1
|
Faccenda V, Panizza D, Niespolo RM, Colciago RR, Rossano G, De Sanctis L, Gandola D, Ippolito D, Arcangeli S, De Ponti E. Synchronized Contrast-Enhanced 4DCT Simulation for Target Volume Delineation in Abdominal SBRT. Cancers (Basel) 2024; 16:4066. [PMID: 39682252 DOI: 10.3390/cancers16234066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: To present the technical aspects of contrast-enhanced 4DCT (ce4DCT) simulation for abdominal SBRT. Methods: Twenty-two patients underwent two sequential 4DCT scans: one baseline and one contrast-enhanced with personalized delay time (tdelay) calculated to capture the tumor in the desired contrast phase, based on diagnostic triple-phase CT. The internal target volume (ITV) was delineated on ten contrast phases, and a panel of three experts qualitatively evaluated tumor visibility. Aortic HU values were measured to refine the tdelay for subsequent patients. The commonly used approach of combining triple-phase CT with unenhanced 4DCT was simulated, and differences in target delineation were evaluated by volume, centroid shift, Dice and Jaccard indices, and mean distance agreement (MDA). The margins required to account for motion were calculated. Results: The ce4DCT acquisitions substantially improved tumor visibility over the entire breathing cycle in 20 patients, according to the experts' unanimous evaluation. The median contrast peak time was 54.5 s, and the washout plateau was observed at 70.3 s, with mean peak and plateau HU values of 292 ± 59 and 169 ± 25. The volumes from the commonly used procedure (ITV2) were significantly smaller than the ce4DCT volumes (ITV1) (p = 0.045). The median centroid shift was 4.7 mm. The ITV1-ITV2 overlap was 69% (Dice index), 53% (Jaccard index), and 2.89 mm (MDA), with the liver volumes showing significantly lower indices compared to the pancreatic volumes (p ≤ 0.011). The margins required to better encompass ITV1 were highly variable, with mean values ≥ 4 mm in all directions except for the left-right axis. Conclusions: The ce4DCT simulation was feasible, resulting in optimal tumor enhancement with minimal resource investment, while significantly mitigating uncertainties in SBRT planning by addressing poor visibility and respiratory motion. Triple-phase 3DCT with unenhanced 4DCT led to high variability in target delineation, making the isotropic margins ineffective.
Collapse
Affiliation(s)
- Valeria Faccenda
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Denis Panizza
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
| | - Rita Marina Niespolo
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | | | - Giulia Rossano
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Lorenzo De Sanctis
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Davide Gandola
- Diagnostic Radiology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Davide Ippolito
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Diagnostic Radiology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Elena De Ponti
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
2
|
Passoni P, Reni M, Broggi S, Slim N, Fodor A, Macchini M, Orsi G, Peretti U, Balzano G, Tamburrino D, Belfiori G, Cascinu S, Falconi M, Fiorino C, Di Muzio N. Hypofractionated radiotherapy concomitant to capecitabine after induction chemotherapy for advanced pancreatic adenocarcinoma. Clin Transl Radiat Oncol 2024; 47:100778. [PMID: 38779525 PMCID: PMC11108816 DOI: 10.1016/j.ctro.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Background and purpose To assess feasibility, toxicity and outcome of moderately hypofractionated radiotherapy concomitant to capecitabine after induction chemotherapy for advanced pancreatic cancer. Materials and methods Patients with advanced pancreatic cancer without distant progression after induction chemotherapy (CHT) were considered. Radiochemotherapy (RCT) consisted of 44.25 Gy in 15 fractions to the tumor and involved lymph-nodes concomitant to capecitabine 1250 mg/m2/day. Feasibility and toxicity were evaluated in all pts. Overall survival (OS), progression free survival (PFS), distant PFS (DPFS) and local PFS (LPFS) were assessed only in stage III patients. Results 254 patients, 220 stage III, 34 stage IV, were treated. Median follow up was 19 months. Induction CHT consisted of Gemcitabine (35 patients), or drug combination (219 patients); median duration was 6 months.Four patients (1.6 %) did not complete RT (1 early progression, 3 toxicity), median duration of RT was 20 days, 209 patients (82 %) received ≥ 75 % of capecitabine dose.During RCT G3 gastrointestinal toxicity occurred in 3.2% of patients, G3-G4 hematologic toxicity in 5.4% of patients. Subsequently, G3, G4, G5 gastric or duodenal lesions occurred in 10 (4%), 2 (0.8%) and 1 patients (0.4%), respectively.Median PFS, LPFS, and DPFS were 11.9 months (95 % CI:11.4-13), 16 months (95 % CI:14.2-17.3) and 14.0 months (95 % CI:12.6-146.5), respectively.Median OS was 19.5 months (95 % CL:18.1-21.3). One- and two-year survival were 85.2 % and 36 %, respectively. Conclusions The present schedule of hypofractionated RT after induction CHT is feasible with acceptable toxicity rate and provides an outcome comparable with that achievable with standard doses and fractionation.
