designing experimental, translational, or clinical studies.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
39
|
Verheijden RJ, van Eijs MJM, May AM, van Wijk F, Suijkerbuijk KPM. Immunosuppression for immune-related adverse events during checkpoint inhibition: an intricate balance. NPJ Precis Oncol 2023; 7:41. [PMID: 37173424 PMCID: PMC10182067 DOI: 10.1038/s41698-023-00380-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed perspectives for patients with cancer, but come with severe immune-related adverse events (irAEs). To prevent fatality or chronicity, these irAEs are often promptly treated with high-dose immunosuppressants. Until recently, evidence on the effects of irAE management on ICI efficacy has been sparse. As a result, algorithms for irAE management are mostly expert-opinion based and barely consider possible detrimental effects of immunosuppressants on ICI efficacy. However, recent growing evidence suggests that vigorous immunosuppressive management of irAEs comes with unfavourable effects on ICI efficacy and survival. With expansion of the indications of ICIs, evidence-based treatment of irAEs without hampering tumour control becomes more and more important. In this review, we discuss novel evidence from pre-clinical and clinical studies on the effects of different irAE management regimens including corticosteroids, TNF inhibition and tocilizumab on cancer control and survival. We provide recommendations for pre-clinical research, cohort studies and clinical trials that can help clinicians in tailored irAE management, minimising patients' burden while maintaining ICI efficacy.
Collapse
Affiliation(s)
- Rik J Verheijden
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Mick J M van Eijs
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Ichinohe D, Muroya T, Akasaka H, Hakamada K. Skeletal muscle mass and quality before preoperative chemotherapy influence postoperative long-term outcomes in esophageal squamous cell carcinoma patients. World J Gastrointest Surg 2023; 15:621-633. [PMID: 37206067 PMCID: PMC10190735 DOI: 10.4240/wjgs.v15.i4.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Previous reports have focused on muscle mass as a prognostic factor in esophageal cancer.
AIM To investigate how preoperative body type influences the prognosis of patients with esophageal squamous cell carcinoma who underwent neoadjuvant chemotherapy (NAC) and surgery.
METHODS The subjects were 131 patients with clinical stage II/III esophageal squamous cell carcinoma who underwent subtotal esophagectomy after NAC. Skeletal muscle mass and quality were calculated based on computed tomography images prior to NAC, and their statistical association with long-term outcomes was examined retrospectively in this case-control study.
RESULTS The disease-free survival rates in the low psoas muscle mass index (PMI) group vs the high PMI group were 41.3% vs 58.8% (P = 0.036), respectively. In the high intramuscular adipose tissue content (IMAC) group vs the low IMAC group, the disease-free survival rates were 28.5% vs 57.6% (P = 0.021), respectively. The overall survival (OS) rates for the low PMI group vs the high PMI group were 41.3% vs 64.5% (P = 0.008), respectively, and for the high IMAC group vs the low IMAC group, they were 29.9% vs 61.9% (P = 0.024), respectively. Analysis of the OS rate revealed significant differences in patients aged 60 years or older (P = 0.018), those with pT3 or above disease (P = 0.021), or those with lymph node metastasis (P = 0.006), aside from PMI and IMAC. Multivariate analysis demonstrated that pT3 or above [hazard ratio (HR): 1.966, 95% confidence interval (CI): 1.089-3.550, P = 0.025), lymph node metastasis (HR: 2.154, 95%CI: 1.118-4.148, P = 0.022), low PMI (HR: 2.266, 95%CI: 1.282-4.006, P = 0.005), and high IMAC (HR: 2.089, 95%CI: 1.036-4.214, P = 0.022) were significant prognostic factors for esophageal squamous cell carcinoma.
CONCLUSION Skeletal muscle mass and quality before NAC in patients with esophageal squamous cell carcinoma are significant prognostic factors for postoperative OS.
