1
|
Labaki C, Uche-Anya EN, Berzin TM. Artificial Intelligence in Gastrointestinal Endoscopy. Gastroenterol Clin North Am 2024; 53:773-786. [PMID: 39489586 DOI: 10.1016/j.gtc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Recent advancements in artificial intelligence (AI) have significantly impacted the field of gastrointestinal (GI) endoscopy, with applications spanning a wide range of clinical indications. The central goals for AI in GI endoscopy are to improve endoscopic procedural performance and quality assessment, optimize patient outcomes, and reduce administrative burden. Despite early progress, such as Food and Drug Administration approval of the first computer-aided polyp detection system in 2021, there are numerous important challenges to be faced on the path toward broader adoption of AI algorithms in clinical endoscopic practice.
Collapse
Affiliation(s)
- Chris Labaki
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 300 Brookline Avenue, Boston, MA, USA
| | - Eugenia N Uche-Anya
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Tyler M Berzin
- Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA.
| |
Collapse
|
2
|
Chang S, Krzyzanowska H, Bowden AK. Label-Free Optical Technologies to Enhance Noninvasive Endoscopic Imaging of Early-Stage Cancers. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:289-311. [PMID: 38424030 DOI: 10.1146/annurev-anchem-061622-014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
White light endoscopic imaging allows for the examination of internal human organs and is essential in the detection and treatment of early-stage cancers. To facilitate diagnosis of precancerous changes and early-stage cancers, label-free optical technologies that provide enhanced malignancy-specific contrast and depth information have been extensively researched. The rapid development of technology in the past two decades has enabled integration of these optical technologies into clinical endoscopy. In recent years, the significant advantages of using these adjunct optical devices have been shown, suggesting readiness for clinical translation. In this review, we provide an overview of the working principles and miniaturization considerations and summarize the clinical and preclinical demonstrations of several such techniques for early-stage cancer detection. We also offer an outlook for the integration of multiple technologies and the use of computer-aided diagnosis in clinical endoscopy.
Collapse
Affiliation(s)
- Shuang Chang
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Halina Krzyzanowska
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Audrey K Bowden
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Halvorsen N, Mori Y. Computer-aided polyp characterization in colonoscopy: sufficient performance or not? Clin Endosc 2024; 57:18-23. [PMID: 38178329 PMCID: PMC10834281 DOI: 10.5946/ce.2023.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 01/06/2024] Open
Abstract
Computer-assisted polyp characterization (computer-aided diagnosis, CADx) facilitates optical diagnosis during colonoscopy. Several studies have demonstrated high sensitivity and specificity of CADx tools in identifying neoplastic changes in colorectal polyps. To implement CADx tools in colonoscopy, there is a need to confirm whether these tools satisfy the threshold levels that are required to introduce optical diagnosis strategies such as "diagnose-and-leave," "resect-and-discard" or "DISCARD-lite." In this article, we review the available data from prospective trials regarding the effect of multiple CADx tools and discuss whether they meet these thresholds.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
4
|
Ding M, Yan J, Chao G, Zhang S. Application of artificial intelligence in colorectal cancer screening by colonoscopy: Future prospects (Review). Oncol Rep 2023; 50:199. [PMID: 37772392 DOI: 10.3892/or.2023.8636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/30/2023] Open
Abstract
Colorectal cancer (CRC) has become a severe global health concern, with the third‑high incidence and second‑high mortality rate of all cancers. The burden of CRC is expected to surge to 60% by 2030. Fortunately, effective early evidence‑based screening could significantly reduce the incidence and mortality of CRC. Colonoscopy is the core screening method for CRC with high popularity and accuracy. Yet, the accuracy of colonoscopy in CRC screening is related to the experience and state of operating physicians. It is challenging to maintain the high CRC diagnostic rate of colonoscopy. Artificial intelligence (AI)‑assisted colonoscopy will compensate for the above shortcomings and improve the accuracy, efficiency, and quality of colonoscopy screening. The unique advantages of AI, such as the continuous advancement of high‑performance computing capabilities and innovative deep‑learning architectures, which hugely impact the control of colorectal cancer morbidity and mortality expectancy, highlight its role in colonoscopy screening.
Collapse
Affiliation(s)
- Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310000, P.R. China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310000, P.R. China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
5
|
Vadhwana B, Tarazi M, Patel V. The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3267. [PMID: 37892088 PMCID: PMC10606449 DOI: 10.3390/diagnostics13203267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Artificial intelligence (AI) presents a novel platform for improving disease diagnosis. However, the clinical utility of AI remains limited to discovery studies, with poor translation to clinical practice. Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of colorectal cancers are missed during colonoscopies. The primary aim of this study was to explore the role of artificial intelligence in real-time histological prediction of colorectal lesions during colonoscopy. A systematic search using MeSH headings relating to "AI", "machine learning", "computer-aided", "colonoscopy", and "colon/rectum/colorectal" identified 2290 studies. Thirteen studies reporting real-time analysis were included. A total of 2958 patients with 5908 colorectal lesions were included. A meta-analysis of six studies reporting sensitivities (95% CI) demonstrated that endoscopist diagnosis was superior to a computer-assisted detection platform, although no statistical significance was reached (p = 0.43). AI applications have shown encouraging results in differentiating neoplastic and non-neoplastic lesions using narrow-band imaging, white light imaging, and blue light imaging. Other modalities include autofluorescence imaging and elastic scattering microscopy. The current literature demonstrates that despite the promise of new endoscopic AI models, they remain inferior to expert endoscopist diagnosis. There is a need to focus developments on real-time histological predictions prior to clinical translation to demonstrate improved diagnostic capabilities and time efficiency.
Collapse
Affiliation(s)
- Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Vanash Patel
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
- West Hertfordshire Hospital NHS Trust, Vicarage Road, Watford WD18 0HB, UK
| |
Collapse
|
6
|
Maida M, Marasco G, Facciorusso A, Shahini E, Sinagra E, Pallio S, Ramai D, Murino A. Effectiveness and application of artificial intelligence for endoscopic screening of colorectal cancer: the future is now. Expert Rev Anticancer Ther 2023; 23:719-729. [PMID: 37194308 DOI: 10.1080/14737140.2023.2215436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) in gastrointestinal endoscopy includes systems designed to interpret medical images and increase sensitivity during examination. This may be a promising solution to human biases and may provide support during diagnostic endoscopy. AREAS COVERED This review aims to summarize and evaluate data supporting AI technologies in lower endoscopy, addressing their effectiveness, limitations, and future perspectives. EXPERT OPINION Computer-aided detection (CADe) systems have been studied with promising results, allowing for an increase in adenoma detection rate (ADR), adenoma per colonoscopy (APC), and a reduction in adenoma miss rate (AMR). This may lead to an increase in the sensitivity of endoscopic examinations and a reduction in the risk of interval-colorectal cancer. In addition, computer-aided characterization (CADx) has also been implemented, aiming to distinguish adenomatous and non-adenomatous lesions through real-time assessment using advanced endoscopic imaging techniques. Moreover, computer-aided quality (CADq) systems have been developed with the aim of standardizing quality measures in colonoscopy (e.g. withdrawal time and adequacy of bowel cleansing) both to improve the quality of examinations and set a reference standard for randomized controlled trials.
Collapse
Affiliation(s)
- Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", Castellana Grotte, Bari, Italy
| | - Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalu, Italy
| | - Socrate Pallio
- Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital, University of Messina, Messina, Italy
| | - Daryl Ramai
- Gastroenterology & Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Alberto Murino
- Royal Free Unit for Endoscopy, The Royal Free Hospital and University College London Institute for Liver and Digestive Health, Hampstead, London, UK
- Department of Gastroenterology, Cleveland Clinic London, London, UK
| |
Collapse
|
7
|
Sharma A, Kumar R, Yadav G, Garg P. Artificial intelligence in intestinal polyp and colorectal cancer prediction. Cancer Lett 2023; 565:216238. [PMID: 37211068 DOI: 10.1016/j.canlet.2023.216238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Artificial intelligence (AI) algorithms and their application to disease detection and decision support for healthcare professions have greatly evolved in the recent decade. AI has been widely applied and explored in gastroenterology for endoscopic analysis to diagnose intestinal cancers, premalignant polyps, gastrointestinal inflammatory lesions, and bleeding. Patients' responses to treatments and prognoses have both been predicted using AI by combining multiple algorithms. In this review, we explored the recent applications of AI algorithms in the identification and characterization of intestinal polyps and colorectal cancer predictions. AI-based prediction models have the potential to help medical practitioners diagnose, establish prognoses, and find accurate conclusions for the treatment of patients. With the understanding that rigorous validation of AI approaches using randomized controlled studies is solicited before widespread clinical use by health authorities, the article also discusses the limitations and challenges associated with deploying AI systems to diagnose intestinal malignancies and premalignant lesions.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, 160062, Punjab, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, 226010, India; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, 226010, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, 160062, Punjab, India.
| |
Collapse
|
8
|
Gimeno-García AZ, Hernández-Pérez A, Nicolás-Pérez D, Hernández-Guerra M. Artificial Intelligence Applied to Colonoscopy: Is It Time to Take a Step Forward? Cancers (Basel) 2023; 15:cancers15082193. [PMID: 37190122 DOI: 10.3390/cancers15082193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Growing evidence indicates that artificial intelligence (AI) applied to medicine is here to stay. In gastroenterology, AI computer vision applications have been stated as a research priority. The two main AI system categories are computer-aided polyp detection (CADe) and computer-assisted diagnosis (CADx). However, other fields of expansion are those related to colonoscopy quality, such as methods to objectively assess colon cleansing during the colonoscopy, as well as devices to automatically predict and improve bowel cleansing before the examination, predict deep submucosal invasion, obtain a reliable measurement of colorectal polyps and accurately locate colorectal lesions in the colon. Although growing evidence indicates that AI systems could improve some of these quality metrics, there are concerns regarding cost-effectiveness, and large and multicentric randomized studies with strong outcomes, such as post-colonoscopy colorectal cancer incidence and mortality, are lacking. The integration of all these tasks into one quality-improvement device could facilitate the incorporation of AI systems in clinical practice. In this manuscript, the current status of the role of AI in colonoscopy is reviewed, as well as its current applications, drawbacks and areas for improvement.