Collapse
Affiliation(s)
- Paolo Passoni
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Broggi
- Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Najla Slim
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrei Fodor
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- Department of Pancreatic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Domenico Tamburrino
- Department of Pancreatic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Belfiori
- Department of Pancreatic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Department of Pancreatic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Fiorino
- Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Di Muzio
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Zhou B, Zhang SR, Chen G, Chen P. Developments and challenges in neoadjuvant therapy for locally advanced pancreatic cancer. World J Gastroenterol 2023; 29:5094-5103. [PMID: 37744290 PMCID: PMC10514760 DOI: 10.3748/wjg.v29.i35.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a significant public health challenge and is currently the fourth leading cause of cancer-related mortality in developed countries. Despite advances in cancer treatment, the 5-year survival rate for patients with PDAC remains less than 5%. In recent years, neoadjuvant therapy (NAT) has emerged as a promising treatment option for many cancer types, including locally advanced PDAC, with the potential to improve patient outcomes. To analyze the role of NAT in the setting of locally advanced PDAC over the past decade, a systematic literature search was conducted using PubMed and Web of Science. The results suggest that NAT may reduce the local mass size, promote tumor downstaging, and increase the likelihood of resection. These findings are supported by the latest evidence-based medical literature and the clinical experience of our center. Despite the potential benefits of NAT, there are still challenges that need to be addressed. One such challenge is the lack of consensus on the optimal timing and duration of NAT. Improved criteria for patient selection are needed to further identify PDAC patients likely to respond to NAT. In conclusion, NAT has emerged as a promising treatment option for locally advanced PDAC. However, further research is needed to optimize its use and to better understand the role of NAT in the management of this challenging disease. With continued advances in cancer treatment, there is hope of improving the outcomes of patients with PDAC in the future.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shi-Ran Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
4
|
Zhang Y, Balter J, Dow J, Cao Y, Lawrence TS, Kashani R. Development of an abdominal dose accumulation tool and assessments of accumulated dose in gastrointestinal organs. Phys Med Biol 2023; 68:10.1088/1361-6560/acbc61. [PMID: 36791470 PMCID: PMC10131348 DOI: 10.1088/1361-6560/acbc61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Objective.Online adaptive radiotherapy has demonstrated improved dose conformality in response to inter-fraction geometric variations in the abdomen. The dosimetric impact of intra-fractional variations in anatomic configuration resulting from breathing, gastric contraction and slow configuration motion, however, have been largely ignored, leading to differences between delivered and planned. To investigate the impact of intra-fractional abdominal motions on delivered dose, anatomical deformations due to these three motion modes were extracted from dynamic MRI data using a previously developed hierarchical motion modeling methodology.Approach. Motion magnitudes were extracted from deformation fields between a reference state and all other motion states of the patient. Delivered dose estimates to various gastrointestinal organs (stomach, duodenum, small bowel and colon) were calculated on each motion state of the patient and accumulated to estimate the delivered dose to each organ for the entire treatment fraction.Main results. Across a sample of 10 patients, maximal motions of 33.6, 33.4, 47.6 and 49.2 mm were observed over 20 min for the stomach, duodenum, small bowel and colon respectively. Dose accumulation results showed that motions could lead to average increases of 2.0, 2.1, 1.1, 0.7 Gy to the maximum dose to 0.5cc (D0.5cc) and 3.0, 2.5, 1.3, 0.9 Gy to the maximum dose to 0.1cc (D0.1cc) for these organs at risk. From the 40 dose accumulations performed (10 for each organ at risk), 27 showed increases of modeled delivered dose compared to planned doses, 4 of which exceeded planned dose constraints.Significance. The use of intra-fraction motion measurements to accumulate delivered doses is feasible, and supports retrospective estimation of dose delivery to improve estimates of delivered doses, and further guide strategies for both plan adaptation as well as advances in intra-fraction motion management.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
| | - James Balter
