1
|
Weidle UH, Nopora A. CircRNAs in Pancreatic Cancer: New Tools for Target Identification and Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:327-349. [PMID: 38944427 PMCID: PMC11215428 DOI: 10.21873/cgp.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
2
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
Microencapsulated islet transplantation alleviates podocyte injury in diabetic nephropathy via inhibiting Notch-1 signaling. Transpl Immunol 2022; 72:101579. [PMID: 35278650 DOI: 10.1016/j.trim.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Podocyte injury has a critical role in the pathogenesis of diabetic nephropathy (DN). Microencapsulated islet transplantation (MIT) is identified as an effective method for improving the clinical condition of DN. This study aimed to explore the role and mechanism of MIT in alleviating podocyte injury in DN. METHODS A mouse model of DN was constructed using streptozotocin (STZ). Mice were divided into 3 groups: the untreated diabetic nephropathy group (DN group), the microencapsulated islet transplantation-treated group (MIT group) and the control group. The mice were raised for 6 weeks posterior to islet transplantation to identify the role of MIT. Renal function and structure of glomerular filtration barrier were assessed by urine analysis, histopathological examination, and transmission electron microscopy. The expression levels of several proteins including Caspase-3, Bcl2/Bax, β-galactosidase, Ki-67, synaptopodin, WT-1, Jagged-1, Notch-1, and Hes-1 in renal tissues were identified via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting techniques. RESULTS Compared with the DN group, the MIT group presented decreased levels of blood glucose, urinary albumin/creatinine, urea nitrogen, and serum creatinine while their body weight gradually increased. Glomerular injury in the MIT group was significantly better than that in the DN group. The MIT group indicated significantly decreased expression of Caspase-3, β-galactosidase, Bax/Bcl-2, and Ki-67 when compared with DN group, while the proportion of synaptopodin- and WT-1-positive cells was significantly increased (P < 0.05). The protein expression of Jagged-1, Notch-1, and Hes-1 in the glomerulus of the MIT group was significantly lower than that in the DN group (P < 0.05). CONCLUSION MIT alleviates podocyte injury induced by DN by inhibiting Notch-1 signaling. The identification of signaling pathways influencing podocyte restoration can help evaluate personalized medicine efficacy for patients treated with islet transplantation.
Collapse
|
4
|
Yehya AHS, Asif M, Abdul Majid AMS, Oon CE. Complementary effects of Orthosiphon stamineus standardized ethanolic extract and rosmarinic acid in combination with gemcitabine on pancreatic cancer. Biomed J 2021; 44:694-708. [PMID: 35166208 PMCID: PMC8847836 DOI: 10.1016/j.bj.2020.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most notorious cancers and is known for its highly invasive characteristics, drug resistance, and metastatic progression. Unfortunately, many patients with advanced pancreatic cancer become insensitive towards gemcitabine treatment. Orthosiphon stamineus (O.s) is used widely as a traditional medicine for the treatment of multiple ailments, including cancer in South East Asia. The present in vitro study was designed to investigate the complementary effects of an ethanolic extract of O.s (Et. O.s) or rosmarinic acid in combination with gemcitabine on Panc-1 pancreatic cancer cells. METHOD Cell viability and colony formation assays were used to determine the 50% inhibitory concentration (IC50) of Et. O.s, rosmarinic acid, and gemcitabine. Different doses of gemcitabine in combination with Et. O.s or rosmarinic acid were tested against Panc-1 to select the best concentrations which possessed synergistic effects. Elucidation of molecular mechanisms responsible for mediating chemo-sensitivity in Panc-1 was performed using Quantitative Real-time PCR (QPCR), flow cytometry and immunohistochemistry. RESULTS Et. O.s was found to significantly sensitise Panc-1 towards gemcitabine by reducing the gene expression of multidrug-resistant protein family (MDR) (MDR-1, MRP-4, and MRP-5) and molecules related to epithelial-mesenchymal transition (ZEB-1 and Snail-1). An induction of the human equilibrate nucleoside transporter-1 (hENT-1) gene was also found in cells treated with Et. O.s-gemcitabine. The Et. O.s-gemcitabine combination induced cellular senescence, cell death and cell cycle arrest in Panc-1. In addition, the inhibition of Notch signalling was demonstrated through the downregulation of Notch 1 intracellular domain in this treatment group. In contrast, rosmarinic acid-gemcitabine combination showed no additional effects on cellular senescence, apoptosis, epithelial mesenchymal transition (EMT) markers, the MRP-4 and MRP-5 multi-drug resistance protein family, hENT-1, and the Notch pathway through Notch 1 intracellular domain. CONCLUSION This study provides valuable insights on the use of Et. O.s to complement gemcitabine in targeting pancreatic cancer in vitro, suggesting its potential use as a novel complementary treatment in pancreatic cancer patients.