Collapse
Affiliation(s)
- Antonio Z Gimeno-García
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Anjara Hernández-Pérez
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - David Nicolás-Pérez
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Manuel Hernández-Guerra
- Gastroenterology Department, Hospital Universitario de Canarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB) & Centro de Investigación Biomédica de Canarias (CIBICAN), Internal Medicine Department, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Awidi M, Bagga A. Artificial intelligence and machine learning in colorectal cancer. Artif Intell Gastrointest Endosc 2022; 3:31-43. [DOI: 10.37126/aige.v3.i3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
|
10
|
Current Status and Future Perspectives of Artificial Intelligence in Colonoscopy. J Clin Med 2022; 11:jcm11102923. [PMID: 35629049 PMCID: PMC9143862 DOI: 10.3390/jcm11102923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
The early endoscopic identification, resection, and treatment of precancerous adenoma and early-stage cancer has been shown to reduce not only the prevalence of colorectal cancer but also its mortality rate. Recent advances in endoscopic devices and imaging technology have dramatically improved our ability to detect colorectal lesions and predict their pathological diagnosis. In addition to this, rapid advances in artificial intelligence (AI) technology mean that AI-related research and development is now progressing in the diagnostic imaging field, particularly colonoscopy, and AIs (i.e., devices that mimic cognitive abilities, such as learning and problem-solving) already approved as medical devices are now being introduced into everyday clinical practice. Today, there is an increasing expectation that sophisticated AIs will be able to provide high-level diagnostic performance irrespective of the level of skill of the endoscopist. In this paper, we review colonoscopy-related AI research and the AIs that have already been approved and discuss the future prospects of this technology.
Collapse
|
11
|
Minchenberg SB, Walradt T, Glissen Brown JR. Scoping out the future: The application of artificial intelligence to gastrointestinal endoscopy. World J Gastrointest Oncol 2022; 14:989-1001. [PMID: 35646286 PMCID: PMC9124983 DOI: 10.4251/wjgo.v14.i5.989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a quickly expanding field in gastrointestinal endoscopy. Although there are a myriad of applications of AI ranging from identification of bleeding to predicting outcomes in patients with inflammatory bowel disease, a great deal of research has focused on the identification and classification of gastrointestinal malignancies. Several of the initial randomized, prospective trials utilizing AI in clinical medicine have centered on polyp detection during screening colonoscopy. In addition to work focused on colorectal cancer, AI systems have also been applied to gastric, esophageal, pancreatic, and liver cancers. Despite promising results in initial studies, the generalizability of most of these AI systems have not yet been evaluated. In this article we review recent developments in the field of AI applied to gastrointestinal oncology.
Collapse
Affiliation(s)
- Scott B Minchenberg
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02130, United States
| | - Trent Walradt
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02130, United States
| | - Jeremy R Glissen Brown
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02130, United States
| |
Collapse
|
12
|
Abstract
Artificial intelligence (AI) is rapidly developing in various medical fields, and there is an increase in research performed in the field of gastrointestinal (GI) endoscopy. In particular, the advent of convolutional neural network, which is a class of deep learning method, has the potential to revolutionize the field of GI endoscopy, including esophagogastroduodenoscopy (EGD), capsule endoscopy (CE), and colonoscopy. A total of 149 original articles pertaining to AI (27 articles in esophagus, 30 articles in stomach, 29 articles in CE, and 63 articles in colon) were identified in this review. The main focuses of AI in EGD are cancer detection, identifying the depth of cancer invasion, prediction of pathological diagnosis, and prediction of Helicobacter pylori infection. In the field of CE, automated detection of bleeding sites, ulcers, tumors, and various small bowel diseases is being investigated. AI in colonoscopy has advanced with several patient-based prospective studies being conducted on the automated detection and classification of colon polyps. Furthermore, research on inflammatory bowel disease has also been recently reported. Most studies of AI in the field of GI endoscopy are still in the preclinical stages because of the retrospective design using still images. Video-based prospective studies are needed to advance the field. However, AI will continue to develop and be used in daily clinical practice in the near future. In this review, we have highlighted the published literature along with providing current status and insights into the future of AI in GI endoscopy.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastroenterology, Tonan Hospital, Sapporo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
13
|
Larsen SLV, Mori Y. Artificial intelligence in colonoscopy: A review on the current status. DEN OPEN 2022; 2:e109. [PMID: 35873511 PMCID: PMC9302306 DOI: 10.1002/deo2.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
Artificial intelligence has become an increasingly hot topic in the last several years, and it has also gained its way into the medical field. In recent years, the application of artificial intelligence in the gastroenterology field has been of increasing interest, particularly in the colonoscopy setting. Novel technologies such as deep neural networks have enabled real‐time computer‐aided polyp detection and diagnosis during colonoscopy. This might lead to increased performance of endoscopists as well as potentially reducing the costs of unnecessary polypectomies of hyperplastic polyps. Newly published prospective trials studying computer‐aided detection showed that the assistance of artificial intelligence significantly increased the detection of polyps and non‐advanced adenomas approximately by 10%, while three tandem randomized control trials proved that the adenoma miss rate was significantly reduced (e.g., 13.8% vs. 36.7% in one Japanese multicenter trial). Promising results have also been shown in prospective single‐arm trials on computer‐aided polyp diagnosis, but the evidence is insufficient to reach a conclusion.
Collapse
Affiliation(s)
- Solveig Linnea Veen Larsen
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo Oslo Norway.,Department of Transplantation Medicine, Oslo University Hospital University of Oslo Oslo Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo Oslo Norway.,Department of Transplantation Medicine, Oslo University Hospital University of Oslo Oslo Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital Kanagawa Japan
| |
Collapse
|
14
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
15
|
Sterkenburg AJ, Hooghiemstra WTR, Schmidt I, Ntziachristos V, Nagengast WB, Gorpas D. Standardization and implementation of fluorescence molecular endoscopy in the clinic. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210302SS-PERR. [PMID: 35170264 PMCID: PMC8847121 DOI: 10.1117/1.jbo.27.7.074704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. AIM We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. CONCLUSION There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation.
Collapse
Affiliation(s)
- Andrea J. Sterkenburg
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Iris Schmidt
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Wouter B. Nagengast
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dimitris Gorpas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| |
Collapse
|
16
|
Rodriguez-Diaz E, Jepeal LI, Baffy G, Lo WK, MashimoMD H, A'amar O, Bigio IJ, Singh SK. Artificial Intelligence-Based Assessment of Colorectal Polyp Histology by Elastic-Scattering Spectroscopy. Dig Dis Sci 2022; 67:613-621. [PMID: 33761089 DOI: 10.1007/s10620-021-06901-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Colonoscopic screening and surveillance for colorectal cancer could be made safer and more efficient if endoscopists could predict histology without the need to biopsy and perform histopathology on every polyp. Elastic-scattering spectroscopy (ESS), using fiberoptic probes integrated into standard biopsy tools, can assess, both in vivo and in real time, the scattering and absorption properties of tissue related to its underlying pathology. AIMS The objective of this study was to evaluate prospectively the potential of ESS to predict polyp pathology accurately. METHODS We obtained ESS measurements from patients undergoing screening/surveillance colonoscopy using an ESS fiberoptic probe integrated into biopsy forceps. The integrated forceps were used for tissue acquisition, following current standards of care, and optical measurement. All measurements were correlated to the index pathology. A machine learning model was then applied to measurements from 367 polyps in 169 patients to prospectively evaluate its predictive performance. RESULTS The model achieved sensitivity of 0.92, specificity of 0.87, negative predictive value (NPV) of 0.87, and high-confidence rate (HCR) of 0.84 for distinguishing 220 neoplastic polyps from 147 non-neoplastic polyps of all sizes. Among 138 neoplastic and 131 non-neoplastic polyps ≤ 5 mm, the model achieved sensitivity of 0.91, specificity of 0.88, NPV of 0.89, and HCR of 0.83. CONCLUSIONS Results show that ESS is a viable endoscopic platform for real-time polyp histology, particularly for polyps ≤ 5 mm. ESS is a simple, low-cost, clinically friendly, optical biopsy modality that, when interfaced with minimally obtrusive endoscopic tools, offers an attractive platform for in situ polyp assessment.