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
| | - Janell Dow
- Department of Radiation Oncology, University of Michigan, United States of America
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
- Department of Radiology, University of Michigan, United States of America
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, United States of America
| | - Rojano Kashani
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, United States of America
| |
Collapse
|
5
|
Schneider S, Stefanowicz S, Jentsch C, Lohaus F, Thiele J, Haak D, Valentini C, Platzek I, G. C. Troost E, Hoffmann AL. Reduction of intrafraction pancreas motion using an abdominal corset compatible with proton therapy and MRI. Clin Transl Radiat Oncol 2022; 38:111-116. [DOI: 10.1016/j.ctro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
|
6
|
Ji T, Feng Z, Sun E, Ng SK, Su L, Zhang Y, Han D, Han-Oh S, Iordachita I, Lee J, Kazanzides P, Bell MAL, Wong J, Ding K. A phantom-based analysis for tracking intra-fraction pancreatic tumor motion by ultrasound imaging during radiation therapy. Front Oncol 2022; 12:996537. [PMID: 36237341 PMCID: PMC9552199 DOI: 10.3389/fonc.2022.996537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeIn this study, we aim to further evaluate the accuracy of ultrasound tracking for intra-fraction pancreatic tumor motion during radiotherapy by a phantom-based study.MethodsTwelve patients with pancreatic cancer who were treated with stereotactic body radiation therapy were enrolled in this study. The displacement points of the respiratory cycle were acquired from 4DCT and transferred to a motion platform to mimic realistic breathing movements in our phantom study. An ultrasound abdominal phantom was placed and fixed in the motion platform. The ground truth of phantom movement was recorded by tracking an optical tracker attached to this phantom. One tumor inside the phantom was the tracking target. In the evaluation of the results, the monitoring results from the ultrasound system were compared with the phantom motion results from the infrared camera. Differences between infrared monitoring motion and ultrasound tracking motion were analyzed by calculating the root-mean-square error.ResultsThe 82.2% ultrasound tracking motion was within a 0.5 mm difference value between ultrasound tracking displacement and infrared monitoring motion. 0.7% ultrasound tracking failed to track accurately (a difference value > 2.5 mm). These differences between ultrasound tracking motion and infrared monitored motion do not correlate with respiratory displacements, respiratory velocity, or respiratory acceleration by linear regression analysis.ConclusionsThe highly accurate monitoring results of this phantom study prove that the ultrasound tracking system may be a potential method for real-time monitoring targets, allowing more accurate delivery of radiation doses.
Collapse
Affiliation(s)
- Tianlong Ji
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ziwei Feng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Edward Sun
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sook Kien Ng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Lin Su
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dong Han
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Iulian Iordachita
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peter Kazanzides
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Correspondence: Kai Ding,
| |
Collapse
|
7
|
Naumann M, Czempiel T, Lößner AJ, Pape K, Beyreuther E, Löck S, Drukewitz S, Hennig A, von Neubeck C, Klink B, Krause M, William D, Stange DE, Bütof R, Dietrich A. Combined Systemic Drug Treatment with Proton Therapy: Investigations on Patient-Derived Organoids. Cancers (Basel) 2022; 14:cancers14153781. [PMID: 35954444 PMCID: PMC9367296 DOI: 10.3390/cancers14153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
To optimize neoadjuvant radiochemotherapy of pancreatic ductal adenocarcinoma (PDAC), the value of new irradiation modalities such as proton therapy needs to be investigated in relevant preclinical models. We studied individual treatment responses to RCT using patient-derived PDAC organoids (PDO). Four PDO lines were treated with gemcitabine, 5-fluorouracile (5FU), photon and proton irradiation and combined RCT. Therapy response was subsequently measured via viability assays. In addition, treatment-naive PDOs were characterized via whole exome sequencing and tumorigenicity was investigated in NMRI Foxn1nu/nu mice. We found a mutational pattern containing common mutations associated with PDAC within the PDOs. Although we could unravel potential complications of the viability assay for PDOs in radiobiology, distinct synergistic effects of gemcitabine and 5FU with proton irradiation were observed in two PDO lines that may lead to further mechanistical studies. We could demonstrate that PDOs are a powerful tool for translational proton radiation research.