Collapse
Affiliation(s)
- Daichi Ichinohe
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 0368562, Aomori, Japan
| | - Takahiro Muroya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 0368562, Aomori, Japan
| | - Harue Akasaka
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 0368562, Aomori, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 0368562, Aomori, Japan
| |
Collapse
|
41
|
de Castro Alves CE, Koidan G, Hurieva AN, de Freitas Gomes A, Costa de Oliveira R, Guimarães Costa A, Ribeiro Boechat AL, Correa de Oliveira A, Zahorulko S, Kostyuk A, Soares Pontes G. Cytotoxic and immunomodulatory potential of a novel [2-(4-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-pyrazol-3-yl)pyridine] in myeloid leukemia. Biomed Pharmacother 2023; 162:114701. [PMID: 37062222 DOI: 10.1016/j.biopha.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer ranks among the leading causes of mortality worldwide. However, the efficacy of commercially available anticancer drugs is compromised by the emerging challenge of drug resistance. This study aimed to investigate the anticancer and immunomodulatory potential of a recently developed a novel [2-(4-(2,5-dimethyl-1 H-pyrrol-1-yl)- 1 H-pyrazol-3-yl) pyridine]. The cytotoxic potential of the compound was assessed using the MTT assay on both cancerous HL60 (acute myeloid leukemia) and K562 (chronic myeloid leukemia) cell lines, as well as non-cancerous Vero cells and human peripheral blood mononuclear cells (PBMCs). A clonogenic assay was employed to evaluate the anticancer efficacy of the compound, while flow cytometry was utilized to investigate its effect on cell cycle arrest. Furthermore, the immunomodulatory potential of the compound was assessed by quantifying inflammatory and anti-inflammatory biomarkers in the supernatant of PBMCs previously treated with the compound. Our study revealed that the novel pyridine ensemble exhibits selective cytotoxicity against HL60 (IC50 = 25.93 µg/mL) and K562 (IC50 = 10.42 µg/mL) cell lines, while displaying no significant cytotoxic effect on non-cancerous cells. In addition, the compound induced a decrease of 18% and 19% in the overall activity of COX-1 and COX-2, respectively. Concurrently, it upregulated the expression of cytokines including IL4, IL6, IL10, and IL12/23p40, while downregulating INFγ expression. These findings suggest that the compound has the potential to serve as a promising candidate for the treatment of acute and chronic myeloid leukemias due to its effective antiproliferative and immunomodulatory activities, without causing cytotoxicity in non-cancerous cells.
Collapse
Affiliation(s)
- Carlos Eduardo de Castro Alves
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Georgyi Koidan
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Anastasiia N Hurieva
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Alice de Freitas Gomes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Regiane Costa de Oliveira
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Allyson Guimarães Costa
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Antônio Luiz Ribeiro Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
| | - André Correa de Oliveira
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Serhii Zahorulko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Gemilson Soares Pontes
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil.