Collapse
Affiliation(s)
- Eladio Rodriguez-Diaz
- Research Service, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Lisa I Jepeal
- Research Service, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA
| | - György Baffy
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA
| | - Wai-Kit Lo
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA
| | - Hiroshi MashimoMD
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA
| | - Ousama A'amar
- Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.,Department of Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Satish K Singh
- Research Service, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA. .,Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA. .,Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA. .,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA. .,Department of Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA.
| |
Collapse
|
17
|
Taghiakbari M, Mori Y, von Renteln D. Artificial intelligence-assisted colonoscopy: A review of current state of practice and research. World J Gastroenterol 2021; 27:8103-8122. [PMID: 35068857 PMCID: PMC8704267 DOI: 10.3748/wjg.v27.i47.8103] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/22/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Colonoscopy is an effective screening procedure in colorectal cancer prevention programs; however, colonoscopy practice can vary in terms of lesion detection, classification, and removal. Artificial intelligence (AI)-assisted decision support systems for endoscopy is an area of rapid research and development. The systems promise improved detection, classification, screening, and surveillance for colorectal polyps and cancer. Several recently developed applications for AI-assisted colonoscopy have shown promising results for the detection and classification of colorectal polyps and adenomas. However, their value for real-time application in clinical practice has yet to be determined owing to limitations in the design, validation, and testing of AI models under real-life clinical conditions. Despite these current limitations, ambitious attempts to expand the technology further by developing more complex systems capable of assisting and supporting the endoscopist throughout the entire colonoscopy examination, including polypectomy procedures, are at the concept stage. However, further work is required to address the barriers and challenges of AI integration into broader colonoscopy practice, to navigate the approval process from regulatory organizations and societies, and to support physicians and patients on their journey to accepting the technology by providing strong evidence of its accuracy and safety. This article takes a closer look at the current state of AI integration into the field of colonoscopy and offers suggestions for future research.
Collapse
Affiliation(s)
- Mahsa Taghiakbari
- Department of Gastroenterology, CRCHUM, Montreal H2X 0A9, Quebec, Canada
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo 0450, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama 224-8503, Japan
| | - Daniel von Renteln
- Department of Gastroenterology, CRCHUM, Montreal H2X 0A9, Quebec, Canada
| |
Collapse
|
18
|
Kudo SE, Mori Y, Abdel-Aal UM, Misawa M, Itoh H, Oda M, Mori K. Artificial intelligence and computer-aided diagnosis for colonoscopy: where do we stand now? Transl Gastroenterol Hepatol 2021; 6:64. [PMID: 34805586 DOI: 10.21037/tgh.2019.12.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Computer-aided diagnosis (CAD) for colonoscopy with use of artificial intelligence (AI) is catching increased attention of endoscopists. CAD allows automated detection and pathological prediction, namely optical biopsy, of colorectal polyps during real-time endoscopy, which help endoscopists avoid missing and/or misdiagnosing colorectal lesions. With the increased number of publications in this field and emergence of the AI medical device that have already secured regulatory approval, CAD in colonoscopy is now being implemented into clinical practice. On the other side, drawbacks and weak points of CAD in colonoscopy have not been thoroughly discussed. In this review, we provide an overview of CAD for optical biopsy of colorectal lesions with a particular focus on its clinical applications and limitations.
Collapse
Affiliation(s)
- Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Usama M Abdel-Aal
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.,Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Hayato Itoh
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Masahiro Oda
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Soons E, Bisseling TM, van der Post RS, Nagtegaal ID, Hazewinkel Y, van Kouwen MCA, Siersema PD. The Workgroup Serrated Polyps and Polyposis (WASP) classification for optical diagnosis of colorectal diminutive polyps with iScan and the impact of the revised World Health Organization (WHO) criteria. United European Gastroenterol J 2021; 9:819-828. [PMID: 34478243 PMCID: PMC8435252 DOI: 10.1002/ueg2.12129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background and aims The Workgroup Serrated Polyps and Polyposis (WASP) developed criteria for optical diagnosis of colorectal polyps. The aims of this study were: (1) to improve optical diagnosis of diminutive colorectal polyps, especially SSLs, after training endoscopists in applying WASP criteria on videos of polyps obtained with iScan and (2) to evaluate if the WASP criteria are still useful when polyps are pathologically revised according to the World Health Organization (WHO) 2019 criteria. Methods Twenty‐one endoscopists participated in a training session and predicted polyp histology on 30 videos of diminutive polyps, before and after training (T0 and T1). After three months, they scored another 30 videos (T2). Primary outcome was overall diagnostic accuracy (DA) at T0, T1 and T2. Polyps were histopathologically classified according to the WHO 2010 and 2019 criteria. Results Overall DA (both diminutive adenomas and SSLs) significantly improved from 0.58 (95% CI 0.55–0.62) at T0 to 0.63 (95% CI 0.60–0.66, p = 0.004) at T1. For SSLs, DA did not change with 0.51 (95% CI 0.46–0.56) at T0 and 0.55 (95% CI 0.49–0.60, p = 0.119) at T1. After three months, overall DA was 0.58 (95% CI 0.54–0.62, p = 0.787, relative to T0) while DA for SSLs was 0.48 (95% CI 0.42–0.55, p = 0.520) at T2. After pathological revision according to the WHO 2019 criteria, DA of all polyps significantly changed at all time points. Conclusion A training session in applying WASP criteria on endoscopic videos made with iScan did not improve endoscopists' long‐term ability to optically diagnose diminutive polyps. The change of DA following polyp revision according to the revised WHO 2019 criteria suggests that the WASP classification may need revision.
Collapse
Affiliation(s)
- Elsa Soons
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Yark Hazewinkel
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Mariette C A van Kouwen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27:4802-4817. [PMID: 34447227 PMCID: PMC8371500 DOI: 10.3748/wjg.v27.i29.4802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/12/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains a leading cause of morbidity and mortality in the United States. Advances in artificial intelligence (AI), specifically computer aided detection and computer-aided diagnosis offer promising methods of increasing adenoma detection rates with the goal of removing more pre-cancerous polyps. Conversely, these methods also may allow for smaller non-cancerous lesions to be diagnosed in vivo and left in place, decreasing the risks that come with unnecessary polypectomies. This review will provide an overview of current advances in the use of AI in colonoscopy to aid in polyp detection and characterization as well as areas of developing research.
Collapse
Affiliation(s)
- Joel Joseph
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| | - Ella Marie LePage
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| | - Catherine Phillips Cheney
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - Rishi Pawa
- Department of Internal Medicine, Section of Gastroenterology and Hepatology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States
| |
Collapse
|
21
|
Kim KO, Kim EY. Application of Artificial Intelligence in the Detection and Characterization of Colorectal Neoplasm. Gut Liver 2021; 15:346-353. [PMID: 32773386 PMCID: PMC8129657 DOI: 10.5009/gnl20186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Endoscpists always have tried to pursue a perfect colonoscopy, and application of artificial intelligence (AI) using deep-learning algorithms is one of the promising supportive options for detection and characterization of colorectal polyps during colonoscopy. Many retrospective studies conducted with real-time application of AI using convolutional neural networks have shown improved colorectal polyp detection. Moreover, a recent randomized clinical trial reported additional polyp detection with shorter analysis time. Studies conducted regarding polyp characterization provided additional promising results. Application of AI with narrow band imaging in real-time prediction of the pathology of diminutive polyps resulted in high diagnostic accuracy. In addition, application of AI with endocytoscopy or confocal laser endomicroscopy was investigated for real-time cellular diagnosis, and the diagnostic accuracy of some studies was comparable to that of pathologists. With AI technology, we can expect a higher polyp detection rate with reduced time and cost by avoiding unnecessary procedures, resulting in enhanced colonoscopy efficiency. However, for AI application in actual daily clinical practice, more prospective studies with minimized selection bias, consensus on standardized utilization, and regulatory approval are needed. (Gut Liver 2021;15:-353)
Collapse
Affiliation(s)
- Kyeong Ok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Eun Young Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
22
|
Alloro R, Sinagra E. Artificial intelligence and colorectal cancer: How far can you go? Artif Intell Cancer 2021; 2:7-11. [DOI: 10.35713/aic.v2.i2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Rita Alloro
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), Unit of General and Oncological Surgery, Paolo Giaccone University Hospital, University of Palermo, Palermo 90127, Italy
| | - Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto G. Giglio, Palermo 90015, Italy
| |
Collapse
|
23
|
Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. ACTA ACUST UNITED AC 2021; 28:1581-1607. [PMID: 33922402 PMCID: PMC8161764 DOI: 10.3390/curroncol28030149] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The development of artificial intelligence (AI) algorithms has permeated the medical field with great success. The widespread use of AI technology in diagnosing and treating several types of cancer, especially colorectal cancer (CRC), is now attracting substantial attention. CRC, which represents the third most commonly diagnosed malignancy in both men and women, is considered a leading cause of cancer-related deaths globally. Our review herein aims to provide in-depth knowledge and analysis of the AI applications in CRC screening, diagnosis, and treatment based on current literature. We also explore the role of recent advances in AI systems regarding medical diagnosis and therapy, with several promising results. CRC is a highly preventable disease, and AI-assisted techniques in routine screening represent a pivotal step in declining incidence rates of this malignancy. So far, computer-aided detection and characterization systems have been developed to increase the detection rate of adenomas. Furthermore, CRC treatment enters a new era with robotic surgery and novel computer-assisted drug delivery techniques. At the same time, healthcare is rapidly moving toward precision or personalized medicine. Machine learning models have the potential to contribute to individual-based cancer care and transform the future of medicine.