Collapse
Affiliation(s)
- Max Naumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tabea Czempiel
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
| | - Anna Jana Lößner
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
| | - Kristin Pape
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Steffen Löck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
| | - Stephan Drukewitz
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Alexander Hennig
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Clinic for Particle Therapy, University Hospital Essen, Universität Duisburg Essen, 45147 Essen, Germany
| | - Barbara Klink
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
- Department of Genetics, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, 01307 Dresden, Germany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Rebecca Bütof
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
8
|
Nardangeli A, Autorino R, Boldrini L, Campitelli M, Reina S, Ferrandina G, Bizzarri N, Tagliaferri L, Macchia G, Valentini V, Gambacorta MA. Neoadjuvant Chemoradiotherapy With Simultaneous Integrated Boost in Locally Advanced Cervical Cancer: Long Term Results of a Single-Center Experience. Front Oncol 2022; 12:883965. [PMID: 35600370 PMCID: PMC9117618 DOI: 10.3389/fonc.2022.883965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Aim of this study was to analyze the efficacy and tolerability of simultaneous integrated boost volumetric modulated arc therapy (SIB-VMAT) associated with cisplatin-based chemotherapy in preoperative setting of patients with locally advanced cervical cancer (LACC). From June 2013 to September 2019, we analyzed patients with LACC who had undergone neoadjuvant chemoradiation (CRT). A radiation dose of 39.6 Gy, 1.8 Gy/fraction was delivered to the pelvis plus a radiation dose to the primary tumor delivered with SIB-VMAT strategy for a total of 50.6Gy, 2.3Gy/fraction in 25 fractions. Cisplatin-based chemotherapy was delivered combined with radiotherapy. Radical hysterectomy plus pelvic with or without aortic lymphadenectomy was performed within 7 to 8 weeks from CRT. One hundred forty-eight patients (median age: 49.5 years; FIGO stage IB2: 7, IIA: 8, IIB: 106, IIIA: 5; IIIB: 16; IVA: 5, IVB: 1; N0: 56, N1: 92) were analyzed. The treatment was well tolerated with good compliance: no grade 3/4 gastrointestinal or genitourinary toxicity was reported; grade 3 neutropenia was described in five cases. Pathological complete response (pCR) was documented in 68 cases (46%) and 32 patients (21.6%) had microscopic residual disease. Pathological nodal involvement was observed in 23 patients (15.5%). At median follow-up of 59 months (range: 27-100), the 3-year local control was 78.5%, whereas the 3-year metastasis-free survival was 70.5%. The 3-year overall survival rate was 89.0%. Neoadjuvant CRT with SIB-VMAT followed by radical surgery results in a high rate of pathologically assessed complete response and a very encouraging local control rate, with acceptable toxicity.
Collapse
Affiliation(s)
- Alessia Nardangeli
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- *Correspondence: Alessia Nardangeli,
| | - Rosa Autorino
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Luca Boldrini
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Maura Campitelli
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Sara Reina
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Gabriella Ferrandina
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
9
|
Cho Y, Kim JW, Kim HS, Park JS, Lee IJ. Intraoperative Radiotherapy for Resectable Pancreatic Cancer Using a Low-Energy X-Ray Source: Postoperative Complications and Early Outcomes. Yonsei Med J 2022; 63:405-412. [PMID: 35512742 PMCID: PMC9086690 DOI: 10.3349/ymj.2022.63.5.405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE We evaluated the safety, feasibility, and early treatment outcomes of intraoperative radiotherapy (IORT) using a low-energy X-ray source. MATERIALS AND METHODS Patients with resectable pancreatic cancer were enrolled in this single-institution, prospective, single-arm, phase II trial. Patients underwent surgery and IORT with 10 Gy prescribed at a 5-mm depth from the tumor bed using a 50 kV X-ray source (Intrabeam, Carl Zeiss). Six cycles of adjuvant gemcitabine-based chemotherapy were administered 8-12 weeks after surgery. RESULTS A total of 41 patients were included. Thirty-one patients (75.6%) underwent wide R0 resection, while 5 (12.2%) underwent R1 resection and 5 (12.2%) underwent narrow R0 resection (retroperitoneal margin <1 mm). Grade 3 postoperative complications were reported in only one patient (4.9%) who needed additional surgery due to ulcer perforation. At a median follow-up of 9 months, four patients showed local-only recurrence, nine had distant metastases, and two showed both local and distant recurrence. The 1-year local control rate was 76.4%. CONCLUSION Our preliminary report suggests that IORT is well-tolerated and feasible in patients with resectable pancreatic cancer. Further follow-up is needed to confirm the clinical benefits of IORT in terms of local control and overall survival. TRIAL REGISTRATION Trial Registration: Clinical trial registration No. (NCT03273374).