| |
Collapse
|
42
|
Yang H, Kang B, Ha Y, Lee SH, Kim I, Kim H, Lee WS, Kim G, Jung S, Rha SY, Gaillard VE, Cheon J, Kim C, Chon HJ. High serum IL-6 correlates with reduced clinical benefit of atezolizumab and bevacizumab in unresectable hepatocellular carcinoma. JHEP Rep 2023; 5:100672. [PMID: 36866388 PMCID: PMC9972403 DOI: 10.1016/j.jhepr.2023.100672] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023] Open
Abstract
Background & Aims We elucidated the clinical and immunologic implications of serum IL-6 levels in patients with unresectable hepatocellular carcinoma (HCC) treated with atezolizumab and bevacizumab (Ate/Bev). Methods We prospectively enrolled 165 patients with unresectable HCC (discovery cohort: 84 patients from three centres; validation cohort: 81 patients from one centre). Baseline blood samples were analysed using a flow cytometric bead array. The tumour immune microenvironment was analysed using RNA sequencing. Results In the discovery cohort, clinical benefit 6 months (CB6m) was defined as complete or partial response, or stable disease for ≥6 months. Among various blood-based biomarkers, serum IL-6 levels were significantly higher in participants without CB6m than in those with CB6m (mean 11.56 vs. 5.05 pg/ml, p = 0.02). Using maximally selected rank statistics, the optimal cut-off value for high IL-6 was determined as 18.49 pg/ml, and 15.2% of participants were found to have high IL-6 levels at baseline. In both the discovery and validation cohorts, participants with high baseline IL-6 levels had a reduced response rate and worse progression-free and overall survival after Ate/Bev treatment compared with those with low baseline IL-6 levels. In multivariable Cox regression analysis, the clinical implications of high IL-6 levels persisted, even after adjusting for various confounding factors. Participants with high IL-6 levels showed reduced interferon-γ and tumour necrosis factor-α secretion from CD8+ T cells. Moreover, excess IL-6 suppressed cytokine production and proliferation of CD8+ T cells. Finally, participants with high IL-6 levels exhibited a non-T-cell-inflamed immunosuppressive tumour microenvironment. Conclusions High baseline IL-6 levels can be associated with poor clinical outcomes and impaired T-cell function in patients with unresectable HCC after Ate/Bev treatment. Impact and implications Although patients with hepatocellular carcinoma who respond to treatment with atezolizumab and bevacizumab exhibit favourable clinical outcomes, a fraction of these still experience primary resistance. We found that high baseline serum levels of IL-6 correlate with poor clinical outcomes and impaired T-cell response in patients with hepatocellular carcinoma treated with atezolizumab and bevacizumab.
Collapse
Key Words
- AFP, alpha-foetoprotein
- Ate/Bev, atezolizumab and bevacizumab
- Atezolizumab
- BCLC, Barcelona Clinic Liver Cancer
- Bevacizumab
- CB6m, clinical benefit 6 months
- CONSORT, Consolidated Standards of Reporting Trials
- CR, complete response
- CRAFITY, C-reactive protein and AFP in immunotherapy
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- DC, dendritic cell
- ECOG, Eastern Cooperative Oncology Group
- FFPE, formalin-fixed paraffin-embedded
- HCC, hepatocellular carcinoma
- HR, hazard ratio
- Hepatocellular carcinoma
- IFN-γ, interferon-γ
- IL-6
- Immunotherapy
- MDSC, myeloid-derived suppressor cell
- MSI, microsatellite instability
- MVI, macrovascular invasion
- ORR, objective response rate
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PD, progressive disease
- PD-1, programmed-death-1
- PD-L1, programmed-death ligand-1
- PFS, progression-free survival
- PR, partial response
- RECIST, Response Evaluation Criteria in Solid Tumours
- SD, stable disease
- TME, tumour microenvironment
- TNF-α, tumour necrosis factor-α
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Beodeul Kang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
- Yonsei Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeonjung Ha
- Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sung Hwan Lee
- Department of Surgery, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Ilhwan Kim
- Division of Oncology, Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Hyeyeong Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Won Suk Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sanghoon Jung
- Department of Radiology, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sun Young Rha
- Yonsei Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Jaekyung Cheon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Chan Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hong Jae Chon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
43
|