Collapse
Affiliation(s)
- Ashwaq H S Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| | - Muhammad Asif
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Pakistan.
| | - Amin M S Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Australia.
| | - Chern E Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
5
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
6
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
7
|
Borlak F, Reutzel-Selke A, Schirmeier A, Gogolok J, von Hoerschelmann E, Sauer IM, Pratschke J, Bahra M, Schmuck RB. Notch Signaling Pathway in Pancreatobiliary Tumors. ACTA ACUST UNITED AC 2021; 57:medicina57020105. [PMID: 33498866 PMCID: PMC7911049 DOI: 10.3390/medicina57020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
Background and Objectives: The Notch signaling pathway plays an important role both in the development of the ductal systems of the pancreas and the bile ducts as well as in cancer development and progression. The aim of this study was to examine the expression of central proteins of the Notch signaling pathway in pancreatobiliary tumors and its influence on patient survival. Materials and Methods: We compared the receptors (Notch1, Notch4), activating splicing factors (ADAM17), and target genes (HES1) of the Notch pathway and progenitor cell markers with relevance for the Notch signaling pathway (CD44, MSI1) between pancreatic adenocarcinomas (PDAC, n = 14), intrahepatic cholangiocarcinoma (iCC, n = 24), and extrahepatic cholangiocarcinoma (eCC, n = 22) cholangiocarcinomas via immunohistochemistry and ImageJ software-assisted analysis. An Immunohistochemistry (IHC)-score was determined by the percentage and intensity of stained (positive) cells (scale 0–7) and normal and malignant tissue was compared. In the IHC results, patients’ (gender, age) and tumor (TNM Classification of Malignant Tumors, Union Internationale contre le Cancer (UICC) stages, grading, and lymphangitic carcinomatosa) characteristics were correlated to patient survival. Results: For eCC, the expression of CD44 (p = 0.043, IHC-score 3.94 vs. 3.54) and for iCC, the expression of CD44 (p = 0.026, IHC-score 4.04 vs. 3.48) and Notch1 (p < 0.001, IHC-score 2.87 vs. 1.78) was significantly higher in the tumor compared to non-malignant tissue. For PDAC, the expression of ADAM17 (p = 0.008, IHC-score 3.43 vs. 1.73), CD44 (p = 0.012, IHC-score 3.64 vs. 2.27), Notch1 (p = 0.012, IHC-score 2.21 vs. 0.64), and Notch4 (p = 0.008, IHC-score 2.86 vs. 0.91) was significantly higher in the tumor tissue. However, none of the analyzed Notch-signaling related components showed an association to patient survival. Conclusion: A significant overexpression of almost all studied components of the Notch signaling pathway can be found in the tumor tissue, however, without a significant influence on patient survival. Therefore, further studies are warranted to draw conclusions on Notch pathway’s relevance for patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rosa B. Schmuck
- Correspondence: ; Tel.: +49-30450652184; Fax: +49-304507652184
| |
Collapse
|
8
|
Saki K, Mansouri V, Asri N, Fathi M, Razzaghi Z. Common and differential features of liver and pancreatic cancers: molecular mechanism approach. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:S87-S93. [PMID: 35154607 PMCID: PMC8817745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/21/2021] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study was to introduce biomarkers commonly involved in pancreatic cancer metastasis to the liver. BACKGROUND The liver is affected by metastatic disease in pancreatic cancer. METHODS Two cancer biomarkers were distinguished through a STRING database protein query. The dysregulated proteins of the two cancers were included in 2 networks drawn by Cytoscape software v 3.2.7. 20 top nodes and achieved by the Network analyzer application of Cytoscape based on degree value. The common hub nodes were determined, and action maps were analyzed. RESULTS Among 20 hubs of each studied cancer, 18 common hub nodes (90% of hubs) were identified and screened by action maps. Four proteins, AKT1, CDKN2A, ERBB2, and IL6, were identified as common central proteins related to the two studied diseases. CONCLUSION AKT1, CDKN2A, ERBB2, and IL6 are common protein core of liver and pancreatic cancers, while STAT3, CASP3, NOTCH1, and CTNNB1 are possible differential proteins to discriminate these cancers.