Collapse
Affiliation(s)
- Athanasia Mitsala
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
- Correspondence: ; Tel.: +30-6986423707
| | - Christos Tsalikidis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Michail Pitiakoudis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Constantinos Simopoulos
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Alexandra K. Tsaroucha
- Laboratory of Experimental Surgery & Surgical Research, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
24
|
Pannala R, Krishnan K, Melson J, Parsi MA, Schulman AR, Sullivan S, Trikudanathan G, Trindade AJ, Watson RR, Maple JT, Lichtenstein DR. Artificial intelligence in gastrointestinal endoscopy. VIDEOGIE : AN OFFICIAL VIDEO JOURNAL OF THE AMERICAN SOCIETY FOR GASTROINTESTINAL ENDOSCOPY 2020; 5:598-613. [PMID: 33319126 PMCID: PMC7732722 DOI: 10.1016/j.vgie.2020.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Artificial intelligence (AI)-based applications have transformed several industries and are widely used in various consumer products and services. In medicine, AI is primarily being used for image classification and natural language processing and has great potential to affect image-based specialties such as radiology, pathology, and gastroenterology (GE). This document reviews the reported applications of AI in GE, focusing on endoscopic image analysis. METHODS The MEDLINE database was searched through May 2020 for relevant articles by using key words such as machine learning, deep learning, artificial intelligence, computer-aided diagnosis, convolutional neural networks, GI endoscopy, and endoscopic image analysis. References and citations of the retrieved articles were also evaluated to identify pertinent studies. The manuscript was drafted by 2 authors and reviewed in person by members of the American Society for Gastrointestinal Endoscopy Technology Committee and subsequently by the American Society for Gastrointestinal Endoscopy Governing Board. RESULTS Deep learning techniques such as convolutional neural networks have been used in several areas of GI endoscopy, including colorectal polyp detection and classification, analysis of endoscopic images for diagnosis of Helicobacter pylori infection, detection and depth assessment of early gastric cancer, dysplasia in Barrett's esophagus, and detection of various abnormalities in wireless capsule endoscopy images. CONCLUSIONS The implementation of AI technologies across multiple GI endoscopic applications has the potential to transform clinical practice favorably and improve the efficiency and accuracy of current diagnostic methods.
Collapse
Key Words
- ADR, adenoma detection rate
- AI, artificial intelligence
- AMR, adenoma miss rate
- ANN, artificial neural network
- BE, Barrett’s esophagus
- CAD, computer-aided diagnosis
- CADe, CAD studies for colon polyp detection
- CADx, CAD studies for colon polyp classification
- CI, confidence interval
- CNN, convolutional neural network
- CRC, colorectal cancer
- DL, deep learning
- GI, gastroenterology
- HD-WLE, high-definition white light endoscopy
- HDWL, high-definition white light
- ML, machine learning
- NBI, narrow-band imaging
- NPV, negative predictive value
- PIVI, preservation and Incorporation of Valuable Endoscopic Innovations
- SVM, support vector machine
- VLE, volumetric laser endomicroscopy
- WCE, wireless capsule endoscopy
- WL, white light
Collapse
Affiliation(s)
- Rahul Pannala
- Department of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona
| | - Kumar Krishnan
- Division of Gastroenterology, Department of Internal Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua Melson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Mansour A Parsi
- Section for Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Allison R Schulman
- Department of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shelby Sullivan
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Guru Trikudanathan
- Department of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, Minnesota
| | - Arvind J Trindade
- Department of Gastroenterology, Zucker School of Medicine at Hofstra/Northwell, Long Island Jewish Medical Center, New Hyde Park, New York
| | - Rabindra R Watson
- Department of Gastroenterology, Interventional Endoscopy Services, California Pacific Medical Center, San Francisco, California
| | - John T Maple
- Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David R Lichtenstein
- Division of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
25
|
Sinagra E, Badalamenti M, Maida M, Spadaccini M, Maselli R, Rossi F, Conoscenti G, Raimondo D, Pallio S, Repici A, Anderloni A. Use of artificial intelligence in improving adenoma detection rate during colonoscopy: Might both endoscopists and pathologists be further helped. World J Gastroenterol 2020; 26:5911-5918. [PMID: 33132644 PMCID: PMC7584058 DOI: 10.3748/wjg.v26.i39.5911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Colonoscopy remains the standard strategy for screening for colorectal cancer around the world due to its efficacy in both detecting adenomatous or pre-cancerous lesions and the capacity to remove them intra-procedurally. Computer-aided detection and diagnosis (CAD), thanks to the brand new developed innovations of artificial intelligence, and especially deep-learning techniques, leads to a promising solution to human biases in performance by guarantying decision support during colonoscopy. The application of CAD on real-time colonoscopy helps increasing the adenoma detection rate, and therefore contributes to reduce the incidence of interval cancers improving the effectiveness of colonoscopy screening on critical outcome such as colorectal cancer related mortality. Furthermore, a significant reduction in costs is also expected. In addition, the assistance of the machine will lead to a reduction of the examination time and therefore an optimization of the endoscopic schedule. The aim of this opinion review is to analyze the clinical applications of CAD and artificial intelligence in colonoscopy, as it is reported in literature, addressing evidence, limitations, and future prospects.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalù 90015, Italy
| | - Matteo Badalamenti
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano 20089, Italy
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta 93100, Italy
| | - Marco Spadaccini
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano 20089, Italy
| | - Roberta Maselli
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano 20089, Italy
| | - Francesca Rossi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalù 90015, Italy
| | - Giuseppe Conoscenti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalù 90015, Italy
| | - Dario Raimondo
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalù 90015, Italy
| | - Socrate Pallio
- Endoscopy Unit, AOUP Policlinico G. Martino, Messina 98125, Italy
| | - Alessandro Repici
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano 20089, Italy
| | - Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano 20089, Italy
| |
Collapse
|
26
|
Goyal H, Mann R, Gandhi Z, Perisetti A, Ali A, Aman Ali K, Sharma N, Saligram S, Tharian B, Inamdar S. Scope of Artificial Intelligence in Screening and Diagnosis of Colorectal Cancer. J Clin Med 2020; 9:3313. [PMID: 33076511 PMCID: PMC7602532 DOI: 10.3390/jcm9103313] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Globally, colorectal cancer is the third most diagnosed malignancy. It causes significant mortality and morbidity, which can be reduced by early diagnosis with an effective screening test. Integrating artificial intelligence (AI) and computer-aided detection (CAD) with screening methods has shown promising colorectal cancer screening results. AI could provide a "second look" for endoscopists to decrease the rate of missed polyps during a colonoscopy. It can also improve detection and characterization of polyps by integration with colonoscopy and various advanced endoscopic modalities such as magnifying narrow-band imaging, endocytoscopy, confocal endomicroscopy, laser-induced fluorescence spectroscopy, and magnifying chromoendoscopy. This descriptive review discusses various AI and CAD applications in colorectal cancer screening, polyp detection, and characterization.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA 18505, USA
| | | | - Zainab Gandhi
- Department of Medicine, Geisinger Community Medical Center, Scranton, PA 18510, USA;
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Aman Ali
- Division of Gastroenterology, The Commonwealth Medical College, Wilkes Barre General Hospital, Wilkes-Barre, PA 18764, USA;
- Digestive Care Associates, Kingston, PA 18704, USA;
| | | | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, Fort Wayne, IN 46845, USA;
- Division of Interventional Oncology & Surgical Endoscopy, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Shreyas Saligram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Benjamin Tharian
- General and Advanced Endoscopy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sumant Inamdar
- Advanced Endoscopy Fellowship, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
27
|
Shung DL, Byrne MF. How Artificial Intelligence Will Impact Colonoscopy and Colorectal Screening. Gastrointest Endosc Clin N Am 2020; 30:585-595. [PMID: 32439090 PMCID: PMC12007662 DOI: 10.1016/j.giec.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Artificial intelligence may improve value in colonoscopy-based colorectal screening and surveillance by improving quality and decreasing unnecessary costs. The quality of screening and surveillance as measured by adenoma detection rates can be improved through real-time computer-assisted detection of polyps. Unnecessary costs can be decreased with optical biopsies to identify low-risk polyps using computer-assisted diagnosis that can undergo the resect-and-discard or diagnose-and-leave strategy. Key challenges include the clinical integration of artificial intelligence-based technology into the endoscopists' workflow, the effect of this technology on endoscopy center efficiency, and the interpretability of the underlying deep learning algorithms. The future for image-based artificial intelligence in gastroenterology will include applications to improve the diagnosis and treatment of cancers throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Dennis L Shung
- Section of Digestive Diseases, Department of Medicine, Yale School of Medicine, P.O. Box 208019, New Haven, CT 06520-8019, USA
| | - Michael F Byrne
- Division of Gastroenterology, Vancouver General Hospital, University of British Columbia, 5153 - 2775 Laurel Street, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
Gulati S, Patel M, Emmanuel A, Haji A, Hayee B, Neumann H. The future of endoscopy: Advances in endoscopic image innovations. Dig Endosc 2020; 32:512-522. [PMID: 31286574 DOI: 10.1111/den.13481] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
The latest state of the art technological innovations have led to a palpable progression in endoscopic imaging and may facilitate standardisation of practice. One of the most rapidly evolving modalities is artificial intelligence with recent studies providing real-time diagnoses and encouraging results in the first randomised trials to conventional endoscopic imaging. Advances in functional hypoxia imaging offer novel opportunities to be used to detect neoplasia and the assessment of colitis. Three-dimensional volumetric imaging provides spatial information and has shown promise in the increased detection of small polyps. Studies to date of self-propelling colonoscopes demonstrate an increased caecal intubation rate and possibly offer patients a more comfortable procedure. Further development in robotic technology has introduced ex vivo automated locomotor upper gastrointestinal and small bowel capsule devices. Eye-tracking has the potential to revolutionise endoscopic training through the identification of differences in experts and non-expert endoscopist as trainable parameters. In this review, we discuss the latest innovations of all these technologies and provide perspective into the exciting future of diagnostic luminal endoscopy.