Chen S, Lu K, Hou Y, You Z, Shu C, Wei X, Wu T, Shi N, Zhang G, Wu J, Chen S, Zhang L, Li W, Zhang D, Ju S, Chen M, Xu B. YY1 complex in M2 macrophage promotes prostate cancer progression by upregulating IL-6. J Immunother Cancer 2023; 11:jitc-2022-006020. [PMID: 37094986 PMCID: PMC10152059 DOI: 10.1136/jitc-2022-006020] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages are mainly polarized into the M2 phenotype, remodeling the tumor microenvironment and promoting tumor progression by secreting various cytokines. METHODS Tissue microarray consisting of prostate cancer (PCa), normal prostate, and lymph node metastatic samples from patients with PCa were stained with Yin Yang 1 (YY1) and CD163. Transgenic mice overexpressing YY1 were constructed to observe PCa tumorigenesis. Furthermore, in vivo and in vitro experiments, including CRISPR-Cas9 knock-out, RNA sequencing, chromatin immunoprecipitation (ChIP) sequencing, and liquid-liquid phase separation (LLPS) assays, were performed to investigate the role and mechanism of YY1 in M2 macrophages and PCa tumor microenvironment. RESULTS YY1 was highly expressed in M2 macrophages in PCa and was associated with poorer clinical outcomes. The proportion of tumor-infiltrated M2 macrophages increased in transgenic mice overexpressing YY1. In contrast, the proliferation and activity of anti-tumoral T lymphocytes were suppressed. Treatment targeting YY1 on M2 macrophages using an M2-targeting peptide-modified liposome carrier suppressed PCa cell lung metastasis and generated synergistic anti-tumoral effects with PD-1 blockade. IL-4/STAT6 pathway regulated YY1, and YY1 increased the macrophage-induced PCa progression by upregulating IL-6. Furthermore, by conducting H3K27ac-ChIP-seq in M2 macrophages and THP-1, we found that thousands of enhancers were gained during M2 macrophage polarization, and these M2-specific enhancers were enriched in YY1 ChIP-seq signals. In addition, an M2-specific IL-6 enhancer upregulated IL-6 expression through long-range chromatin interaction with IL-6 promoter in M2 macrophages. During M2 macrophage polarization, YY1 formed an LLPS, in which p300, p65, and CEBPB acted as transcriptional cofactors. CONCLUSIONS Phase separation of the YY1 complex in M2 macrophages upregulated IL-6 by promoting IL-6 enhancer-promoter interactions, thereby increasing PCa progression.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Kai Lu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zonghao You
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoying Wei
- Department of Pathology, Southeast University Zhongda Hospital, Nanjing, China
| | - Tiange Wu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Lihua Zhang
- Department of Pathology, Southeast University Zhongda Hospital, Nanjing, China
| | - Wenchao Li
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Shenghong Ju
- Department of Radiology, Southeast University Zhongda Hospital, Nanjing, China
| | - Ming Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Institute of Medical Phenomics Research, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Ivanenko М, Sorochan P, Kuzmenko О, Hromakova IS. Markers of inflammation in invasive treatment of coloractal cancer liver metastases. УКРАЇНСЬКИЙ РАДІОЛОГІЧНИЙ ТА ОНКОЛОГІЧНИЙ ЖУРНАЛ 2023; 31:70-82. [DOI: 10.46879/ukroj.1.2023.70-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. In 25–30% of patients with colorectal cancer (CRC) who have no visible signs of metastasis at the time of surgery, metastases are detected within 5 years. Among the options for local treatment of metastatic liver lesions in patients with CRC, various resection options and minimally invasive methods, in particular radiofrequency ablation (RFA), occupy a prominent place. The inflammatory response caused by surgery is a factor that can negatively affect the course of tumor disease. The inflammatory responses of the body, as well as markers for their evaluation and prognosis in the treatment of CRC metastases, have not yet been sufficiently studied. Purpose – to study the dynamics of inflammatory markers in the invasive treatment of colorectal cancer liver metastases to select the most informative markers for assessing and predicting the degree of inflammatory response. Materials and methods. Clinical and laboratory examination was carried out in 18 patients with CRC during the treatment of metastases in the liver, adenocarcinoma was determined in all patients during histological examination. The examination was carried out in three stages: the day before RFA or resection, on days 3 and 14 after the intervention. Serum levels of insulin and IL-6 were measured using an enzyme-linked immunosorbent assay, and levels of C-reactive protein and ferritin were determined using an automatic biochemical analyser. Results and discussion. Markers of inflammation in patients with CRC with liver metastases after invasive intervention were identified. A significant increase in the levels of circulating C-reactive protein (CRP), IL-6 and ferritin was detected along with an increase in the insulin resistance index (HOMA-IR) on day 3 after RFA and resection. The increase in IL-6 was 2-fold higher and the HOMA-IR index was 1.5-fold higher after resection compared with RFA. Patients after RFA showed an approach of indicators to baseline values