Collapse
Affiliation(s)
- Kourosh Saki
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Critical Care Quality Improvement Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
10
|
Xu K, Zhang L. Inhibition of TUG1/miRNA-299-3p Axis Represses Pancreatic Cancer Malignant Progression via Suppression of the Notch1 Pathway. Dig Dis Sci 2020; 65:1748-1760. [PMID: 31655908 DOI: 10.1007/s10620-019-05911-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Taurine-upregulated gene 1 (TUG1) is reported to be upregulated and contributes to the progression of Pancreatic cancer (PC) by serving as an oncogene. Our aims were to explore the precise mechanism of TUG1 involved in PC pathogenesis. METHODS TUG1 and miR-299-3p expression profiles were measured by qRT-PCR. The direct interaction between TUG1 and miR-299-3p was explored by luciferase reporter assay. MTT assay, flow cytometry analysis, caspase-3 activity assay, Transwell invasion assay and wound healing assay were performed to evaluate cell proliferative ability, apoptosis, caspase-3 activity, invasion and migration, respectively. Western blot was conducted to examine the expressions of Ki67, Bax, Bcl-2, matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, N-cadherin, Snail, Notch1, Survivin, and CyclinD1. In addition, animal experiments were also implemented. RESULTS TUG1 was highly expressed, while miR-299-3p was underexpressed in PC tissues and PC cells. Furthermore, the significant increase of TUG1 in PC tissues of advanced patients (stage 3/4) was observed compared to patients (stage 1/2). TUG1 was negatively correlated with miR-299-3p expression in PC tissues. Moreover, TUG1 functioned as a molecular sponge of miR-299-3p to repress its expression. TUG1 knockdown suppressed cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT), and induced apoptosis in PC cells, and repressed tumor growth and EMT in PC xenograft models, which were reversed following reintroduction with anti-miR-299-3p. Furthermore, we found that TUG1 silencing inactivated the Notch1 pathway in PC by upregulating miR-299-3p. CONCLUSIONS The results reported that inhibition of TUG1/miR-299-3p axis suppressed PC malignant progression via suppression of the Notch1 pathway.