Collapse
Affiliation(s)
- Yeona Cho
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Won Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Ik Jae Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Dai X, Lei Y, Wynne J, Janopaul-Naylor J, Wang T, Roper J, Curran WJ, Liu T, Patel P, Yang X. Synthetic CT-aided multiorgan segmentation for CBCT-guided adaptive pancreatic radiotherapy. Med Phys 2021; 48:7063-7073. [PMID: 34609745 PMCID: PMC8595847 DOI: 10.1002/mp.15264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The delineation of organs at risk (OARs) is fundamental to cone-beam CT (CBCT)-based adaptive radiotherapy treatment planning, but is time consuming, labor intensive, and subject to interoperator variability. We investigated a deep learning-based rapid multiorgan delineation method for use in CBCT-guided adaptive pancreatic radiotherapy. METHODS To improve the accuracy of OAR delineation, two innovative solutions have been proposed in this study. First, instead of directly segmenting organs on CBCT images, a pretrained cycle-consistent generative adversarial network (cycleGAN) was applied to generating synthetic CT images given CBCT images. Second, an advanced deep learning model called mask-scoring regional convolutional neural network (MS R-CNN) was applied on those synthetic CT to detect the positions and shapes of multiple organs simultaneously for final segmentation. The OAR contours delineated by the proposed method were validated and compared with expert-drawn contours for geometric agreement using the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). RESULTS Across eight abdominal OARs including duodenum, large bowel, small bowel, left and right kidneys, liver, spinal cord, and stomach, the geometric comparisons between automated and expert contours are as follows: 0.92 (0.89-0.97) mean DSC, 2.90 mm (1.63-4.19 mm) mean HD95, 0.89 mm (0.61-1.36 mm) mean MSD, and 1.43 mm (0.90-2.10 mm) mean RMS. Compared to the competing methods, our proposed method had significant improvements (p < 0.05) in all the metrics for all the eight organs. Once the model was trained, the contours of eight OARs can be obtained on the order of seconds. CONCLUSIONS We demonstrated the feasibility of a synthetic CT-aided deep learning framework for automated delineation of multiple OARs on CBCT. The proposed method could be implemented in the setting of pancreatic adaptive radiotherapy to rapidly contour OARs with high accuracy.
Collapse
Affiliation(s)
- Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jacob Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - James Janopaul-Naylor
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Lee YS, Kim HS, Cho Y, Lee IJ, Kim HJ, Lee DE, Kang HW, Park JS. Intraoperative radiation therapy induces immune response activity after pancreatic surgery. BMC Cancer 2021; 21:1097. [PMID: 34641806 PMCID: PMC8507125 DOI: 10.1186/s12885-021-08807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pancreatic cancer has highly aggressive features, such as local recurrence that leads to significantly high morbidity and mortality and recurrence after successful tumour resection. Intraoperative radiation therapy (IORT), which delivers targeted radiation to a tumour bed, is known to reduce local recurrence by directly killing tumour cells and modifying the tumour microenvironment. Methods Among 30 patients diagnosed with pancreatic cancer, 17 patients received IORT immediately after surgical resection. We investigated changes in the immune response induced by IORT by analysing the peritoneal fluid (PF) and blood of patients with and without IORT treatment after pancreatic cancer surgery. Further, we treated three pancreatic cell lines with PF to observe proliferation and activity changes. Results Levels of cytokines involved in the PI3K/SMAD pathway were increased in the PF of IORT-treated patients. Moreover, IORT-treated PF inhibited the growth, migration, and invasiveness of pancreatic cancer cells. Changes in lymphocyte populations in the blood of IORT-treated patients indicated an increased immune response. Conclusions Based on the characterisation and quantification of immune cells in the blood and cytokine levels in the PF, we conclude that IORT induced an anti-tumour effect by activating the immune response, which may prevent pancreatic cancer recurrence. Clinical trial registration NCT03273374. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08807-3.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea
| | - Yeona Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.