on day 14 of the study, while CRP, ferritin, IL-6 and insulin levels in patients after resection decreased by only 20–30% at the same time same period. This is consistent with other studies. In particular, elevated CRP levels are considered as a risk factor for the appearance and progression of CRC.There is also evidence that in patients with operable CRC, preoperative IL-6 levels affect the risk of recurrence. Strong evidence suggests that ferritin is a key mediator of immune dysregulation through direct immunosuppressive and pro-inflammatory effects. The accumulated data from the literature and our own results suggest the role of CRP, IL-6 and ferritin in postoperative inflammatory states as mediators and biomarkers of the further course of CRС, since their appearance identifies patients with a high risk of mortality, and timely or preventive correction of the inflammatory response improves their survival. Conclusions. The results of the study show that the most informative markers of the level of inflammatory response after RFA or surgical resection are the levels of C-reactive protein, IL-6 and ferritin. Moderate inflammatory reaction is shown in the early stages after RFA and pronounced and longer-lasting reaction after surgical treatment. Prediction, assessment of the degree of inflammatory reaction and the feasibility of anti-inflammatory therapy in the early stages after intervention can be determined by the complex of immunological, haematological and biochemical markers studied by us.
Collapse
|
45
|
Yang S, Qian L, Li Z, Li Y, Bai J, Zheng B, Chen K, Qiu X, Cai G, Wang S, Huang H, Wu J, Zhu Y, Zhangyang Q, Feng L, Wu T, Wu R, Yang A, Wang K, Wang R, Zhang Y, Zhao Y, Wang W, Bao J, Shen S, Hu J, Wu X, Zhou T, Meng Z, Liu W, Wang H, Wang P, Chen L. Integrated Multi-Omics Landscape of Liver Metastases. Gastroenterology 2023; 164:407-423.e17. [PMID: 36574521 DOI: 10.1053/j.gastro.2022.11.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS Lack of thorough knowledge about the complicated immune microenvironment (IM) within a variety of liver metastases (LMs) leads to inappropriate treatment and unsatisfactory prognosis. We aimed to characterize IM subtypes and investigate potential mechanisms in LMs. METHODS Mass cytometry was applied to characterize immune landscape of a primary liver cancers and liver metastases cohort. Transcriptomic and whole-exome sequencing were used to explore potential mechanisms across distinct IM subtypes. Single-cell transcriptomic sequencing, multiplex fluorescent immunohistochemistry, cell culture, mouse model, Western blot, quantitative polymerase chain reaction, and immunohistochemistry were used for validation. RESULTS Five IM subtypes were revealed in 100 LMs and 50 primary liver cancers. Patients featured terminally exhausted (IM1) or rare T-cell-inflamed (IM2 and IM3) immune characteristics showed worse outcome. Increased intratumor heterogeneity, enriched somatic TP53, KRAS, APC, and PIK3CA mutations and hyperactivated hypoxia signaling accounted for the formation of vicious subtypes. SLC2A1 promoted immune suppression and desert via increasing proportion of Spp1+ macrophages and their inhibitory interactions with T cells in liver metastatic lesions. Furthermore, SLC2A1 promoted immune escape and LM through inducing regulatory T cells, including regulatory T cells and LAG3+CD4+ T cells in primary colorectal cancer. CONCLUSIONS The study provided integrated multi-omics landscape of LM, uncovering potential mechanisms for vicious IM subtypes and confirming the roles of SLC2A1 in regulating tumor microenvironment remodeling in both primary tumor and LM lesions.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ling Qian
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixuan Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Ye Li
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Bai
- Berry Oncology Corporation, Beijing, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Kun Chen
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyao Qiu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yanjing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Qianwen Zhangyang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Lanyun Feng
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tong Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Rui Wu
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ruiru Wang
- Berry Oncology Corporation, Beijing, China
| | - Yani Zhang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yan Zhao
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Wenwen Wang
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jinxia Bao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Ji Hu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zhou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China; Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Shanghai China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hongyang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China.