Collapse
Affiliation(s)
- Ke Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
11
|
Cui M, Cai Z, Awadallah A, Xin W. Uniform and Robust Nuclear Expression of HES1 in Neuroendocrine Neoplasms. Int J Surg Pathol 2019; 27:844-851. [PMID: 31232134 DOI: 10.1177/1066896919854166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction. Neuroendocrine neoplasms (NENs) are neoplasms that most commonly arise from gastrointestinal tract, pancreas, and lung. HES1 is a downstream target of Notch signaling pathway. The current literature about HES1 expression in NENs is sparse and inconsistent. Methods. In this study, we evaluated HES1 expression by immunohistochemistry in a total of 32 cases of NENs, including 13 well-differentiated neuroendocrine tumors from gastrointestinal tract, 10 cases of well-differentiated neuroendocrine tumors of pancreas, 9 cases from lung, including 4 cases of typical carcinoid, 1 case of atypical carcinoid, and 4 cases of neuroendocrine carcinoma. The intensity of the stain was scored from - to +++, and the distribution of the staining of HES1 was evaluated. Results. HES1 demonstrates uniform robust (+++) nuclear staining pattern in the tumor cells of all the NENs (32/32), regardless of the origin of the system and the grade of the tumor. Conclusions. HES1 is uniformly expressed in NENs with robust nuclear expression pattern. Our finding suggests that NOTCH1 or HES1 inhibitor is a potential therapeutic choice for neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Min Cui
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Western Reserve University, Cleveland, OH, USA
| | - Zhenjian Cai
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Western Reserve University, Cleveland, OH, USA
| | - Amad Awadallah
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Wei Xin
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B, Bai X. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: A brief update. Bosn J Basic Med Sci 2018; 18:297-304. [PMID: 30179586 DOI: 10.17305/bjbms.2018.3539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive tumor, often difficult to diagnose and treat. Aspartate β-hydroxylase (ASPH) is a type II transmembrane protein and the member of α-ketoglutarate-dependent dioxygenase family, found to be overexpressed in different cancer types, including PC. ASPH appears to be involved in the regulation of proliferation, invasion and metastasis of PC cells through multiple signaling pathways, suggesting its role as a tumor biomarker and therapeutic target. In this review, we briefly summarize the possible mechanisms of action of ASPH in PC and recent progress in the therapeutic approaches targeting ASPH.
Collapse
Affiliation(s)
- Guofang Hou
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sun J, Zhao F, Zhang W, Lv J, Lv J, Yin A. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J Cell Mol Med 2018; 22:4840-4855. [PMID: 30024097 PMCID: PMC6156290 DOI: 10.1111/jcmm.13747] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
BMSCs are important in replacement therapy of diabetic nephropathy (DN). MiR‐124a exerts effect on the differentiation capability of pancreatic progenitor cells. The objective of this study was to explore the molecular mechanisms, the functions of miR‐124a and bone marrow mesenchymal stem cells (BMSCs) in the treatment of DN. Characterizations of BMSCs were identified using the inverted microscope and flow cytometer. The differentiations of BMSCs were analysed by immunofluorescence assay and DTZ staining. The expression levels of islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes and Notch signalling components were detected using quantitative real‐time reverse transcription PCR (qRT‐PCR) and Western blot assays. The production of insulin secretion was detected by adopting radioimmunoassay. Cell proliferation and apoptosis abilities were detected by CCK‐8, flow cytometry and TUNEL assays. We found that BMSCs was induced into islet‐like cells and that miR‐124a could promote the BMSCs to differentiate into islet‐like cells. BMSCs in combination with miR‐124a regulated islet cell‐specific transcription factors, apoptosis‐related genes, podocytes‐related genes as well as the activity of Notch signalling pathway. However, BMSCs in combination with miR‐124a relieved renal lesion caused by DN and decreased podocyte apoptosis caused by HG. The protective effect of BMSCs in combination with miR‐124a was closely related to the inactivation of Notch signalling pathway. MSCs in combination with miR‐124a protected kidney tissue from impairment and inhibited nephrocyte apoptosis in DN.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Fei Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Zhang
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jia Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Aiping Yin
- Department of Nephrology, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
|
15
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
16
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
17
|