| |
Collapse
|
12
|
Abstract
AIM/OBJECTIVES/BACKGROUND The American College of Radiology (ACR) and the American Society for Radiation Oncology (ASTRO) have jointly developed the following practice parameter for image-guided radiation therapy (IGRT). IGRT is radiation therapy that employs imaging to maximize accuracy and precision throughout the entire process of treatment delivery with the goal of optimizing accuracy and reliability of radiation therapy to the target, while minimizing dose to normal tissues. METHODS The ACR-ASTRO Practice Parameter for IGRT was revised according to the process described on the ACR website ("The Process for Developing ACR Practice Parameters and Technical Standards," www.acr.org/ClinicalResources/Practice-Parametersand-Technical-Standards) by the Committee on Practice Parameters of the ACR Commission on Radiation Oncology in collaboration with the ASTRO. Both societies then reviewed and approved the document. RESULTS This practice parameter is developed to serve as a tool in the appropriate application of IGRT in the care of patients with conditions where radiation therapy is indicated. It addresses clinical implementation of IGRT including personnel qualifications, quality assurance standards, indications, and suggested documentation. CONCLUSIONS This practice parameter is a tool to guide clinical use of IGRT and does not make recommendations on site-specific IGRT directives. It focuses on the best practices and principles to consider when using IGRT effectively, especially with the significant increase in imaging data that is now available with IGRT. The clinical benefit and medical necessity of the imaging modality and frequency of IGRT should be assessed for each patient.
Collapse
|
13
|
Hypofractionated sequential radiotherapy boost: a promising strategy in inoperable locally advanced pancreatic cancer patients. J Cancer Res Clin Oncol 2020; 147:661-667. [PMID: 33001271 DOI: 10.1007/s00432-020-03411-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the potential benefits of a hypofractionated radiotherapy boost (HRB) after chemotherapy (CT) and concomitant chemoradiotherapy (CRT) in locally advanced pancreatic cancer (LAPC) patients. Primary endpoints were early and late toxicity, local control (LC) and pain-free progression (PFP) assessment. Two-years overall survival (OS), metastasis-free survival (MFS) and disease-free survival (DFS) were secondary endpoints. MATERIALS AND METHODS Patients (pts) affected by unresectable non-metastatic LAPC, previously treated with CT and CRT in upfront or sandwich setting, were selected for sequential HRB. Total prescribed dose was 30 Gy in 5 fractions (fr) to pancreatic primary lesion. Dose de-escalation was allowed in case of failure in respecting organs at risk constraints. Early and late toxicity were assessed according to CTCAE v.4.0 classification. The Kersh-Hazra scale was used for pain assessment. Local Control, PFP, MFS and DFS were calculated from the date of HRB to the date of relapse or the date of the last follow-up. RESULTS Thirty-one pts affected by unresectable, non-metastatic LAPC were consecutively enrolled from November 2004 to October 2019. All pts completed the planned HRB. Total delivered dose varied according to duodenal dose constraint: 20 Gy in 5 fr (N: 6; 19.4%), 20 Gy in 4 fr (N: 5; 16.2%), 25 Gy in 5 fr (N: 18; 58.0%) and 30 Gy in 6 fr (N: 2; 6.4%). Early and late toxicity were assessed in all pts: no Grade 3 or 4 acute gastrointestinal toxicity and no late gastrointestinal complications occurred. Median LC was 19 months (range 1-156) and 1- and 2-year PFP were 85% and 62.7%, respectively (median 28 months; range 2-139). According to the Kersh-Hazra scale, four pts had a Grade 3 and four pts had a Grade 1 abdominal pain before HRB. At the last follow-up only 3/31 pts had residual Grade 1 abdominal pain.Median MFS was 18 months (range 1-139). The 2-year OS after HRB was 57.4%, while 2-year OS from diagnosis was 77.3%. CONCLUSION Treatment intensification with hypofractionated radiotherapy boost is well tolerated in pts affected by unresectable LAPC previously treated with CT/CRT. Its rates of local and pain control are encouraging, supporting its introduction in clinical practice. Timing, schedule and dose of HRB need to be further investigated to personalize therapy and optimize clinical advantages.