Collapse
Affiliation(s)
- Shraddha Gulati
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Mehul Patel
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Andrew Emmanuel
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Amyn Haji
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Bu'Hussain Hayee
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Helmut Neumann
- Department of Medicine, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
29
|
Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues. Molecules 2020; 25:molecules25092095. [PMID: 32365790 PMCID: PMC7248908 DOI: 10.3390/molecules25092095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The autofluorescence (AF) characteristics of endogenous fluorophores allow the label-free assessment and visualization of cells and tissues of the human body. While AF imaging (AFI) is well-established in ophthalmology, its clinical applications are steadily expanding to other disciplines. This review summarizes clinical advances of AF techniques published during the past decade. A systematic search of the MEDLINE database and Cochrane Library databases was performed to identify clinical AF studies in extra-ophthalmic tissues. In total, 1097 articles were identified, of which 113 from internal medicine, surgery, oral medicine, and dermatology were reviewed. While comparable technological standards exist in diabetology and cardiology, in all other disciplines, comparability between studies is limited due to the number of differing AF techniques and non-standardized imaging and data analysis. Clear evidence was found for skin AF as a surrogate for blood glucose homeostasis or cardiovascular risk grading. In thyroid surgery, foremost, less experienced surgeons may benefit from the AF-guided intraoperative separation of parathyroid from thyroid tissue. There is a growing interest in AF techniques in clinical disciplines, and promising advances have been made during the past decade. However, further research and development are mandatory to overcome the existing limitations and to maximize the clinical benefits.
Collapse
|
30
|
Abadir AP, Ali MF, Karnes W, Samarasena JB. Artificial Intelligence in Gastrointestinal Endoscopy. Clin Endosc 2020; 53:132-141. [PMID: 32252506 PMCID: PMC7137570 DOI: 10.5946/ce.2020.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is rapidly integrating into modern technology and clinical practice. Although in its nascency, AI has become a hot topic of investigation for applications in clinical practice. Multiple fields of medicine have embraced the possibility of a future with AI assisting in diagnosis and pathology applications. In the field of gastroenterology, AI has been studied as a tool to assist in risk stratification, diagnosis, and pathologic identification. Specifically, AI has become of great interest in endoscopy as a technology with substantial potential to revolutionize the practice of a modern gastroenterologist. From cancer screening to automated report generation, AI has touched upon all aspects of modern endoscopy. Here, we review landmark AI developments in endoscopy. Starting with broad definitions to develop understanding, we will summarize the current state of AI research and its potential applications. With innovation developing rapidly, this article touches upon the remarkable advances in AI-assisted endoscopy since its initial evaluation at the turn of the millennium, and the potential impact these AI models may have on the modern clinical practice. As with any discussion of new technology, its limitations must also be understood to apply clinical AI tools successfully.
Collapse
Affiliation(s)
- Alexander P Abadir
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Mohammed Fahad Ali
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - William Karnes
- Division of Gastroenterology & Hepatology, Department of Medicine, H. H. Chao Comprehensive Digestive Disease Center, University of California Irvine, Orange, CA, USA
| | - Jason B Samarasena
- Division of Gastroenterology & Hepatology, Department of Medicine, H. H. Chao Comprehensive Digestive Disease Center, University of California Irvine, Orange, CA, USA
| |
Collapse
|
31
|
Mori Y, Kudo SE, Misawa M, Takeda K, Kudo T, Itoh H, Oda M, Mori K. Artificial Intelligence for Colorectal Polyp Detection and Characterization. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s11938-020-00287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Sánchez-Montes C, Bernal J, García-Rodríguez A, Córdova H, Fernández-Esparrach G. Review of computational methods for the detection and classification of polyps in colonoscopy imaging. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 43:222-232. [PMID: 32143918 DOI: 10.1016/j.gastrohep.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023]
Abstract
Computer-aided diagnosis (CAD) is a tool with great potential to help endoscopists in the tasks of detecting and histologically classifying colorectal polyps. In recent years, different technologies have been described and their potential utility has been increasingly evidenced, which has generated great expectations among scientific societies. However, most of these works are retrospective and use images of different quality and characteristics which are analysed off line. This review aims to familiarise gastroenterologists with computational methods and the particularities of endoscopic imaging, which have an impact on image processing analysis. Finally, the publicly available image databases, needed to compare and confirm the results obtained with different methods, are presented.
Collapse
Affiliation(s)
- Cristina Sánchez-Montes
- Unidad de Endoscopia Digestiva, Hospital Universitari i Politècnic La Fe, Grupo de Investigación de Endoscopia Digestiva, IIS La Fe, Valencia, España
| | - Jorge Bernal
- Centro de Visión por Computador, Departamento de Ciencias de la Computación, Universidad Autónoma de Barcelona, Barcelona, España
| | - Ana García-Rodríguez
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España
| | - Henry Córdova
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España; IDIBAPS, CIBEREHD, Barcelona, España
| | - Gloria Fernández-Esparrach
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España; IDIBAPS, CIBEREHD, Barcelona, España.
| |
Collapse
|
33
|
Gulati S, Emmanuel A, Patel M, Williams S, Haji A, Hayee B, Neumann H. Artificial intelligence in luminal endoscopy. Ther Adv Gastrointest Endosc 2020; 13:2631774520935220. [PMID: 32637935 PMCID: PMC7315657 DOI: 10.1177/2631774520935220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence is a strong focus of interest for global health development. Diagnostic endoscopy is an attractive substrate for artificial intelligence with a real potential to improve patient care through standardisation of endoscopic diagnosis and to serve as an adjunct to enhanced imaging diagnosis. The possibility to amass large data to refine algorithms makes adoption of artificial intelligence into global practice a potential reality. Initial studies in luminal endoscopy involve machine learning and are retrospective. Improvement in diagnostic performance is appreciable through the adoption of deep learning. Research foci in the upper gastrointestinal tract include the diagnosis of neoplasia, including Barrett's, squamous cell and gastric where prospective and real-time artificial intelligence studies have been completed demonstrating a benefit of artificial intelligence-augmented endoscopy. Deep learning applied to small bowel capsule endoscopy also appears to enhance pathology detection and reduce capsule reading time. Prospective evaluation including the first randomised trial has been performed in the colon, demonstrating improved polyp and adenoma detection rates; however, these appear to be relevant to small polyps. There are potential additional roles of artificial intelligence relevant to improving the quality of endoscopic examinations, training and triaging of referrals. Further large-scale, multicentre and cross-platform validation studies are required for the robust incorporation of artificial intelligence-augmented diagnostic luminal endoscopy into our routine clinical practice.
Collapse
Affiliation(s)
- Shraddha Gulati
- King’s Institute of Therapeutic Endoscopy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Andrew Emmanuel
- King’s Institute of Therapeutic Endoscopy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Mehul Patel
- King’s Institute of Therapeutic Endoscopy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Sophie Williams
- King’s Institute of Therapeutic Endoscopy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Amyn Haji
- King’s Institute of Therapeutic Endoscopy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Bu’Hussain Hayee
- King’s Institute of Therapeutic Endoscopy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Helmut Neumann
- Department of Interdisciplinary Endoscopy, University Hospital Mainz, 55131 Mainz, Germany
| |
Collapse
|
34
|
Sánchez-Montes C, García-Rodríguez A, Córdova H, Pellisé M, Fernández-Esparrach G. Advanced endoscopy technologies to improve the detection and characterisation of colorrectal polyps. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 43:46-56. [PMID: 31813615 DOI: 10.1016/j.gastrohep.2019.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Colorectal cancer is a major health problem. An improvement to its survival has been demonstrated by performing colonoscopy screenings and removing its precursor lesions: polyps. However, colonoscopy is not infallible and multiple strategies have been proposed aimed at improving the quality thereof. This report describes the endoscopic systems available to improve the detection and characterization of polyps, the different classifications for histological prediction and the current indications of advanced endoscopic diagnostic techniques.