An N, Yang X, Zhang Y, Shi X, Yu X, Cheng S, Zhang K, Wang G. Cell cycle related genes up-regulated in human colorectal development predict the overall survival of late-stage colorectal cancer patients. MOLECULAR BIOSYSTEMS 2016; 12:541-52. [PMID: 26672738 DOI: 10.1039/c5mb00761e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A tumor can be perceived as a special "organ" that undergoes aberrant and poorly regulated organogenesis. Embryonic development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. This intimate association makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Therefore, on the basis of global expression profile, the genes simultaneously activated (up-regulated in terms of expression profile) or suppressed (down-regulated) in both the embryonic development and cancer stage, probably contain profound information on the molecular mechanism of cancer. In this study, the Affymetrix expression profile of 1593 colorectal cancer samples was downloaded from Gene Expression Omnibus. The 1396 differentially expressed probes were robustly obtained using 660 colorectal normal and cancer samples, the expression pattern of which was analyzed using our human colorectal developmental data. All of these 1396 probes were classified into 27 distinct patterns based on their expression patterns during the developmental process. By means of gene set enrichment analysis, we collected 393 V probes simultaneously up-regulated in both development and carcinogenesis and 207 A probes down-regulated in both. Functional enrichment analysis indicated that the V probes were significantly related to cell cycle regulation. Notably, 28 cell-cycle related probes within the V probe group were found to be significantly associated with an overall survival of Stage III/IV patients (GSE17536 cross validation, n = 96, p = 5.70 × 10(-3); GSE29621, n = 36, p = 1.70 × 10(-3); GSE39084, n = 38, p = 0.05; GSE39582, n = 264, p = 0.047; GSE17537, n = 36, p = 5.90 × 10(-3)).
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| | - Xue Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| | - Yueming Zhang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoyu Shi
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| | - Xuexin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2945-2956. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
19
|
Feng L, Tong R, Liu X, Zhang K, Wang G, Zhang L, An N, Cheng S. A network-based method for identifying prognostic gene modules in lung squamous carcinoma. Oncotarget 2016; 7:18006-20. [PMID: 26919109 PMCID: PMC4951267 DOI: 10.18632/oncotarget.7632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/13/2016] [Indexed: 12/23/2022] Open
Abstract
Similarities in gene expression between both developing embryonic and precancerous tissues and cancer tissues may help identify much-needed biomarkers and therapeutic targets in lung squamous carcinoma. In this study, human lung samples representing ten successive time points, from embryonic development to carcinogenesis, were used to construct global gene expression profiles. Differentially expressed genes with similar expression in precancerous and cancer samples were identified. Using a network-based greedy searching algorithm to analyze the training cohort (n = 69) and three independent testing cohorts, we successfully identified a significant 22-gene module in which expression levels were correlated with overall survival in lung squamous carcinoma patients.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Run Tong
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohong Liu
- Department of Gynecology and Obstetrics, Maternal and Child Health Care Hospital of Haidian, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Zhang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
An N, Yang X, Cheng S, Wang G, Zhang K. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer. Sci Rep 2015; 5:18616. [PMID: 26691761 PMCID: PMC4686889 DOI: 10.1038/srep18616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023] Open
Abstract
Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xue Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
21
|
Lim KJ, Brandt WD, Heth JA, Muraszko KM, Fan X, Bar EE, Eberhart CG. Lateral inhibition of Notch signaling in neoplastic cells. Oncotarget 2015; 6:1666-77. [PMID: 25557173 PMCID: PMC4359323 DOI: 10.18632/oncotarget.2762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023] Open
Abstract
During normal development, heterogeneous expression of Notch ligands can result in pathway suppression in the signal-sending cell, a process known as lateral inhibition. It is unclear if an analogous phenomenon occurs in malignant cells. We observed significant induction of Notch ligands in glioblastoma neurospheres and pancreatic carcinoma cells cultured in low oxygen, suggesting that this phenomenon could occur around hypoxic regions. To model lateral inhibition in these tumors, the ligand Jagged1 was overexpressed in glioblastoma and pancreatic carcinoma cells, resulting in overall induction of pathway targets. However, when ligand high and ligand low cells from a single line were co-cultured and then separated, we noted suppression of Notch pathway targets in the former and induction in the latter, suggesting that neoplastic lateral inhibition can occur. We also found that repression of Notch pathway targets in signal-sending cells may occur through the activity of a Notch ligand intracellular domain, which translocates into the nucleus. Understanding how this neoplastic lateral inhibition process functions in cancer cells may be important in targeting ligand driven Notch signaling in solid tumors.
