1
|
Ren L, Xia J, Huang C, Bai Y, Yao J, Li D, Yan B. Single-cell transcriptomic analysis reveals the antiangiogenic role of Mgarp in diabetic retinopathy. BMJ Open Diabetes Res Care 2024; 12:e004189. [PMID: 39013633 PMCID: PMC11268071 DOI: 10.1136/bmjdrc-2024-004189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is a common vascular complication of diabetes mellitus and a leading cause of vision loss worldwide. Endothelial cell (EC) heterogeneity has been observed in the pathogenesis of DR. Elucidating the underlying mechanisms governing EC heterogeneity may provide novel insights into EC-specific therapies for DR. RESEARCH DESIGN AND METHODS We used the single-cell data from the Gene Expression Omnibus database to explore EC heterogeneity between diabetic retinas and non-diabetic retinas and identify the potential genes involved in DR. CCK-8 assays, EdU assays, transwell assays, and tube formation assays were conducted to determine the role of the identified gene in angiogenic effects. RESULTS Our analysis identified three distinct EC subpopulations in retinas and revealed that Mitochondria-localized glutamic acid-rich protein (Mgarp) gene is potentially involved in the pathogenesis of DR. Silencing of Mgarp significantly suppressed the proliferation, migration, and tube formation capacities in retinal endothelial cells. CONCLUSIONS This study not only offers new insights into transcriptomic heterogeneity and pathological alteration of retinal ECs but also holds the promise to pave the way for antiangiogenic therapy by targeting EC-specific gene.
Collapse
Affiliation(s)
- Ling Ren
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiao Xia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Woranush W, Moskopp ML, Noll T, Dieterich P. Quantifying and mathematical modelling of the influence of soluble adenylate cyclase on cell cycle in human endothelial cells with Bayesian inference. J Cell Mol Med 2022; 26:5887-5900. [DOI: 10.1111/jcmm.17611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Warunya Woranush
- Institut für Physiologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Mats Leif Moskopp
- Institut für Physiologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden Dresden Germany
- Vivantes Klinikum im Friedrichshain, Charité Academic Teaching Hospital, Klinik für Neurochirurgie Berlin Germany
| | - Thomas Noll
- Institut für Physiologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Peter Dieterich
- Institut für Physiologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| |
Collapse
|
3
|
Wang P, Xu D, Hu Y, Li H, Li A. Correlation between quantitative parameters of CEUS and Ki-67 labeling index in soft-tissue sarcoma. Acta Radiol 2022:2841851221115081. [PMID: 35903876 DOI: 10.1177/02841851221115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Apart from the immunohistochemical Ki-67 labeling index (LI), clinicians need a non-invasive and convenient way to predict the prognosis of patients with soft-tissue sarcoma (STS). PURPOSE To investigate the correlation between quantitative parameters of contrast-enhanced ultrasound (CEUS) and Ki-67 LI in STS. MATERIAL AND METHODS A total of 25 patients diagnosed with STS who underwent CEUS examination using SonoVue®, between January 2019 to November 2020, were included in the study. They were then divided into a high-proliferation group and low-proliferation group according to 30% Ki-67 positive tumor cells. The quantitative parameters in the semi-automatic time intensity curve analysis software, including arrival time, time to peak, peak intensity, rise time (RT), rise slope, 50% wash-out time, and 50% wash-out intensity, were extracted from the time intensity curve of CEUS by two independent observers. Statistical evaluation of the correlation and difference between CEUS quantitative parameters and Ki-67 LI between the two groups was performed. According to the area under the curve (AUC) analysis, optimal cutoff points of parameters with significant difference were determined. RESULTS CEUS RT of the high-proliferation group in STS was significantly higher than that of the low-proliferation group (ρ = 0.509, P = 0.01). The most reasonable cutoff to distinguish between low- and high-proliferation groups was 10.84 s. The sensitivity, specificity, and the AUC were 86.7%, 80%, and 0.80, respectively. CONCLUSION CEUS RT was correlated with Ki-67 LI of STS, which can be used as a minimally invasive auxiliary tool to predict the prognosis of STS in clinical practice.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Ultrasound, 162752Affiliated Zhongda Hospital of Southeast University, Nanjing, PR China
| | - Di Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yu Hu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ao Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
4
|
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 2021; 25:15-33. [PMID: 34499264 PMCID: PMC8813834 DOI: 10.1007/s10456-021-09817-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.
Collapse
Affiliation(s)
- James Dight
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Jilai Zhao
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| | - Jatin Patel
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia. .,Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| |
Collapse
|
5
|
Endothelial Heterogeneity in Development and Wound Healing. Cells 2021; 10:cells10092338. [PMID: 34571987 PMCID: PMC8469713 DOI: 10.3390/cells10092338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.
Collapse
|
6
|
Xia LZ, Tao J, Chen YJ, Liang LL, Luo GF, Cai ZM, Wang Z. Factors Affecting the Re-Endothelialization of Endothelial Progenitor Cell. DNA Cell Biol 2021; 40:1009-1025. [PMID: 34061680 DOI: 10.1089/dna.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The vascular endothelium, which plays an essential role in maintaining the normal shape and function of blood vessels, is a natural barrier between the circulating blood and the vascular wall tissue. The endothelial damage can cause vascular lesions, such as atherosclerosis and restenosis. After the vascular intima injury, the body starts the endothelial repair (re-endothelialization) to inhibit the neointimal hyperplasia. Endothelial progenitor cell is the precursor of endothelial cells and plays an important role in the vascular re-endothelialization. However, re-endothelialization is inevitably affected in vivo and in vitro by factors, which can be divided into two types, namely, promotion and inhibition, and act on different links of the vascular re-endothelialization. This article reviews these factors and related mechanisms.
Collapse
Affiliation(s)
- Lin-Zhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Tao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yan-Jun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Ling-Li Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Gui-Fang Luo
- Department of Gynaecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Ze-Min Cai
- Pediatrics Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
7
|
Chemical Inhibitors of Dynamin Exert Differential Effects in VEGF Signaling. Cells 2021; 10:cells10050997. [PMID: 33922806 PMCID: PMC8145957 DOI: 10.3390/cells10050997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
VEGFR2 is the main receptor and mediator of the vasculogenic and angiogenic activity of VEGF. Activated VEGFR2 internalizes through clathrin-mediated endocytosis and macropinocytosis. As dynamin is a key regulator of the clathrin pathway, chemical inhibitors of dynamin are commonly used to assess the role of the clathrin route in receptor signaling. However, drugs may also exert off-target effects. Here, we compare the effects of three dynamin inhibitors, dynasore, dyngo 4a and dynole, on VEGFR2 internalization and signaling. Although these drugs consistently inhibit clathrin-mediated endocytosis of both transferrin (a typical cargo of this route) and VEGFR2, surprisingly, they exert contradictory effects in receptor signaling. Thus, while dynasore has no effect on phosphorylation of VEGFR2, the other two drugs are strong inhibitors. Furthermore, although dyngo does not interfere with phosphorylation of Akt, dynasore and dynole have a strong inhibitory effect. These inconsistent effects suggest that the above dynamin blockers, besides inhibiting dynamin-dependent endocytosis of VEGFR2, exert additional inhibitory effects on signaling that are independent of endocytosis; i.e., they are due to off-target effects. Using a recently developed protocol, we comparatively validate the specificity of two endocytic inhibitors, dynasore and EIPA. Our findings highlight the importance of assessing whether the effect of an endocytic drug on signaling is specifically due to its interference with endocytosis or due to off-targets.