Collapse
Affiliation(s)
- Cristina Sánchez-Montes
- Unidad de Endoscopia Digestiva, Hospital Universitari i Politècnic La Fe, Grupo de Investigación de Endoscopia Digestiva, IIS La Fe, Valencia, España
| | - Ana García-Rodríguez
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España
| | - Henry Córdova
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España
| | - María Pellisé
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España
| | - Gloria Fernández-Esparrach
- Unidad de Endoscopia, Servicio de Gastroenterología, Hospital Clínic, IDIBAPS, CIBEREHD, Universidad de Barcelona, Barcelona, España.
| |
Collapse
|
35
|
Jovani M, Campbell EJ, Hur C, Joshi AD, Nishioka NS. Effect of video monitor size on polyp detection: a prospective, randomized, controlled trial. Gastrointest Endosc 2019; 90:254-258.e2. [PMID: 30986402 DOI: 10.1016/j.gie.2019.03.1172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The adenoma detection rate (ADR) is the most important quality metric for colonoscopy. Numerous factors are known to influence ADR. However, no data on the effect of monitor size on ADR exist. The aim of this study was to compare the ADR and polyp detection rate (PDR) achieved using 2 different-size video monitors (19-inch diagonal and 32-inch diagonal). METHODS In a single-center, prospective, randomized clinical trial, endoscopists were randomized on a daily basis to perform routine ambulatory colonoscopies with either a 32-inch diagonal or a 19-inch diagonal video monitor. RESULTS The study was conducted between October 2013 and April 2014 in an outpatient center of a tertiary referral hospital. Fifteen endoscopists performed 1795 outpatient colonoscopies (mean age, 55 years; 56% women; screening, 56%). There was no substantial difference in baseline patient characteristics between the 2 arms. The overall ADR (27.4% vs 27.9%; P = .80) and PDR (32.8% vs 34.4%; P = .50) were not significantly different between the 32-inch and 19-inch monitor group, respectively. The findings were not significantly altered when stratified by indication, cecal intubation, bowel preparation, operator experience, and time of endoscopy as well as in a multivariable model that included these variables as potential confounders (all P > .05). Overall, the ADR and PDR for each individual endoscopist did not appear to be influenced by monitor size. CONCLUSIONS The results of this trial do not support the notion that larger video monitors improve ADR. Future efforts to increase ADR should focus on other aspects of colonoscopy. (Clinical trial registration number: NCT01952418.).
Collapse
Affiliation(s)
- Manol Jovani
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Clinical and Translational Epidemiology Unit, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily J Campbell
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chin Hur
- Columbia University Irving Medical Center, New York, New York
| | - Amit D Joshi
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Clinical and Translational Epidemiology Unit, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Norman S Nishioka
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Optical Technologies for Endoscopic Real-Time Histologic Assessment of Colorectal Polyps: A Meta-Analysis. Am J Gastroenterol 2019; 114:1219-1230. [PMID: 30848728 DOI: 10.14309/ajg.0000000000000156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Accurate, real-time, endoscopic risk stratification of colorectal polyps would improve decision-making and optimize clinical efficiency. Technologies to manipulate endoscopic optical outputs can be used to predict polyp histology in vivo; however, it remains unclear how accuracy has progressed and whether it is sufficient for routine clinical implementation. METHODS A meta-analysis was conducted by searching MEDLINE, Embase, and the Cochrane Library. Studies were included if they prospectively deployed an endoscopic optical technology for real-time in vivo prediction of adenomatous colorectal polyps. Polyposis and inflammatory bowel diseases were excluded. Bayesian bivariate meta-analysis was performed, presenting 95% confidence intervals (CI). RESULTS One hundred two studies using optical technologies on 33,123 colorectal polyps were included. Digital chromoendoscopy differentiated neoplasia (adenoma and adenocarcinoma) from benign polyps with sensitivity of 92.2% (90.6%-93.9% CI) and specificity of 84.0% (81.5%-86.3% CI), with no difference between constituent technologies (narrow-band imaging, Fuji intelligent Chromo Endoscopy, iSCAN) or with only diminutive polyps. Dye chromoendoscopy had sensitivity of 92.7% (90.1%-94.9% CI) and specificity of 86.6% (82.9%-89.9% CI), similarly unchanged for diminutive polyps. Spectral analysis of autofluorescence had sensitivity of 94.4% (84.0%-99.1% CI) and specificity of 50.9% (13.2%-88.8% CI). Endomicroscopy had sensitivity of 93.6% (85.3%-98.3% CI) and specificity of 92.5% (81.8%-98.1% CI). Computer-aided diagnosis had sensitivity of 88.9% (74.2%-96.7% CI) and specificity of 80.4% (52.6%-95.7% CI). Prediction confidence and endoscopist experience alone did not significantly improve any technology. The only subgroup to demonstrate a negative predictive value for adenoma above 90% was digital chromoendoscopy, making high confidence predictions of diminutive recto-sigmoid polyps. Chronologic meta-analyses show a falling negative predictive value over time. A significant publication bias exists. DISCUSSION This novel approach to meta-analysis demonstrates that existing optical technologies are increasingly unlikely to allow safe "resect and discard" strategies and that step-change innovation may be required. A "diagnose and leave" strategy may be supported for diminutive recto-sigmoid polyps diagnosed with high confidence; however, limitations exist in the evidence base for this cohort.
Collapse
|
37
|
Vinsard DG, Mori Y, Misawa M, Kudo SE, Rastogi A, Bagci U, Rex DK, Wallace MB. Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointest Endosc 2019; 90:55-63. [PMID: 30926431 DOI: 10.1016/j.gie.2019.03.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023]
Abstract
Recent breakthroughs in artificial intelligence (AI), specifically via its emerging sub-field "deep learning," have direct implications for computer-aided detection and diagnosis (CADe and/or CADx) for colonoscopy. AI is expected to have at least 2 major roles in colonoscopy practice-polyp detection (CADe) and polyp characterization (CADx). CADe has the potential to decrease the polyp miss rate, contributing to improving adenoma detection, whereas CADx can improve the accuracy of colorectal polyp optical diagnosis, leading to reduction of unnecessary polypectomy of non-neoplastic lesions, potential implementation of a resect-and-discard paradigm, and proper application of advanced resection techniques. A growing number of medical-engineering researchers are developing both CADe and CADx systems, some of which allow real-time recognition of polyps or in vivo identification of adenomas, with over 90% accuracy. However, the quality of the developed AI systems as well as that of the study designs vary significantly, hence raising some concerns regarding the generalization of the proposed AI systems. Initial studies were conducted in an exploratory or retrospective fashion by using stored images and likely overestimating the results. These drawbacks potentially hinder smooth implementation of this novel technology into colonoscopy practice. The aim of this article is to review both contributions and limitations in recent machine-learning-based CADe and/or CADx colonoscopy studies and propose some principles that should underlie system development and clinical testing.
Collapse
Affiliation(s)
- Daniela Guerrero Vinsard
- Showa University International Center for Endoscopy, Showa University Northern Yokohama Hospital, Yokohama, Japan; Division of Internal Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Amit Rastogi
- Division of Gastroenterology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ulas Bagci
- Center for Research in Computer Vision, University of Central Florida, Orlando, Florida
| | - Douglas K Rex
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
38
|
Mori Y, Kudo SE, Mohmed HEN, Misawa M, Ogata N, Itoh H, Oda M, Mori K. Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Dig Endosc 2019; 31:378-388. [PMID: 30549317 DOI: 10.1111/den.13317] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023]
Abstract
With recent breakthroughs in artificial intelligence, computer-aided diagnosis (CAD) for upper gastrointestinal endoscopy is gaining increasing attention. Main research focuses in this field include automated identification of dysplasia in Barrett's esophagus and detection of early gastric cancers. By helping endoscopists avoid missing and mischaracterizing neoplastic change in both the esophagus and the stomach, these technologies potentially contribute to solving current limitations of gastroscopy. Currently, optical diagnosis of early-stage dysplasia related to Barrett's esophagus can be precisely achieved only by endoscopists proficient in advanced endoscopic imaging, and the false-negative rate for detecting gastric cancer is approximately 10%. Ideally, these novel technologies should work during real-time gastroscopy to provide on-site decision support for endoscopists regardless of their skill; however, previous studies of these topics remain ex vivo and experimental in design. Therefore, the feasibility, effectiveness, and safety of CAD for upper gastrointestinal endoscopy in clinical practice remain unknown, although a considerable number of pilot studies have been conducted by both engineers and medical doctors with excellent results. This review summarizes current publications relating to CAD for upper gastrointestinal endoscopy from the perspective of endoscopists and aims to indicate what is required for future research and implementation in clinical practice.