Collapse
Affiliation(s)
- Kah Jing Lim
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, Maryland, USA
| | - William D Brandt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, Maryland, USA
| | - Jason A Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, Michigan, USA
| | - Karin M Muraszko
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, Michigan, USA
| | - Xing Fan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, Michigan, USA
| | - Eli E Bar
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, Maryland, USA.,Department of Neurological Surgery, Case Western University, Cleveland, OH 44106, Ohio, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, Maryland, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, Maryland, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, Maryland, USA
| |
Collapse
|
22
|
Takai E, Yachida S. Genomic alterations in pancreatic cancer and their relevance to therapy. World J Gastrointest Oncol 2015; 7:250-258. [PMID: 26483879 PMCID: PMC4606179 DOI: 10.4251/wjgo.v7.i10.250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/28/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is a highly lethal cancer type, for which there are few viable therapeutic options. But, with the advance of sequencing technologies for global genomic analysis, the landscape of genomic alterations in pancreatic cancer is becoming increasingly well understood. In this review, we summarize current knowledge of genomic alterations in 12 core signaling pathways or cellular processes in pancreatic ductal adenocarcinoma, which is the most common type of malignancy in the pancreas, including four commonly mutated genes and many other genes that are mutated at low frequencies. We also describe the potential implications of these genomic alterations for development of novel therapeutic approaches in the context of personalized medicine.
Collapse
|
23
|
An N, Shi X, Zhang Y, Lv N, Feng L, Di X, Han N, Wang G, Cheng S, Zhang K. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer. PLoS One 2015; 10:e0137171. [PMID: 26325386 PMCID: PMC4556644 DOI: 10.1371/journal.pone.0137171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis), probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan–Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11), and significantly associated with disease-free survival in four datasets (GSE17536, n = 177, p = 0.0018; GSE17537, n = 55, p = 0.016; GSE39582, n = 557, p = 4.4e-05; GSE14333, n = 226, p = 0.032). Cox regression analysis confirmed that the 12-gene signature was an independent factor in predicting colorectal cancer patient’s overall survival (hazard ratio: 1.759; 95% confidence interval: 1.126–2.746; p = 0.013], as well as disease-free survival (hazard ratio: 2.116; 95% confidence interval: 1.324–3.380; p = 0.002).
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Shi
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yueming Zhang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Lv
- Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Naijun Han
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (SC); (KZ)
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (SC); (KZ)
| |
Collapse
|
24
|
Nair G, Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr Opin Genet Dev 2015; 32:171-80. [PMID: 25909383 DOI: 10.1016/j.gde.2015.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
The Islets of Langerhans are crucial 'micro-organs' embedded in the glandular exocrine pancreas that regulate nutrient metabolism. They not only synthesize, but also secrete endocrine hormones in a modulated fashion in response to physiologic metabolic demand. These highly sophisticated structures with intricate organization of multiple cell types, namely endocrine, vascular, neuronal and mesenchymal cells, have evolved to perform this task to perfection over time. Not surprisingly, islet architecture and function are dissimilar between humans and typically studied model organisms, such as rodents and zebrafish. Further, recent findings also suggest noteworthy differences in human islet development from that in mouse, including delayed appearance and gradual resolution of key differentiation markers, a single-phase of endocrine differentiation, and prenatal association of developing islets with neurovascular milieu. In light of these findings, it is imperative that a systematic study is undertaken to compare islet development between human and mouse. Illuminating inter-species differences in islet development will likely be critical in furthering our pursuit to generate an unlimited supply of truly functional and fully mature β-cells from human pluripotent stem cell (hPSC) sources for therapeutic purposes.