Collapse
|
8
|
Rieger J, Kaessmeyer S, Al Masri S, Hünigen H, Plendl J. Endothelial cells and angiogenesis in the horse in health and disease-A review. Anat Histol Embryol 2020; 49:656-678. [PMID: 32639627 DOI: 10.1111/ahe.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The cardiovascular system is the first functional organ in the embryo, and its blood vessels form a widespread conductive network within the organism. Blood vessels develop de novo, by the differentiation of endothelial progenitor cells (vasculogenesis) or by angiogenesis, which is the formation of new blood vessels from existing ones. This review presents an overview of the current knowledge on physiological and pathological angiogenesis in the horse including studies on equine endothelial cells. Principal study fields in equine angiogenesis research were identified: equine endothelial progenitor cells; equine endothelial cells and angiogenesis (heterogeneity, markers and assessment); endothelial regulatory molecules in equine angiogenesis; angiogenesis research in equine reproduction (ovary, uterus, placenta and conceptus, testis); angiogenesis research in pathological conditions (tumours, ocular pathologies, equine wound healing, musculoskeletal system and laminitis). The review also includes a table that summarizes in vitro studies on equine endothelial cells, either describing the isolation procedure or using previously isolated endothelial cells. A particular challenge of the review was that results published are fragmentary and sometimes even contradictory, raising more questions than they answer. In conclusion, angiogenesis is a major factor in several diseases frequently occurring in horses, but relatively few studies focus on angiogenesis in the horse. The challenge for the future is therefore to continue exploring new therapeutic angiogenesis strategies for horses to fill in the missing pieces of the puzzle.
Collapse
Affiliation(s)
- Juliane Rieger
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Salah Al Masri
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Hana Hünigen
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Aref-Eshghi E, Biswas S, Chen C, Sadikovic B, Chakrabarti S. Glucose-induced, duration-dependent genome-wide DNA methylation changes in human endothelial cells. Am J Physiol Cell Physiol 2020; 319:C268-C276. [PMID: 32459505 DOI: 10.1152/ajpcell.00011.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a critical epigenetic mechanism, plays an important role in governing gene expressions during biological processes such as aging, which is well known to be accelerated in hyperglycemia (diabetes). In the present study, we investigated the effects of glucose on whole genome DNA methylation in small [human retinal microvascular endothelial cells (HRECs)] and large [human umbilical vein endothelial cells (HUVECs)] vessel endothelial cell (EC) lines exposed to basal or high glucose-containing media for variable lengths of time. Using the Infinium EPIC array, we obtained 773,133 CpG sites (probes) for analysis. Unsupervised clustering of the top 5% probes identified four distinct clusters within EC groups, with significant methylation differences attributed to EC types and the duration of cell culture rather than glucose stimuli alone. When comparing the ECs incubated for 2 days versus 7 days, hierarchical clustering analyses [methylation change >10% and false discovery rate (FDR) <0.05] identified 17,354 and 128 differentially methylated CpGs for HUVECs and HRECs, respectively. Predominant DNA hypermethylation was associated with the length of culture and was enriched for gene enhancer elements and regions surrounding CpG shores and shelves. We identified 88 differentially methylated regions (DMRs) for HUVECs and 8 DMRs for HRECs (all FDR <0.05). Pathway enrichment analyses of DMRs highlighted involvement of regulators of embryonic development (i.e., HOX genes) and cellular differentiation [transforming growth factor-β (TGF-β) family members]. Collectively, our findings suggest that DNA methylation is a complex process that involves tightly coordinated, cell-specific mechanisms. Such changes in methylation overlap genes critical for cellular differentiation and embryonic development.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Charlie Chen
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Haiaty S, Rashidi MR, Akbarzadeh M, Maroufi NF, Yousefi B, Nouri M. Targeting vasculogenic mimicry by phytochemicals: A potential opportunity for cancer therapy. IUBMB Life 2020; 72:825-841. [PMID: 32026601 DOI: 10.1002/iub.2233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Vasculogenic mimicry (VM) is regarded as a process where very aggressive cancer cells generate vascular-like patterns without the presence of endothelial cells. It is considered as the main mark of malignant cancer and has pivotal role in cancer metastasis and progression in various types of cancers. On the other hand, resistance to the antiangiogenesis therapies leads to the cancer recurrence. Therefore, development of novel chemotherapies and their combinations is urgently needed for abolition of VM structures and also for better tumor therapy. Hence, identifying compounds that target VM structures might be superior therapeutic factors for cancers treatment and controlling the recurrence and metastasis. In recent times, naturally occurring compounds, especially phytochemicals have obtained great attention due to their safe properties. Phytochemicals are also capable of targeting VM structure and also their main signaling pathways. Consequently, in this review article, we illustrated key signaling pathways in VM, and the phytochemicals that affect these structures including curcumin, genistein, lycorine, luteolin, columbamine, triptolide, Paris polyphylla, dehydroeffusol, jatrorrhizine hydrochloride, grape seed proanthocyanidins, resveratrol, isoxanthohumol, dehydrocurvularine, galiellalactone, oxacyclododecindione, brucine, honokiol, ginsenoside Rg3, and norcantharidin. The recognition of these phytochemicals and their safety profile may lead to new therapeutic agents' development for VM elimination in different types of tumors.
Collapse
Affiliation(s)
- Sanya Haiaty
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nazila F Maroufi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Chen WZ, Jiang JX, Yu XY, Xia WJ, Yu PX, Wang K, Zhao ZY, Chen ZG. Endothelial cells in colorectal cancer. World J Gastrointest Oncol 2019; 11:946-956. [PMID: 31798776 PMCID: PMC6883186 DOI: 10.4251/wjgo.v11.i11.946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
The dependence of tumor growth on neovascularization has become an important aspect of cancer biology. Tumor angiogenesis is one of the key mechanisms of tumorigenesis, growth and metastasis. The key events involved in this process are endothelial cell proliferation, migration, and vascular formation. Recent studies have revealed the importance of tumor-associated endothelial cells (TECs) in the development and progression of colorectal cancer (CRC), including epithelial proliferation, stem cell maintenance, angiogenesis, and immune remodeling. Decades of research have identified that the molecular basis of tumor angiogenesis includes vascular endothelial growth factors (VEGFs) and their receptor family, which are the main targets of antiangiogenesis therapy. VEGFs and their receptors play key roles in the pathology of angiogenesis, and their overexpression indicates poor prognosis in CRC. This article reviews the characteristics of the tumor vasculature and the role of TECs in different stages of CRC and immune remodeling. We also discuss the biological effects of VEGFs and their receptor family as angiogenesis regulators and emphasize the clinical implications of TECs in clinical treatment.