Collapse
Affiliation(s)
- Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hussein E N Mohmed
- Showa University International Center for Endoscopy, Showa University Northern Yokohama Hospital, Kanagawa, Japan.,Department of Gastroenterology/Tropical Medicine, Ain Shams University, Cairo, Egypt
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hayato Itoh
- Graduate School of Informatics, Nagoya University, Aichi, Japan
| | - Masahiro Oda
- Graduate School of Informatics, Nagoya University, Aichi, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Aichi, Japan
| |
Collapse
|
39
|
Kudo SE, Mori Y, Misawa M, Takeda K, Kudo T, Itoh H, Oda M, Mori K. Artificial intelligence and colonoscopy: Current status and future perspectives. Dig Endosc 2019; 31:363-371. [PMID: 30624835 DOI: 10.1111/den.13340] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Application of artificial intelligence in medicine is now attracting substantial attention. In the field of gastrointestinal endoscopy, computer-aided diagnosis (CAD) for colonoscopy is the most investigated area, although it is still in the preclinical phase. Because colonoscopy is carried out by humans, it is inherently an imperfect procedure. CAD assistance is expected to improve its quality regarding automated polyp detection and characterization (i.e. predicting the polyp's pathology). It could help prevent endoscopists from missing polyps as well as provide a precise optical diagnosis for those detected. Ultimately, these functions that CAD provides could produce a higher adenoma detection rate and reduce the cost of polypectomy for hyperplastic polyps. METHODS AND RESULTS Currently, research on automated polyp detection has been limited to experimental assessments using an algorithm based on ex vivo videos or static images. Performance for clinical use was reported to have >90% sensitivity with acceptable specificity. In contrast, research on automated polyp characterization seems to surpass that for polyp detection. Prospective studies of in vivo use of artificial intelligence technologies have been reported by several groups, some of which showed a >90% negative predictive value for differentiating diminutive (≤5 mm) rectosigmoid adenomas, which exceeded the threshold for optical biopsy. CONCLUSION We introduce the potential of using CAD for colonoscopy and describe the most recent conditions for regulatory approval for artificial intelligence-assisted medical devices.
Collapse
Affiliation(s)
- Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kenichi Takeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Toyoki Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hayato Itoh
- Graduate School of Informatics, Nagoya University, Aichi, Japan
| | - Masahiro Oda
- Graduate School of Informatics, Nagoya University, Aichi, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Aichi, Japan
| |
Collapse
|
40
|
Horiuchi H, Tamai N, Kamba S, Inomata H, Ohya TR, Sumiyama K. Real-time computer-aided diagnosis of diminutive rectosigmoid polyps using an auto-fluorescence imaging system and novel color intensity analysis software. Scand J Gastroenterol 2019; 54:800-805. [PMID: 31195905 DOI: 10.1080/00365521.2019.1627407] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: An endoscopic technique that provides ≥90% negative predictive value (NPV) for differentiating neoplastic polyps is needed for the management of diminutive (≤5 mm) rectosigmoid polyps. This study aimed to assess whether a newly developed software can achieve ≥90% NPV for differentiating rectosigmoid diminutive polyps based on the green-to-red (G/R) ratio, obtained by dividing the green color tone intensity by the red color tone intensity on autofluorescence imaging (AFI). Methods: From December 2017 to May 2018, consecutive patients with known polyps who were scheduled for endoscopic treatment at our institution were prospectively recruited. All colorectal diminutive polyps were differentiated by computer-aided diagnosis using autofluorescence imaging (CAD-AFI) using a novel software-based automatic color intensity analysis; subsequent diagnosis was made by endoscopists based on trimodal imaging endoscopy (TME), which combines AFI, white-light imaging (WLI) and magnifying narrow-band imaging (M-NBI) findings. Thereafter, all polyps were removed endoscopically, and the histopathological diagnosis was evaluated. Results: Ninety-five patients with 258 diminutive rectosigmoid polyps and 171 diminutive non-rectosigmoid polyps were enrolled. Regarding diminutive rectosigmoid polyps, the NPV for differentiating neoplastic polyps was 93.4% (184/197) [95% confidence interval (CI), 89.0%-96.4%] with CAD-AFI and 94.9% (185/195) (95% CI, 90.8%-97.5%) with TME. The accuracy, sensitivity, specificity, and positive predictive value for differentiating diminutive rectosigmoid neoplastic polyps by CAD-AFI were 91.5%, 80.0%, 95.3% and 85.2%, respectively. Conclusions: Real-time CAD-AFI was effective for differentiating diminutive rectosigmoid polyps. This objective technology, which does not require extensive training or endoscopic expertise, can contribute to the effective management of diminutive rectosigmoid polyps.
Collapse
Affiliation(s)
- Hideka Horiuchi
- Department of Endoscopy, The Jikei University School of Medicine , Tokyo , Japan
| | - Naoto Tamai
- Department of Endoscopy, The Jikei University School of Medicine , Tokyo , Japan
| | - Shunsuke Kamba
- Department of Endoscopy, The Jikei University School of Medicine , Tokyo , Japan
| | - Hiroko Inomata
- Department of Endoscopy, The Jikei University School of Medicine , Tokyo , Japan
| | - Tomohiko R Ohya
- Department of Endoscopy, The Jikei University School of Medicine , Tokyo , Japan
| | - Kazuki Sumiyama
- Department of Endoscopy, The Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
41
|
Min M, Su S, He W, Bi Y, Ma Z, Liu Y. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci Rep 2019; 9:2881. [PMID: 30814661 PMCID: PMC6393495 DOI: 10.1038/s41598-019-39416-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
We developed a computer-aided diagnosis (CAD) system based on linked color imaging (LCI) images to predict the histological results of polyps by analyzing the colors of the lesions. A total of 139 images of adenomatous polyps and 69 images of non-adenomatous polyps obtained from our hospital were collected and used to train the CAD system. A test set of LCI images, including both adenomatous and non-adenomatous polyps, was prospectively collected from patients who underwent colonoscopies between Oct and Dec 2017; this test set was used to assess the diagnostic abilities of the CAD system compared to those of human endoscopists (two experts and two novices). The accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of this novel CAD system for the training set were 87.0%, 87.1%, 87.0%, 93.1%, and 76.9%, respectively. The test set included 115 adenomatous polyps and 66 non-adenomatous polyps that were prospectively collected. The CAD system identified adenomatous or non-adenomatous polyps in the test set with an accuracy of 78.4%, a sensitivity of 83.3%, a specificity of 70.1%, a PPV of 82.6%, and an NPV of 71.2%. The accuracy of the CAD system was comparable to that of the expert endoscopists (78.4% vs 79.6%; p = 0.517). In addition, the diagnostic accuracy of the novices was significantly lower to the performance of the experts (70.7% vs 79.6%; p = 0.018). A novel CAD system based on LCI could be a rapid and powerful decision-making tool for endoscopists.
Collapse
Affiliation(s)
- Min Min
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Song Su
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wenrui He
- Pattern Recognition and Intelligent System Laboratory, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yiliang Bi
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhanyu Ma
- Pattern Recognition and Intelligent System Laboratory, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Yan Liu
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
42
|
Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines. Knowl Based Syst 2018. [DOI: 10.1016/j.knosys.2018.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Strzelczyk N, Kwiatek S, Latos W, Sieroń A, Stanek A. Does the Numerical Colour Value (NCV) correlate with preneoplastic and neoplastic colorectal lesions? Photodiagnosis Photodyn Ther 2018; 23:353-361. [PMID: 30055281 DOI: 10.1016/j.pdpdt.2018.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND White light endoscopy (WLE) is the gold standard for detection of colorectal cancer. Autofluorescence endoscopy (AFE) is among the novel methods expected to increase the sensitivity and specificity of endoscopic diagnosis. The main objective of the study was to determine the diagnostic efficacy of AFE for the detection of preneoplastic and neoplastic colorectal lesions and to identify high-grade neoplasia using Numerical Colour Value (NCV). METHODS This retrospective study included 188 patients with colorectal mucosal lesions diagnosed on WLE and assessed using AFE; they were included in the study if a complete patient record was available (description of visualized colorectal lesions, NCV and histopathology report). The NCV was compared with the histological result. RESULTS Histology revealed 38 hyperplastic colon polyps, 77 low-grade dysplastic lesions, 17 high-grade dysplastic lesions, 24 adenocarcinomas and 32 inflammatory lesions. The mean NCVs of high-grade dysplasia (HGD) and adenocarcinoma were 2.24 ± 0.22 and 2.73 ± 0.16, respectively, significantly higher than the NCV of hyperplastic colon polyps (0.95 ± 0.06), low-grade dysplasia (LGD) (1.27 ± 0.05) and inflammatory lesions (1.26 ± 0.17). The NCV cut-off value for HGD and adenocarcinoma was set at 1.7. The sensitivity, specificity, PPV (positive predictive value) and NPV (negative predictive value) were 95.2%, 87.9%, 97.5%, 84.8%, respectively. CONCLUSION Our study showed that AFE could provide useful diagnostic information regarding preneoplastic and neoplastic colorectal lesions. Additionally, the NCV significantly correlated with the histopathology results.