Collapse
Affiliation(s)
- Gopika Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A 2014; 21:14-25. [PMID: 24943736 DOI: 10.1089/ten.tea.2014.0013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell-cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis.
Collapse
Affiliation(s)
- Maria Jaramillo
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh , Pennsylvania
| | | | | | | | | |
Collapse
|
26
|
Samore WR, Gondi CS. Brief overview of selected approaches in targeting pancreatic adenocarcinoma. Expert Opin Investig Drugs 2014; 23:793-807. [PMID: 24673265 DOI: 10.1517/13543784.2014.902933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic adenocarcinoma (PDAC) has the worst prognosis of any major malignancy, with 5-year survival painfully inadequate at under 5%. Investigators have struggled to target and exploit PDAC unique biology, failing to bring meaningful results from bench to bedside. Nonetheless, in recent years, several promising targets have emerged. AREAS COVERED This review will discuss novel drug approaches in development for use in PDAC. The authors examine the continued efforts to target Kirsten rat sarcoma viral oncogene homolog (KRas), which have recently been successfully abated using novel small interfering RNA (siRNA) eluting devices. The authors also discuss other targets relevant to PDAC including those downstream of mutated KRas, such as MAPK kinase and phosphatidylinositol 3-kinase. EXPERT OPINION Although studies into novel biomarkers and advanced imaging have highlighted the potential new avenues toward discovering localized tumors earlier, the current therapeutic options highlight the fact that PDAC is a highly metastatic and chemoresistant cancer that often must be fought with virulent, systemic therapies. Several newer approaches, including siRNA targeting of mutated KRas and enzymatic depletion of hyaluronan with PEGylated hyaluronidase are particularly exciting given their early stage results. Further research should help in elucidating their potential impact as therapeutic options.
Collapse
Affiliation(s)
- Wesley R Samore
- M3 student, University of Illinois College of Medicine , One Illini Drive Peoria, IL 61605 , USA
| | | |
Collapse
|
27
|
Schiavone M, Rampazzo E, Casari A, Battilana G, Persano L, Moro E, Liu S, Leach SD, Tiso N, Argenton F. Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis Model Mech 2014; 7:883-94. [PMID: 24878567 PMCID: PMC4073277 DOI: 10.1242/dmm.014969] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of genes involved in the specific signaling pathways. To examine in vivo the effects of KRASG12D during pancreatic cancer progression and time correlation with cancer signaling pathway activities, we have generated a zebrafish model of pancreatic adenocarcinoma in which eGFP-KRASG12D expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic KRASG12D line with transgenic zebrafish reporters, harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGFβ, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-KRASG12D showed normal exocrine pancreas development until 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degrees of acinar lesions, characterized by an increase in mesenchymal cells and mixed acinar/ductal features, followed by progressive bowel and liver infiltrations and, finally, highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of KRAS-positive cells and progressive activation of TGFβ and Notch pathways. Increase in TGFβ, following KRASG12D activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma, indicating a tissue-specific regulation of cell signaling pathways. Moreover, our results show that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool for describing in vivo the signaling cascades and molecular mechanisms involved in tumor development and a potential platform to screen for novel oncostatic drugs.
Collapse
Affiliation(s)
- Marco Schiavone
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Elena Rampazzo
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | | | - Giusy Battilana
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Luca Persano
- Department of Woman and Child Health, University of Padua, 35131 Padua, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Shu Liu
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steve D Leach
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | |
Collapse
|
28
|
Fang Y, Yao Q, Chen Z, Xiang J, William FE, Gibbs RA, Chen C. Genetic and molecular alterations in pancreatic cancer: implications for personalized medicine. Med Sci Monit 2013; 19:916-26. [PMID: 24172537 PMCID: PMC3818103 DOI: 10.12659/msm.889636] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer.
Collapse
Affiliation(s)
- Yantian Fang
- Molecular Surgeon Research Center, Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, U.S.A. and Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|