Collapse
Affiliation(s)
- Wu-Zhen Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jing-Xin Jiang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xiu-Yan Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wen-Jie Xia
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Xin Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Ke Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhi-Yong Zhao
- Department of Administrative Office, the First People’s Hospital of Jiande, Hangzhou 310000, Zhejiang Province, China
| | - Zhi-Gang Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
13
|
Han Y, Tao J, Gomer A, Ramirez-Bergeron DL. Loss of endothelial-ARNT in adult mice contributes to dampened circulating proangiogenic cells and delayed wound healing. Vasc Med 2014; 19:429-41. [PMID: 25398385 DOI: 10.1177/1358863x14559588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recruitment and homing of circulating bone marrow-derived cells include endothelial progenitor cells (EPCs) that are critical to neovascularization and tissue regeneration of various vascular pathologies. We report here that conditional inactivation of hypoxia-inducible factor's (HIF) transcriptional activity in the endothelium of adult mice (Arnt(ΔiEC) mice) results in a disturbance of infiltrating cells, a hallmark of neoangiogenesis, during the early phases of wound healing. Cutaneous biopsy punches show distinct migration of CD31(+) cells into wounds of control mice by 36 hours. However, a significant decline in numbers of infiltrating cells with immature vascular markers, as well as decreased transcript levels of genes associated with their expression and recruitment, were identified in wounds of Arnt(ΔiEC) mice. Matrigel plug assays further confirmed neoangiogenic deficiencies alongside a reduction in numbers of proangiogenic progenitor cells from bone marrow and peripheral blood samples of recombinant vascular endothelial growth factor-treated Arnt(ΔiEC) mice. In addition to HIF's autocrine requirements in endothelial cells, our data implicate that extrinsic microenvironmental cues provided by endothelial HIF are pivotal for early migration of proangiogenic cells, including those involved in wound healing.
Collapse
Affiliation(s)
- Yu Han
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Jiayi Tao
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alla Gomer
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
14
|
De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25:33-46. [PMID: 24406210 DOI: 10.1016/j.semcancer.2013.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023]
Abstract
Malignant cancer cells do not act as lone wolves to achieve metastasis, as they exist within a complex ecosystem consisting of an extracellular matrix scaffold populated by carcinoma-associated fibroblasts (CAFs), endothelial cells and immune cells. We recognize local (primary tumor) and distant ecosystems (metastasis). CAFs, also termed myofibroblasts, may have other functions in the primary tumor versus the metastasis. Cellular origin and tumor heterogeneity lead to the expression of specific markers. The molecular characteristics of a CAF remain in evolution since CAFs show operational flexibility. CAFs respond dynamically to a cancer cell's fluctuating demands by shifting profitable signals necessary in metastasis. Local, tissue-resident fibroblasts and mesenchymal stem cells (MSCs) coming from reservoir sites such as bone marrow and adipose tissue are the main progenitor cells of CAFs. CAFs may induce awakening from metastatic dormancy, a major cause of cancer-specific death. Cancer management protocols influence CAF precursor recruitment and CAF activation. Since CAF signatures represent early changes in metastasis, including formation of pre-metastatic niches, we discuss whether liquid biopsies, including exosomes, may detect and monitor CAF reactions allowing optimized prognosis of cancer patients.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium.
| | | | - Marc Mareel
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
Li X, Mearns SM, Martins-Green M, Liu Y. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip. J Vis Exp 2013:e50771. [PMID: 24193102 DOI: 10.3791/50771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Efforts have been focused on developing in vitro assays for the study of microvessels because in vivo animal studies are more time-consuming, expensive, and observation and quantification are very challenging. However, conventional in vitro microvessel assays have limitations when representing in vivo microvessels with respect to three-dimensional (3D) geometry and providing continuous fluid flow. Using a combination of photolithographic reflowable photoresist technique, soft lithography, and microfluidics, we have developed a multi-depth circular cross-sectional endothelialized microchannels-on-a-chip, which mimics the 3D geometry of in vivo microvessels and runs under controlled continuous perfusion flow. A positive reflowable photoresist was used to fabricate a master mold with a semicircular cross-sectional microchannel network. By the alignment and bonding of the two polydimethylsiloxane (PDMS) microchannels replicated from the master mold, a cylindrical microchannel network was created. The diameters of the microchannels can be well controlled. In addition, primary human umbilical vein endothelial cells (HUVECs) seeded inside the chip showed that the cells lined the inner surface of the microchannels under controlled perfusion lasting for a time period between 4 days to 2 weeks.
Collapse
Affiliation(s)
- Xiang Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University
| | | | | | | |
Collapse
|
16
|
Microvesicles as potential ovarian cancer biomarkers. BIOMED RESEARCH INTERNATIONAL 2013; 2013:703048. [PMID: 23484144 PMCID: PMC3581088 DOI: 10.1155/2013/703048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
Although the incidence of ovarian cancer is low (i.e., less than 5% in European countries), it is the most lethal gynecologic malignancy and typically has a poor prognosis. To ensure optimal survival, it is important to diagnose this condition when the pathology is confined to the ovary. However, this is difficult to achieve because the first specific symptoms appear only during advanced disease stages. To date, the biomarker mainly used for the diagnosis and prognosis of ovarian cancer is CA125; however, this marker has a low sensitivity and specificity and is associated with several other physiological and pathological conditions. No other serum ovarian cancer markers appear to be able to replace or complement CA125, and the current challenge is therefore to identify novel markers for the early diagnosis of this disease. For this purpose, studies have focused on the microvesicles (MVs) released from tumor cells. MVs may represent an ideal biomarker because they can be easily isolated from blood, and they have particular features (mainly regarding microRNA profiles) that strongly correlate with ovarian cancer stage and may be effective for early diagnosis.