Collapse
Affiliation(s)
- Natalia Strzelczyk
- Specialist Hospital No 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnosis and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Sebastian Kwiatek
- Specialist Hospital No 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnosis and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Wojciech Latos
- Specialist Hospital No 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnosis and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Aleksander Sieroń
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnosis and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland
| | - Agata Stanek
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnosis and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland.
| |
Collapse
|
44
|
Accuracy of autofluorescence in diagnosing oral squamous cell carcinoma and oral potentially malignant disorders: a comparative study with aero-digestive lesions. Sci Rep 2016; 6:29943. [PMID: 27416981 PMCID: PMC4945954 DOI: 10.1038/srep29943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/24/2016] [Indexed: 02/05/2023] Open
Abstract
Presently, various studies had investigated the accuracy of autofluorescence in diagnosing oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD) with diverse conclusions. This study aimed to assess its accuracy for OSCC and OPMD and to investigate its applicability in general dental practice. After a comprehensive literature search, a meta-analysis was conducted to calculate the pooled diagnostic indexes of autofluorescence for premalignant lesions (PML) and malignant lesions (ML) of the oral cavity, lung, esophagus, stomach and colorectum and to compute indexes regarding the detection of OSCC aided by algorithms. Besides, a u test was performed. Twenty-four studies detecting OSCC and OPMD in 2761 lesions were included. This demonstrated that the overall accuracy of autofluorescence for OSCC and OPMD was superior to PML and ML of the lung, esophagus and stomach, slightly inferior to the colorectum. Additionally, the sensitivity and specificity for OSCC and OPMD were 0.89 and 0.8, respectively. Furthermore, the specificity could be remarkably improved by additional algorithms. With relatively high accuracy, autofluorescence could be potentially applied as an adjunct for early diagnosis of OSCC and OPMD. Moreover, approaches such as algorithms could enhance its specificity to ensure its efficacy in primary care.
Collapse
|
45
|
Tamai N, Inomata H, Ide D, Dobashi A, Saito S, Sumiyama K. Effectiveness of color intensity analysis using updated autofluorescence imaging systems for serrated lesions. Dig Endosc 2016; 28 Suppl 1:49-52. [PMID: 26748839 DOI: 10.1111/den.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM We previously reported the effectiveness of color intensity analysis using autofluorescence imaging (AFI) for differentiating colorectal neoplastic lesions from non-neoplastic lesions. However, the ability of AFI systems for differentiating serrated lesions has not been evaluated. In the present study, we assessed the effectiveness of color intensity analysis using updated AFI systems for evaluating serrated lesions. METHODS We retrospectively reviewed the data for 48 consecutive patients with 87 serrated lesions that were examined using updated AFI systems and resected at Jikei University Hospital. The mean green/red (G/R) ratio, which is obtained by dividing the mean green color intensities by the mean red color intensities, was calculated for each serrated lesion and compared between hyperplastic polyps, sessile serrated adenomas/polyps (SSA/P) with cytological dysplasia, and SSA/P without cytological dysplasia. We also assessed the area under the receiver operating characteristic curve (AUC) for determining SSA/P (both with and without cytological dysplasia) and SSA/P with cytological dysplasia. RESULTS The AUC for determining SSA/P was 0.68; however, the AUC for determining SSA/P with cytological dysplasia was 0.97. With a cut-off for the G/R ratio of <0.93, the sensitivity, specificity, positive predictive value, and negative predictive value for SSA/P with cytological dysplasia were 95.5%, 91.0%, 77.8%, and 98.3%, respectively. CONCLUSION Color intensity analysis of serrated lesions using updated AFI systems could effectively distinguish SSA/P with cytological dysplasia from hyperplastic polyps and SSA/P without cytological dysplasia.
Collapse
Affiliation(s)
- Naoto Tamai
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroko Inomata
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Ide
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Dobashi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoichi Saito
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuki Sumiyama
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Abstract
The major role of colonoscopy with polypectomy in reducing the incidence of and mortality from colorectal cancer has been firmly established. Yet there is cause to be uneasy. One of the most striking recent findings is that there is an alarmingly high incomplete polyp removal rate. This phenomenon, together with missed polyps during screening colonoscopy, is thought to be responsible for the majority of interval cancers. Knowledge of serrated polyps needs to broaden as well, since they are quite often missed or incompletely removed. Removal of small and diminutive polyps is almost devoid of complications. Cold snare polypectomy seems to be the best approach for these lesions, with biopsy forcep removal reserved only for the tiniest of polyps. Hot snare or hot biopsy forcep removal of these lesions is no longer recommended. Endoscopic mucosal resection and endoscopic submucosal dissection have proven to be effective in the removal of large colorectal lesions, avoiding surgery in the majority of patients, with acceptably low complication rates. Variants of these approaches, as well as new hybrid techniques, are being currently tested. In this paper, we review the current status of the different approaches in removing polypoid and nonpolypoid lesions of the colon, their complications, and future directions in the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Manol Jovani
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cesare Hassan
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandro Repici
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
47
|
Tamai N, Saito S, Aihara H, Kato T, Tajiri H. Evaluation of the effectiveness of color intensity analysis using a second-generation autofluorescence imaging system for diminutive colorectal polyp differentiation. Dig Endosc 2014; 26 Suppl 2:68-72. [PMID: 24750152 DOI: 10.1111/den.12246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM We previously reported the effectiveness of color tone intensity analysis using autofluorescence imaging (AFI) for distinguishing between colorectal neoplastic and non-neoplastic lesions. Moreover, a second-generation AFI system has become commercially available in Japan. In the present study, we assessed the effectiveness of color tone intensity analysis using a second-generation AFI system for evaluating diminutive colorectal lesions. METHODS We retrospectively reviewed the cases of 35 consecutive patients with 101 diminutive colorectal lesions that were examined using a second-generation AFI system and resected at the Jikei University Hospital. We estimated the mean green-to-red (G/R) ratio - obtained by dividing the green color tone intensity by the red color tone intensity - of the lesions and compared the values of the neoplastic and non-neoplastic lesions. We also assessed the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the AFI system for neoplastic lesion identification. RESULTS The mean G/R ratios of the non-neoplastic and neoplastic lesions were 1.06 and 0.87, respectively; the mean G/R ratio significantly differed between the neoplastic and non-neoplastic lesions. Using the second-generation AFI system, neoplastic lesions were identified with a sensitivity, specificity, PPV, and NPV of 94.2%, 91.8%, 92.5%, and 93.8%, respectively. CONCLUSION Color intensity analysis of diminutive colorectal polyps using the second generation AFI system could effectively distinguish between neoplastic and non-neoplastic lesions.
Collapse
Affiliation(s)
- Naoto Tamai
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Inomata H, Tamai N, Aihara H, Sumiyama K, Saito S, Kato T, Tajiri H. Efficacy of a novel auto-fluorescence imaging system with computer-assisted color analysis for assessment of colorectal lesions. World J Gastroenterol 2013; 19:7146-7153. [PMID: 24222959 PMCID: PMC3819551 DOI: 10.3748/wjg.v19.i41.7146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/22/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy of computer-assisted color analysis of colorectal lesions using a novel auto-fluorescence imaging (AFI) system to distinguish neoplastic lesions from non-neoplastic lesions and to predict the depth of invasion.
METHODS: From January 2013 to April 2013, consecutive patients with known polyps greater than 5 mm in size who were scheduled to undergo endoscopic treatment at The Jikei University Hospital were prospectively recruited for this study. All lesions were evaluated using a novel AFI system, and color-tone sampling was performed in a region of interest determined from narrow band imaging or from chromoendoscopy findings without magnification. The green/red (G/R) ratio for each lesion on the AFI images was calculated automatically using a computer-assisted color analysis system that permits real-time color analysis during endoscopic procedures.
RESULTS: A total of 88 patients with 163 lesions were enrolled in this study. There were significant differences in the G/R ratios of hyperplastic polyps (non-neoplastic lesions), adenoma/intramucosal cancer/submucosal (SM) superficial cancer, and SM deep cancer (P < 0.0001). The mean ± SD G/R ratios were 0.984 ± 0.118 in hyperplastic polyps and 0.827 ± 0.081 in neoplastic lesions. The G/R ratios of hyperplastic polyps were significantly higher than those of neoplastic lesions (P < 0.001). When a G/R ratio cut-off value of > 0.89 was applied to determine non-neoplastic lesions, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 83.9%, 82.6%, 53.1%, 95.6% and 82.8%, respectively. For neoplastic lesions, the mean G/R ratio was 0.834 ± 0.080 in adenoma/intramucosal cancer/SM superficial cancer and 0.746 ± 0.045 in SM deep cancer. The G/R ratio of adenoma/intramucosal cancer/SM superficial cancer was significantly higher than that of SM deep cancer (P < 0.01). When a G/R ratio cut-off value of < 0.77 was applied to distinguish SM deep cancers, the sensitivity, specificity, PPV, NPV, and accuracy were 80.0%, 84.4%, 29.6%, 98.1% and 84.1%, respectively.
CONCLUSION: The novel AFI system with color analysis was effective in distinguishing non-neoplastic lesions from neoplastic lesions and might allow determination of the depth of invasion.
Collapse
|