| | - Peng Wang
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lei Chen
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
46
|
Additive Effects of Dietary Supplementation with Zeolite and Methyl-Sulfonyl-Methane on Growth Performance and Interleukin Levels of Broiler Chickens. J Poult Sci 2023; 60:2023003. [PMID: 36756049 PMCID: PMC9884634 DOI: 10.2141/jpsa.2023003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Silicate minerals are common additives in poultry feed. To assess their effects, we added zeolite (ZEO) and methyl-sulfonyl-methane (MSM) to broiler chicken diets. A total of 960 one-day-old Ross broiler chicks were randomly divided into four dietary groups with six replicates. Each broiler was maintained until it reached 35 days of age. A completely randomized 2 × 2 experimental design was used, with two ZEO (0 and 1.0%) and two MSM (0 and 0.10%) levels. We observed an additive effect (P<0.05) on interleukin-2 (IL-2) concentrations in broiler bursa and serum when both ZEO and MSM were present. Both ZEO or MSM produced significant (P<0.05) increases in body weight, weight gain, and feed intake. Both increased IL-2 and IL-6 levels in the bursa and serum. Neither affected the serum concentrations of albumin, AST, cholesterol, HDL cholesterol, glucose, total protein, or triglycerides. In summary, these results support supplementation with ZEO and MSM in broiler diets, both separately and in combination.
Collapse
|
47
|
Xie Y, Shao F, Duan X, Ding J, Ning Y, Sun X, Xia L, Pan J, Chen J, He S, Shen D, Qi C. Whole β-glucan particle attenuates AOM/DSS-induced colorectal tumorigenesis in mice via inhibition of intestinal inflammation. Front Pharmacol 2023; 14:1017475. [PMID: 36713833 PMCID: PMC9877317 DOI: 10.3389/fphar.2023.1017475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Yeast β-glucan is a polysaccharide purified from the Saccharomyces cerevisiae cell wall, and its multiple biological activities are essential for immune regulation. However, the effect of β-glucan on the intestinal immune response during colitis-associated colorectal cancer (CAC) is unclear. Here, we explore the possible role of β-glucan in the development of CAC. Wild type (WT) mice with CAC induced by azoxmethane (AOM) and dextran sodium sulfate (DSS) had fewer tumors than untreated mice after oral β-glucan because of increased antitumor dendritic cells (DCs) in the tumor microenvironment, resulting in more CD8+ T cells and the production of related cytokines. β-glucan also increased resistance to DSS-induced chronic colitis by reshaping the inflammatory microenvironment. These data suggest that β-glucan improves experimental intestinal inflammation and delays the development of CAC. Therefore, β-glucan is feasible for treating chronic colitis and CAC in clinical practice.
Collapse
Affiliation(s)
- Yewen Xie
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Shao
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xuehan Duan
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Ding
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yongling Ning
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiao Sun
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Xia
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Pan
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Chen
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shuyan He
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Dong Shen
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China,*Correspondence: Chunjian Qi, ; Dong Shen,
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,*Correspondence: Chunjian Qi, ; Dong Shen,
| |
Collapse
|
48
|
Pang X, Huang Z, Zhong T, Zhang P, Wang ZM, Xia M, Li B. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. MAbs 2023; 15:2180794. [PMID: 36872527 PMCID: PMC10012886 DOI: 10.1080/19420862.2023.2180794] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Clinical studies have shown that combination therapy of antibodies targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) significantly improves clinical benefit over PD-1 antibody alone. However, broad application of this combination has been limited by toxicities. Cadonilimab (AK104) is a symmetric tetravalent bispecific antibody with a crystallizable fragment (Fc)-null design. In addition to demonstrating biological activity similar to that of the combination of CTLA-4 and PD-1 antibodies, cadonilimab possess higher binding avidity in a high-density PD-1 and CTLA-4 setting than in a low-density PD-1 setting, while a mono-specific anti-PD-1 antibody does not demonstrate this differential activity. With no binding to Fc receptors, cadonilimab shows minimal antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and interleukin-6 (IL-6)/IL-8 release. These features all likely contribute to significantly lower toxicities of cadonilimab observed in the clinic. Higher binding avidity of cadonilimab in a tumor-like setting and Fc-null design may lead to better drug retention in tumors and contribute to better safety while achieving anti-tumor efficacy.