Collapse
|
17
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
18
|
D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 2012; 26:1287-99. [PMID: 22713869 DOI: 10.1101/gad.192351.112] [Citation(s) in RCA: 416] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the study of tumor-derived microvesicles reveal new insights into the cellular basis of disease progression and the potential to translate this knowledge into innovative approaches for cancer diagnostics and personalized therapy. Tumor-derived microvesicles are heterogeneous membrane-bound sacs that are shed from the surfaces of tumor cells into the extracellular environment. They have been thought to deposit paracrine information and create paths of least resistance, as well as be taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. The complexity of their bioactive cargo-which includes proteins, RNA, microRNA, and DNA-suggests multipronged mechanisms by which microvesicles can condition the extracellular milieu to facilitate disease progression. The formation of these shed vesicles likely involves both a redistribution of surface lipids and the vertical trafficking of cargo to sites of microvesicle biogenesis at the cell surface. Current research also suggests that molecular profiling of these structures could unleash their potential as circulating biomarkers as well as platforms for personalized medicine. Thus, new and improved strategies for microvesicle identification, isolation, and capture will have marked implications in point-of-care diagnostics for cancer patients.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
19
|
Bruder E, Alaggio R, Kozakewich HPW, Jundt G, Dehner LP, Coffin CM. Vascular and perivascular lesions of skin and soft tissues in children and adolescents. Pediatr Dev Pathol 2012; 15:26-61. [PMID: 22420724 DOI: 10.2350/11-11-1119-pb.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vascular anomalies in children and adolescents are the most common soft tissue lesions and include reactive, malformative, and neoplastic tumefactions, with a full spectrum of benign, intermediate, and malignant neoplasms. These lesions are diagnostically challenging because of morphologic complexity and recent changes in classification systems, some of which are based on clinical features and others on pathologic findings. In recent decades, there have been significant advances in clinical diagnosis, development of new therapies, and a better understanding of the genetic aspects of vascular biology and syndromes that include unusual vascular proliferations. Most vascular lesions in children and adolescents are benign, although the intermediate locally aggressive and intermediate rarely metastasizing neoplasms are important to distinguish from benign and malignant mimics. Morphologic recognition of a vasoproliferative lesion is straightforward in most instances, and conventional morphology remains the cornerstone for a specific diagnosis. However, pathologic examination is enhanced by adjunctive techniques, especially immunohistochemistry to characterize the type of vessels involved. Multifocality may cause some uncertainty regarding the assignment of "benign" or "malignant." However, increased interest in vascular anomalies, clinical expertise, and imaging technology have contributed greatly to our understanding of these disorders to the extent that in most vascular malformations and in many tumors, a diagnosis is made clinically and biopsy is not required for diagnosis. The importance of close collaboration between the clinical team and the pathologist cannot be overemphasized. For some lesions, a diagnosis is not possible from evaluation of histopathology alone, and in a subset of these, a specific diagnosis may not be possible even after all assembled data have been reviewed. In such instances, a consensus diagnosis in conjunction with clinical colleagues guides therapy. The purpose of this review is to delineate the clinicopathologic features of vascular lesions in children and adolescents with an emphasis on their unique aspects, use of diagnostic adjuncts, and differential diagnosis.
Collapse
Affiliation(s)
- Elisabeth Bruder
- Institute for Pathology, Hospital of the University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Bahrami SB, Veiseh M, Dunn AA, Boudreau NJ. Temporal changes in Hox gene expression accompany endothelial cell differentiation of embryonic stem cells. Cell Adh Migr 2011; 5:133-41. [PMID: 21200152 DOI: 10.4161/cam.5.2.14373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In pluripotent embryonic stem cells (ESCs), expression of the Hox master regulatory transcription factors that play essential roles in organogenesis, angiogenesis, and maintenance of differentiated tissues, is globally suppressed. We investigated whether differentiation of endothelial cells (ECs) from mouse ESCs was accompanied by activation of distinct Hox gene expression profiles. Differentiation was observed within 3 days, as indicated by the appearance of cells expressing specific endothelial marker genes (Flk-1+ /VE-Cadherin+ ). Expression of HoxA3 and HoxD3, which drive adult endothelial cell invasion and angiogenesis, peaked at day 3 and declined thereafter, whereas expression of HoxA5 and HoxD10, which maintain a mature quiescent EC phenotype, was low at day 3, but increased over time. The temporal and reciprocal changes in HoxD3 and HoxA5 expression were accompanied by corresponding changes in expression of established downstream target genes including integrin β3 and Thrombospondin-2. Our results indicate that differentiation and maturation of ECs derived from cultured ESCs mimic changes in Hox gene expression that accompany maturation of immature angiogenic endothelium into differentiated quiescent endothelium in vivo.
Collapse
Affiliation(s)
- S Bahram Bahrami
- Department of Surgery; University of California-San Francisco, CA, USA
| | | | | | | |
Collapse
|
21
|
Lee EJ, Niklason LE. A novel flow bioreactor for in vitro microvascularization. Tissue Eng Part C Methods 2011; 16:1191-200. [PMID: 20170423 DOI: 10.1089/ten.tec.2009.0652] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the importance of fluid flow for proper vascular development and function in vivo is well recognized, microvascular formation in response to flow has not been well evaluated in a three-dimensional (3D) environment in vitro. In this study, we developed a novel 3D in vitro perfusion system that allows direct investigation of the effects of shear stress on the development of microvasculature in vitro. This system utilizes a 3D collagen gel for suspension of vascular cells and mesenchymal stem cells, through which flow is directly perfused. We characterized the flow conditions and demonstrate the impact of flow on the development of microvasculature using a coculture of endothelial cells and mesenchymal stem cells. With the unique ability to apply bulk flow through the collagen gels, and to estimate shear stress within the constructs, this perfusion system provides a flexible platform for developing a controllable biomimetic environment that can be adapted for a variety of investigations of microvascularization.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Sajithlal GB, McGuire TF, Lu J, Beer-Stolz D, Prochownik EV. Endothelial-like cells derived directly from human tumor xenografts. Int J Cancer 2010; 127:2268-78. [PMID: 20162569 DOI: 10.1002/ijc.25251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor-associated endothelial cells (TAECs) harboring various genomic abnormalities have been described in human cancers although their origins remain obscure. We generated 4 human cancer cell lines tagged with multiple markers, grew them as xenografts, and characterized their TAECs. Depending on their tumor of origin, 5-40% of TAECs reproducibly expressed all tags. Tagged TAECs (tTAECS) were morphologically, immunologically and functionally similar, although not identical, to normal endothelial cells (ECs) and contained only human chromosomes. tTAECs underwent a senescent-like proliferative arrest after several in vitro passages, but could be immortalized by telomerase, thus allowing us to show that the retention of the EC phenotype was of long-term duration. In contrast, nonimmortalized tTAECs could be propagated in vivo where they incorporated into the tumor neo-vasculature. Although consistent with previous reports that some tumor cells may undergo "vasculogenic mimicry" (VM), the tumor-derived endothelial-like cells described here appear distinctly different. Moreover, their properties and behaviors are more durable than expected for cells undergoing VM, are not the result of fusions between ECs and tumor cells, and are cell autonomous. These findings could have significant implications for therapies that target tumor angiogenesis.
Collapse
Affiliation(s)
- Gangadharan B Sajithlal
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | | | | | | |
Collapse
|
23
|
Kuijpers SA, Coimbra MJ, Storm G, Schiffelers RM. Liposomes targeting tumour stromal cells. Mol Membr Biol 2010; 27:328-40. [PMID: 20939769 DOI: 10.3109/09687688.2010.522204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liposomes have found clinical application in cancer therapy in the delivery of cytostatic agents. As a result of the targeted delivery of these toxic molecules to the tumour cells coupled to avoidance of toxicity-sensitive tissues, the therapeutic window is widened. Over the past years the focus of cancer therapy has shifted towards the stromal cells that are present in the tumour. It appears that clinically relevant tumours have acquired the ability to modulate the microenvironment in such a way that a chronic pro-inflammatory and pro-angiogenic state is achieved that contributes to invasion and metastasis and continued proliferation. Over the past years, liposomal formulations have been designed that target key stromal cell types that contribute to tumour growth. At the same time, many promising cell types have not been targeted yet and most of the studies employ drugs that aim at depleting stromal cells rather than modulating their activity towards an anti-tumour phenotype. In this review these target cell types will be addressed. Complementing these targeted formulations with the appropriate drugs to optimally suppress tumour-promoting signals while preserving anti-tumour action will be the challenge for the future.
Collapse
Affiliation(s)
- Sylvia A Kuijpers
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
24
|
Wu R, Zhao X, Wang Z, Zhou M, Chen Q. Novel Molecular Events in Oral Carcinogenesis via Integrative Approaches. J Dent Res 2010; 90:561-72. [PMID: 20940368 DOI: 10.1177/0022034510383691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R.Q. Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - X.F. Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Z.Y. Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - M. Zhou
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Q.M. Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
25
|
Tumor angiogenesis: insights and innovations. JOURNAL OF ONCOLOGY 2010; 2010:132641. [PMID: 20445741 PMCID: PMC2860112 DOI: 10.1155/2010/132641] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.
Collapse
|
26
|
Wang M, Su Y, Sun H, Wang T, Yan G, Ran X, Wang F, Cheng T, Zou Z. Induced endothelial differentiation of cells from a murine embryonic mesenchymal cell line C3H/10T1/2 by angiogenic factors in vitro. Differentiation 2010; 79:21-30. [PMID: 19726123 DOI: 10.1016/j.diff.2009.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 02/07/2023]
Abstract
A murine embryonic mesenchymal cell line C3H/10T1/2 possesses the potential to differentiate into multiple cell phenotypes and has been recognized as multipotent mesenchymal stem cells, but no in vitro model of its endothelial differentiation has been established and the effect of angiogenic factors on the differentiation is unknown. The aim of the present study was to evaluate the role of angiogenic factors in inducing endothelial differentiation of C3H/10T1/2 cells in vitro. C3H/10T1/2 cells were treated with angiogenic factors, VEGF (10 ng/mL) and bFGF (5 ng/mL). At specified time points, cells were subjected to morphological study, immunofluorescence staining, RT-PCR, LDL-uptake tests and 3-D culture for the examination of the structural and functional characteristics of endothelial cells. Classic cobblestone-like growth pattern appeared at 6 day of the induced differentiation. Immunofluorescence staining and RT-PCR analyses revealed that the induced cells exhibited endothelial cell-specific markers such as CD31, von Willebrand factor, Flk1, Flt1, VE-cadherin, Tie2, EphrinB2 and Vezf1 at 9 day. The induced C3H/10T1/2 cells exhibited functional characteristics of the mature endothelial phenotype, such as uptake of acetylated low-density lipoproteins (Ac-LDL) and formation of capillary-like structures in three-dimensional culture. At 9 day, Weibel-Palade bodies were observed under a transmission electron microscope. This study demonstrates, for the first time, endothelial differentiation of C3H/10T1/2 cells induced by angiogenic factors, VEGF and bFGF, and confirms the multipotential differentiation ability. This in vitro model is useful for investigating the molecular events in endothelial differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Mingke Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:103-20. [PMID: 19800930 DOI: 10.1016/j.bbamcr.2009.09.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 02/04/2023]
Abstract
A number of extensive reviews are available discussing the roles of MMPs in various aspects of cancer progression from benign tumor formation to overt cancer present with deadly metastases. This review will focus specifically on the evidence functionally linking the MMPs and tumor-induced angiogenesis in various in vivo models. Emphasis has been placed on the cellular origin of the MMPs in tumor tissue, the requirement of proMMP activation and the resulting proteolytic activity for the induction and progression of tumor angiogenesis, and the pleiotropic roles for some of the MMPs. The functional mechanisms of the angiogenic MMPs are discussed as well as their catalytic detection in complex biological systems. In addition, the contribution of active MMPs to metastatic spread and establishment of secondary metastasis will be discussed in view of the findings indicating that MMPs are involved in the preparation of pre-metastatic niches. Finally, the most recent evidence, indicating the pro-metastatic consequences of anti-angiogenic therapies employing MMP inhibitors will be presented as examples highlighting possible outcomes of interfering with the pleiotropic nature of the MMP functionality.
Collapse
|
28
|
Skivka LM, Gorbik GV, Fedorchuk OG, Pozur VV. Tumor-associated macrophages in the prospect of development of targeted anticancer. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709040094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
|
30
|
Shojaei F, Ferrara N. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat 2008; 11:219-30. [PMID: 18948057 DOI: 10.1016/j.drup.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 12/11/2022]
Abstract
Angiogenesis is critical for growth of many tumor types and the development of anti-angiogenic agents opened a new era in cancer therapy. However, similar to other anti-cancer therapies, inherent/acquired resistance to anti-angiogenic drugs may occur in cancer patients leading to disease recurrence. Recent studies in several experimental models suggest that both tumor and non-tumor (stromal) cell types may be involved in the reduced responsiveness to the treatments. The current review focuses on the role of stromal cells in tumor growth and in refractoriness to anti-VEGF treatment.
Collapse
Affiliation(s)
- Farbod Shojaei
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
31
|
Infanger M, Ulbrich C, Baatout S, Wehland M, Kreutz R, Bauer J, Grosse J, Vadrucci S, Cogoli A, Derradji H, Neefs M, Küsters S, Spain M, Paul M, Grimm D. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem 2008; 101:1439-55. [PMID: 17340622 DOI: 10.1002/jcb.21261] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many space missions have shown that prolonged space flights may increase the risk of cardiovascular problems. Using a three-dimensional clinostat, we investigated human endothelial EA.hy926 cells up to 10 days under conditions of simulated microgravity (microg) to distinguish transient from long-term effects of microg and 1g. Maximum expression of all selected genes occurred after 10 min of clinorotation. Gene expression (osteopontin, Fas, TGF-beta(1)) declined to slightly upregulated levels or rose again (caspase-3) after the fourth day of clinorotation. Caspase-3, Bax, and Bcl-2 protein content was enhanced for 10 days of microgravity. In addition, long-term accumulation of collagen type I and III and alterations of the cytoskeletal alpha- and beta-tubulins and F-actin were detectable. A significantly reduced release of soluble factors in simulated microgravity was measured for brain-derived neurotrophic factor, tissue factor, vascular endothelial growth factor (VEGF), and interestingly for endothelin-1, which is important in keeping cardiovascular balances. The gene expression of endothelin-1 was suppressed under microg conditions at days 7 and 10. Alterations of the vascular endothelium together with a decreased release of endothelin-1 may entail post-flight health hazards for astronauts.
Collapse
Affiliation(s)
- Manfred Infanger
- Department of Trauma and Reconstructive Surgery, Charité-University Medical School, Benjamin Franklin Medical Center, Center of Space Medicine, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Radek KA, Baer LA, Eckhardt J, DiPietro LA, Wade CE. Mechanical unloading impairs keratinocyte migration and angiogenesis during cutaneous wound healing. J Appl Physiol (1985) 2008; 104:1295-303. [PMID: 18292299 DOI: 10.1152/japplphysiol.00977.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although initially thought to improve an individual's ability to heal, mechanical unloading promoted by extended periods of bed rest has emerged as a contributing factor to delayed or aberrant tissue repair. Using a rat hindlimb unloading (HLU) model of hypogravity, we mimicked some aspects of physical inactivity by removing weight-bearing loads from the hindlimbs and producing a systemic cephalic fluid shift. This model simulates bed rest in that the animal undergoes physiological adaptations, resulting in a reduction in exercise capability, increased frequency of orthostatic intolerance, and a reduction in plasma volume. To investigate whether changes associated with prior prolonged bed rest correlate with impaired cutaneous wound healing, we examined wound closure, angiogenesis, and collagen content in day 2 to day 21 wounds from rats exposed to HLU 2 wk before excisional wounding. Wound closure was delayed in day 2 wounds from HLU rats compared with ambulatory controls. Although the levels of proangiogenic growth factors, fibroblast growth factor-2 (FGF-2), and vascular endothelial growth factor (VEGF) were similar between the two groups, wound vascularity was significantly reduced in day 7 wounds from HLU animals. To further examine this disparity, total collagen content was assessed but found to be similar between the two groups. Taken together, these results suggest that keratinocyte and endothelial cell function may be impaired during the wound healing process under periods of prolonged inactivity or bed rest.