Collapse
Affiliation(s)
- Xinghua Pang
- Research and Development Department, Akeso Biopharma, Inc, Zhongshan, China
| | - Zhaoliang Huang
- Research and Development Department, Akeso Biopharma, Inc, Zhongshan, China
| | - Tingting Zhong
- Research and Development Department, Akeso Biopharma, Inc, Zhongshan, China
| | - Peng Zhang
- Research and Development Department, Akeso Biopharma, Inc, Zhongshan, China
| | | | - Michelle Xia
- Research and Development Department, Akeso Biopharma, Inc, Zhongshan, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma, Inc, Zhongshan, China
| |
Collapse
|
49
|
Gulubova MV, Chonov DC, Ivanova KV, Hristova MK, Krasimirova-Ignatova MM, Vlaykova TI. Intratumoural expression of IL-6/STAT3, IL-17 and FOXP3 immune cells in the immunosuppressive tumour microenvironment of colorectal cancer Immune cells-positive for IL-6, STAT3, IL-17 and FOXP3 and colorectal cancer development. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Dimitur Chavdarov Chonov
- Department of General and Operative Surgery, Trakia University, Medical Faculty, Stara Zagora Bulgaria
- Ward of Operative Surgery, University Hospital “Prof. D-r Stoyan Kirkovich”, Stara Zagora, Bulgaria
| | - Koni Vancho Ivanova
- Department of Pathology, Trakia University, Medical Faculty, Stara Zagora, Bulgaria
| | | | | | - Tatyana Ivanova Vlaykova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
50
|
Liu Y, Xu C, Xiao X, Chen Y, Wang X, Liu W, Tan Y, Zhu W, Hu J, Liang J, Yan G, Lin Y, Cai J. Overcoming resistance to oncolytic virus M1 by targeting PI3K-γ in tumor-associated myeloid cells. Mol Ther 2022; 30:3677-3693. [PMID: 35552024 PMCID: PMC9734023 DOI: 10.1016/j.ymthe.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) have become a category of promising anticancer immunotherapeutic agents over the last decade. However, the fact that many individuals fail to respond to OVs highlights the importance of defining the barely known immunosuppressive mechanisms that lead to treatment resistance. Here we found that the immunosuppression mediated by tumor-associated myeloid cells (TAMCs) directly quenches the antitumor effect of oncolytic virus M1 (OVM). OVM induces myeloid cells to migrate into tumors and strengthens their immunosuppressive phenotypes. Mechanically, tumor cells treated with OVM secrete interleukin-6 (IL-6) to activate the phosphatidylinositol 3-kinase (PI3K)-γ/Akt axis in TAMCs, promoting infiltration of TAMCs and aggravating their inhibition on cytotoxic CD8+ T lymphocytes. Pharmacologically targeting PI3K-γ relieves TAMC-mediated immunosuppression and enhances the efficacy of OVM. Additional treatment with immune checkpoint antibodies eradicates multiple refractory solid tumors and induces potent long-term antitumor immune memory. Our findings indicate that OVM functions as a double-edged sword in antitumor immunity and provide insights into the rationale for liberating T cell-mediated antitumor activity by abolishing TAMC-mediated immunosuppression.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cuiying Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoting Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yinting Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaobo Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaqian Tan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|