Collapse
Affiliation(s)
- Katherine A Radek
- Department of Medicine, University of California-San Diego, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
33
|
Douville JM, Wigle JT. Regulation and function of homeodomain proteins in the embryonic and adult vascular systems. Can J Physiol Pharmacol 2007; 85:55-65. [PMID: 17487245 DOI: 10.1139/y06-091] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During embryonic development, the cardiovascular system first forms and then gives rise to the lymphatic vascular system. Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. These genes all encode proteins that are transcription factors that contain a well conserved DNA binding motif, the homeodomain. It is through the homeodomain that these transcription factors bind to the promoters of target genes and regulate their expression. Although many homeodomain proteins have been found to be expressed within the vascular systems, little is known about their downstream target genes. This review highlights recent advances made in the identification of novel genes downstream of the homeodomain proteins that are necessary for regulating vascular cellular processes such as proliferation, migration, and endothelial tube formation. Factors known to regulate the functions of vascular cells via modulating the expression of homeobox genes will be discussed. We will also review current methods used to identify and characterize downstream target genes of homeodomain proteins.
Collapse
Affiliation(s)
- Josette M Douville
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | | |
Collapse
|
34
|
Lake AC, Vassy R, Di Benedetto M, Lavigne D, Le Visage C, Perret GY, Letourneur D. Low Molecular Weight Fucoidan Increases VEGF165-induced Endothelial Cell Migration by Enhancing VEGF165 Binding to VEGFR-2 and NRP1. J Biol Chem 2006; 281:37844-52. [PMID: 17028197 DOI: 10.1074/jbc.m600686200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.
Collapse
Affiliation(s)
- Andrew C Lake
- INSERM, U 698, Bioengineering Department, X. Bichat Hospital, 75018 Paris, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Spontaneously arising tumor cells are not usually angiogenic at first. The phenotypic switch to angiogenesis is usually accomplished by a substet that induces new capillaries that then converge toward the tumor. The switch clearly involves more than simple upregulation of angiogenic activity and is thought to be the result of a net balance of positive and negative regulators. Tumor growth is although to require disruption of this balance and hence this switch must turned on for cancer progression. Progenitor endothelial cells, the crosstalk between angiogenic factors and their receptors and the interaction between vasculogenesis and lymphangiogenesis are all factors that may contribute to the switch. Its promotion is also the outcome of genetic instability resulting in the emergence of tumor cell lines. This review describes the history of the angiogenic switch illustrated in the literature and with particular reference to the three transgenic mouse models, namely RIP1-TAG2, keratin-14 (K14) (human papilloma virus) HPV16 and papilloma virus, used for stage-specific assessment of the effects of antiangiogenic and antitumorigenic agents.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | | | | | |
Collapse
|
36
|
Bauer SM, Bauer RJ, Velazquez OC. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc Endovascular Surg 2006; 39:293-306. [PMID: 16079938 DOI: 10.1177/153857440503900401] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A key central stage of wound healing requires neovascularization of the wound base granulation tissue. In the adult, neovascularization is now known to occur by both angiogenesis and vasculogenesis. Understanding the biology of these 2 processes offers promising new therapeutic options for patients who suffer from chronic, nonhealing ischemic wounds. The authors review the current literature on the processes of angiogenesis and vasculogenesis and how it relates to wound healing.
Collapse
Affiliation(s)
- Stephen M Bauer
- University of Pennsylvania, Department of Surgery, Philadelphia, PA 19124, USA
| | | | | |
Collapse
|
37
|
Infanger M, Kossmehl P, Shakibaei M, Baatout S, Witzing A, Grosse J, Bauer J, Cogoli A, Faramarzi S, Derradji H, Neefs M, Paul M, Grimm D. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis 2006; 11:749-64. [PMID: 16528471 DOI: 10.1007/s10495-006-5697-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endothelial cells play a crucial role in the pathogenesis of many diseases and are highly sensitive to low gravity conditions. Using a three-dimensional random positioning machine (clinostat) we investigated effects of simulated weightlessness on the human EA.hy926 cell line (4, 12, 24, 48 and 72 h) and addressed the impact of exposure to VEGF (10 ng/ml). Simulated microgravity resulted in an increase in extracellular matrix proteins (ECMP) and altered cytoskeletal components such as microtubules (alpha-tubulin) and intermediate filaments (cytokeratin). Within the initial 4 h, both simulated microgravity and VEGF, alone, enhanced the expression of ECMP (collagen type I, fibronectin, osteopontin, laminin) and flk-1 protein. Synergistic effects between microgravity and VEGF were not seen. After 12 h, microgravity further enhanced all proteins mentioned above. Moreover, clinorotated endothelial cells showed morphological and biochemical signs of apoptosis after 4 h, which were further increased after 72 h. VEGF significantly attenuated apoptosis as demonstrated by DAPI staining, TUNEL flow cytometry and electron microscopy. Caspase-3, Bax, Fas, and 85-kDa apoptosis-related cleavage fragments were clearly reduced by VEGF. After 72 h, most surviving endothelial cells had assembled to three-dimensional tubular structures. Simulated weightlessness induced apoptosis and increased the amount of ECMP. VEGF develops a cell-protective influence on endothelial cells exposed to simulated microgravity.
Collapse
Affiliation(s)
- M Infanger
- Department of Trauma and Reconstructive Surgery, Charité-University Medical School, Benjamin Franklin Medical Center Center of Space Medicine Berlin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murakami Y, Yamagoe S, Noguchi K, Takebe Y, Takahashi N, Uehara Y, Fukazawa H. Ets-1-dependent expression of vascular endothelial growth factor receptors is activated by latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus through interaction with Daxx. J Biol Chem 2006; 281:28113-21. [PMID: 16861237 DOI: 10.1074/jbc.m602026200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptors are highly expressed in Kaposi's sarcoma (KS) lesion and play a key role in angiogenesis. Latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) has multiple functions related to viral latency and KSHV-induced oncogenesis. In this report, we have identified Daxx as a LANA-binding protein by co-immunoprecipitation analysis of HeLa cells stably expressing LANA. LANA associated with Daxx in a PEL cell line infected with KSHV. LANA and Daxx also bound in vitro, suggesting direct interaction. From the results of binding assays, a region containing the Glu/Asp-rich domain within LANA, and a central region including the second paired amphipathic helix within Daxx contributed to the interaction. To address the physiological significance of this interaction, we focused on a Daxx-mediated VEGF receptor gene regulation. We found that Daxx repressed Ets-1-dependent Flt-1/VEGF receptor-1 gene expression, and that LANA inhibited the repression by Daxx in a reporter assay. Analyses of flow cytometry and real-time PCR revealed that expression of VEGF receptor-1 and -2 in LANA-expressing human umbilical vein endothelial cells (HUVECs) significantly increased. Co-immunoprecipitation and immunoblotting experiments suggested that LANA-bound Daxx to inhibit the interaction between Daxx and Ets-1. Chromatin immunoprecipitation assays showed that Daxx associated with VEGF receptor-1 promoter in HUVECs, and that LANA expression reduced this association. These results suggested that LANA contributes to a high expression of VEGF receptors in KS lesion by interfering with the interaction between Daxx and Ets-1.
Collapse
Affiliation(s)
- Yuko Murakami
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo 162, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Yazawa H, Murakami T, Li HM, Back T, Kurosaka K, Suzuki Y, Shorts L, Akiyama Y, Maruyama K, Parsoneault E, Wiltrout RH, Watanabe M. Hydrodynamics-based gene delivery of naked DNA encoding fetal liver kinase-1 gene effectively suppresses the growth of pre-existing tumors. Cancer Gene Ther 2006; 13:993-1001. [PMID: 16763608 DOI: 10.1038/sj.cgt.7700970] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antiangiogenic gene therapy is a promising strategy for cancer treatment, which generally requires highly efficient delivery systems. To date, success of this strategy has depended almost exclusively on the delivery of high titers of viral vectors, which can result in effective transgene expression. However, their cytotoxicity and immunogenicity are a major concern for clinical applications. Recent advances in delivery efficiency of naked DNA could potentially meet the requirement for both high transgene expression and minimal side effects. To investigate whether naked DNA can be used for antiangiogenic cancer therapy, an expression plasmid was generated that encodes a soluble form of fetal liver kinase-1 (Flk-1) gene, a receptor for vascular endothelial growth factor (VEGF). Hydrodynamic injection of this plasmid resulted in close to 0.1 mg/ml of soluble Flk-1 protein in mouse serum and blocked VEGF-driven angiogenesis in matrigel in vivo. The same delivery significantly suppressed the growth of two different pre-existing subcutaneous tumors, Renca renal cell carcinoma and 3LL lung carcinoma. CD31 immunohistochemistry revealed that the tumor-associated angiogenesis was also highly attenuated in soluble Flk-1-treated mice. Thus, expression of genes by hydrodynamics-based gene delivery of naked DNA appears to be a promising approach for antiangiogenic cancer gene therapy.
Collapse
Affiliation(s)
- H Yazawa
- Laboratory of Experimental Immunology, NCI Center for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Soucy NV, Mayka D, Klei LR, Nemec AA, Bauer JA, Barchowsky A. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc Toxicol 2006; 5:29-41. [PMID: 15738583 PMCID: PMC4286873 DOI: 10.1385/ct:5:1:029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/03/2004] [Accepted: 08/08/2004] [Indexed: 11/11/2022]
Abstract
Exposure to arsenic in drinking water increases incidence of cardiovascular diseases. However, the basic mechanisms and genetic changes that promote these diseases are unknown. This study investigated the effects of chronic arsenic exposure on vessel growth and expression of angiogenic and tissue remodeling genes in cardiac tissues. Male mice were exposed to low to moderately high levels of arsenite (AsIII) for 5, 10, or 20 wk in their drinking water. Vessel growth in Matrigel implants was tested during the last 2 wk of each exposure period. Implant vascularization increased in mice exposed to 5-500 ppb AsIII for 5 wk. Similar increases were seen following exposure to 50-250 ppb of AsIII over 20 wk, but the response to 500 ppb decreased with time. RT-PCR analysis of cardiac mRNA revealed differential expression of angiogenic or tissue remodeling genes, such as vascular endothelial cell growth factor (VEGF), VEGF receptors, plasminogen activator inhibitor-1, endothelin-1, and matrix metalloproteinase-9, which varied with time or amount of exposure. VEGF receptor mRNA and cardiac microvessel density were reduced by exposure to 500 ppb AsIII for 20 wk. These data demonstrate differential concentration and time-dependent effects of chronic arsenic exposure on cardiovascular phenotype and vascular remodeling that may explain the etiology for AsIII-induced disease.
Collapse
Affiliation(s)
- Nicole V. Soucy
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH
| | - Debra Mayka
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH
| | - Linda R. Klei
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA
| | - Antonia A. Nemec
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA
| | | | - Aaron Barchowsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA
- Author to whom all correspondence and reprint requests should be addressed: Aaron Barchowsky, PhD, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 3343 Forbes, Room 205, Pittsburgh, PA 15260.
| |
Collapse
|
41
|
Abstract
The cerebrovascular endothelium exerts a profound influence on cerebral vessels and cerebral blood flow. This review summarizes current knowledge of various dilator and constrictor mechanisms intrinsic to the cerebrovascular endothelium. The endothelium contributes to the resting tone of cerebral arteries and arterioles by tonically releasing nitric oxide (NO•). Dilations can occur by stimulated release of NO•, endothelium-derived hyperpolarization factor, or prostanoids. During pathological conditions, the dilator influence of the endothelium can turn to that of constriction by a variety of mechanisms, including decreased NO• bioavailability and release of endothelin-1. The endothelium may participate in neurovascular coupling by conducting local dilations to upstream arteries. Further study of the cerebrovascular endothelium is critical for understanding the pathogenesis of a number of pathological conditions, including stroke, traumatic brain injury, and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jon Andresen
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Suite 434D, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
42
|
Abstract
In order to grow, tissues require additional nutrients and oxygen as well as removal of waste products. Tumors achieve this by up-regulating angiogenic cytokines and/or down-regulating natural inhibitory proteins that allow neovascularization to proceed. Brain tumors continue to account for significant morbidity and mortality, in spite of significant advances in neurosurgical and radiation techniques and new chemotherapy combinations. As such, there is a real and immediate need for novel biologic therapies that can target these tumors. A number of new drugs that target different aspects of the angiogenic cascade have been identified and are now in clinical trials in children with primary brain tumors. In many of these pre-clinical and clinical studies, anti-angiogenic therapy has been well tolerated, has lacked many of the traditional toxicities of radiation and chemotherapy, does not require blood-brain barrier penetration, and targets a critical pathway in central nervous system tumor development. This review will discuss what angiogenesis is, how pediatric brain tumors regulate angiogenesis to obtain a vascular supply, what types of inhibitors are available, how different classes of inhibitors work, the types of resistance possible, how rapidly these inhibitors may work, and what surrogate markers of activity are available to follow response.
Collapse
|
43
|
Dickson PV, Nathwani AC, Davidoff AM. Delivery of antiangiogenic agents for cancer gene therapy. Technol Cancer Res Treat 2005; 4:331-41. [PMID: 16029054 DOI: 10.1177/153303460500400403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The understanding that tumor growth and metastasis are angiogenesis dependent processes has led to interest in targeting tumor vasculature in anticancer therapy. Furthermore, recent insights into the molecular interactions that orchestrate physiologic and pathologic angiogenesis have resulted in a variety of antiangiogenic strategies. A gene therapy-mediated approach for the delivery of antiangiogenic agents has several advantages, including the potential for sustained expression. However, the choice of angiogenesis inhibitor, method of gene delivery, and target/site for transgene expression are important variables to be considered when designing this approach. Here we review the major alternatives within each of these categories and provide illustrative examples of their use in preclinical models.
Collapse
Affiliation(s)
- Paxton V Dickson
- Department of Surgery, St. Jude Children's Research Hospital, and the Department of Surgery, The University of Tennessee-Memphis, Health Science Center, TN 38163, USA
| | | | | |
Collapse
|
44
|
Fraser ST, Hadjantonakis AK, Sahr KE, Willey S, Kelly OG, Jones EA, Dickinson ME, Baron MH. Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis 2005; 42:162-71. [PMID: 15986455 PMCID: PMC1850986 DOI: 10.1002/gene.20139] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the first endothelial lineage-specific transgenic mouse allowing live imaging at subcellular resolution. We generated an H2B-EYFP fusion protein which can be used for fluorescent labeling of nucleosomes and used it to specifically label endothelial cells in mice and in differentiating embryonic stem (ES) cells. A fusion cDNA encoding a human histone H2B tagged at its C-terminus with enhanced yellow fluorescent protein (EYFP) was expressed under the control of an Flk1 promoter and intronic enhancer. The Flk1::H2B-EYFP transgenic mice are viable and high levels of chromatin-localized reporter expression are maintained in endothelial cells of developing embryos and in adult animals upon breeding. The onset of fluorescence in differentiating ES cells and in embryos corresponds with the beginning of endothelial cell specification. These transgenic lines permit real-time imaging in normal and pathological vasculogenesis and angiogenesis to track individual cells and mitotic events at a level of detail that is unprecedented in the mouse.
Collapse
Affiliation(s)
- Stuart T. Fraser
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | | | - Kenneth E. Sahr
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Stephen Willey
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Olivia G. Kelly
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
- Biological Imaging Center, California Institute of Technology, Pasadena, California
| | - Elizabeth A.V. Jones
- Biological Imaging Center, California Institute of Technology, Pasadena, California
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
- Biological Imaging Center, California Institute of Technology, Pasadena, California
| | - Margaret H. Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, New York
- Department of Molecular, Cellular and Developmental Biology, Mount Sinai School of Medicine, New York, New York
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York
- Department of Cell and Gene Medicine, Mount Sinai School of Medicine, New York, New York
- * Correspondence to: Margaret H. Baron, Mount Sinai School of Medicine, Box 1079, Departments of Medicine and Molecular, Cell & Developmental Biology, 1425 Madison Ave. 11-70B, New York, NY 10029. E-mail:
| |
Collapse
|
45
|
Benten D, Follenzi A, Bhargava KK, Kumaran V, Palestro CJ, Gupta S. Hepatic targeting of transplanted liver sinusoidal endothelial cells in intact mice. Hepatology 2005; 42:140-8. [PMID: 15918158 DOI: 10.1002/hep.20746] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Targeting of cells to specific tissues is critical for cell therapy. To study endothelial cell targeting, we isolated mouse liver sinusoidal endothelial cells (LSEC) and examined cell biodistributions in animals. To identify transplanted LSEC in tissues, we labeled cells metabolically with DiI-conjugated acetylated low density lipoprotein particles (DiI-Ac-LDL) or (111)Indium-oxine, used LSEC from Rosa26 donors expressing beta-galactosidase or Tie-2-GFP donors with green fluorescent protein (GFP) expression, and tranduced LSEC with a GFP-lentiviral vector. LSEC efficiently incorporated (111)Indium and DiI-Ac-LDL and expressed GFP introduced by the lentiviral vector. Use of radiolabeled LSEC showed differences in cell biodistributions in relation to the cell transplantation route. After intraportal injection, LSEC were largely in the liver (60 +/- 13%) and, after systemic intravenous injection, in lungs (67 +/- 9%); however, after intrasplenic injection, only some LSEC remained in the spleen (29 +/- 10%; P < .01), whereas most LSEC migrated to the liver or lungs. Transplanted LSEC were found in the liver, lungs, and spleen shortly after transplantation, whereas longer-term cell survival was observed only in the liver. Transplanted LSEC were distinct from Kupffer cells with expression of Tie-2 promoter-driven GFP and of CD31, without F4/80 reactivity. In further studies using radiolabeled LSEC, we established that the manipulation of receptor-mediated cell adhesion in liver sinusoids or the manipulation of blood flow-dependent cell exit from sinusoids improved intrahepatic retention of LSEC to 89 +/- 7% and 89 +/- 5%, respectively (P < .01). In conclusion, the targeting of LSEC to the liver and other organs is directed by vascular bed-specific mechanisms, including blood flow-related processes, and cell-specific factors. These findings may facilitate analysis of LSEC for cell and gene therapy applications.
Collapse
Affiliation(s)
- Daniel Benten
- Department of Medicine and Pathology, Marion Bessin Liver Research Center, Cancer Research Center, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
46
|
Timur AA, Driscoll DJ, Wang Q. Biomedicine and diseases: the Klippel-Trenaunay syndrome, vascular anomalies and vascular morphogenesis. Cell Mol Life Sci 2005; 62:1434-47. [PMID: 15905966 PMCID: PMC1579804 DOI: 10.1007/s00018-005-4523-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vascular morphogenesis is a vital process for embryonic development, normal physiologic conditions (e.g. wound healing) and pathological processes (e.g. atherosclerosis, cancer). Genetic studies of vascular anomalies have led to identification of critical genes involved in vascular morphogenesis. A susceptibility gene, VG5Q (formally named AGGF1), was cloned for Klippel-Trenaunay syndrome (KTS). AGGF1 encodes a potent angiogenic factor, and KTS-associated mutations enhance angiogenic activity of AGGF1, defining 'increased angiogenesis' as one molecular mechanism for the pathogenesis of KTS. Similar studies have identified other genes involved in vascular anomalies as important genes for vascular morphogenesis, including TIE2, VEGFR-3, RASA1, KRIT1, MGC4607, PDCD10, glomulin, FOXC2, NEMO, SOX18, ENG, ACVRLK1, MADH4, NDP, TIMP3, Notch3, COL3A1 and PTEN. Future studies of vascular anomaly genes will provide insights into the molecular mechanisms for vascular morphogenesis, and may lead to the development of therapeutic strategies for treating these and other angiogenesis-related diseases, including coronary artery disease and cancer.
Collapse
Affiliation(s)
- A. A. Timur
- Center for Molecular Genetics, ND40, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195 USA
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio 44195 USA
| | - D. J. Driscoll
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota 55905 USA
| | - Q. Wang
- Center for Molecular Genetics, ND40, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195 USA
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio 44195 USA
- Huazhong University of Science and Technology Human Genome Research Center, Wuhan, Hubei, 430074 P. R. China
| |
Collapse
|