Collapse
|
14
|
Jumeau R, Ozsahin M, Schwitter J, Elicin O, Reichlin T, Roten L, Andratschke N, Mayinger M, Saguner AM, Steffel J, Blanck O, Vozenin MC, Moeckli R, Zeverino M, Vallet V, Herrera-Siklody C, Pascale P, Bourhis J, Pruvot E. Stereotactic Radiotherapy for the Management of Refractory Ventricular Tachycardia: Promise and Future Directions. Front Cardiovasc Med 2020; 7:108. [PMID: 32671101 PMCID: PMC7329991 DOI: 10.3389/fcvm.2020.00108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023] Open
Abstract
Ventricular tachycardia (VT) caused by myocardial scaring bears a significant risk of mortality and morbidity. Antiarrhythmic drug therapy (AAD) and catheter ablation remain the cornerstone of VT management, but both treatments have limited efficacy and potential adverse effects. Stereotactic body radiotherapy (SBRT) is routinely used in oncology to treat non-invasively solid tumors with high precision and efficacy. Recently, this technology has been evaluated for the treatment of VT. This review presents the basic underlying principles, proof of concept, and main results of trials and case series that used SBRT for the treatment of VT refractory to AAD and catheter ablation.
Collapse
Affiliation(s)
- Raphael Jumeau
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Multidisciplinary Cancer Care Service, Radiation Oncology Unit, Riviera-Chablais Hospital, Rennaz, Switzerland
| | - Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juerg Schwitter
- Heart and Vessel Department, Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laurent Roten
- Department of Cardiology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zürich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Zürich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Zürich, Switzerland
| | - Jan Steffel
- Department of Cardiology, University Heart Center Zurich, Zürich, Switzerland
| | - Oliver Blanck
- Department of Radiation Oncology and Department of Internal Medicine III, Cardiology, Section for Electrophysiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marie-Catherine Vozenin
- Radio-Oncology Research Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Vallet
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claudia Herrera-Siklody
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrizio Pascale
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, Debus J, Guckenberger M, Hörner-Rieber J, Lagerwaard FJ, Mazzola R, Palacios MA, Philippens MEP, Raaijmakers CPJ, Terhaard CHJ, Valentini V, Niyazi M. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol 2019; 14:92. [PMID: 31167658 PMCID: PMC6551911 DOI: 10.1186/s13014-019-1308-y] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 11/23/2022] Open
Abstract
Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites.MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.
Collapse
Affiliation(s)
- S. Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - F. Alongi
- Department of Radiation Oncology, IRCSS Sacro Cuore don Calabria Hospital, Negrar-Verona, Italy
- University of Brescia, Brescia, Italy
| | - N. Andratschke
- Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - C. Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - L. Boldrini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - F. Cellini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - J. Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M. Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - J. Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. J. Lagerwaard
- Department of Radiation Oncology, VU medical center, Amsterdam, The Netherlands
| | - R. Mazzola
- Department of Radiation Oncology, IRCSS Sacro Cuore don Calabria Hospital, Negrar-Verona, Italy
- University of Brescia, Brescia, Italy
| | - M. A. Palacios
- Department of Radiation Oncology, VU medical center, Amsterdam, The Netherlands
| | - M. E. P. Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. P. J. Raaijmakers
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. H. J. Terhaard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V. Valentini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - M. Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
16
|
Boldrini L, Cusumano D, Cellini F, Azario L, Mattiucci GC, Valentini V. Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol 2019; 14:71. [PMID: 31036034 PMCID: PMC6489212 DOI: 10.1186/s13014-019-1275-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/11/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Different studies have proved in recent years that hypofractionated radiotherapy (RT) improves overall survival of patients affected by locally advanced, unresectable, pancreatic cancer. The clinical management of these patients generally leads to poor results and is considered very challenging, due to different factors, heavily influencing treatment delivery and its outcomes. Firstly, the dose prescribed to the target is limited by the toxicity that the highly radio-sensitive organs at risk (OARs) surrounding the disease can develop. Treatment delivery is also complicated by the significant inter-fractional and intra-fractional variability of therapy volumes, mainly related to the presence of hollow organs and to the breathing cycle. The recent introduction of magnetic resonance guided radiotherapy (MRgRT) systems leads to the opportunity to control most of the aforementioned sources of uncertainty influencing RT treatment workflow in pancreatic cancer. MRgRT offers the possibility to accurately identify radiotherapy volumes, thanks to the high soft-tissue contrast provided by the Magnetic Resonance imaging (MRI), and to monitor the tumour and OARs positions during the treatment fraction using a high-temporal cine MRI. However, the main advantage offered by the MRgRT is the possibility to online adapt the RT treatment plan, changing the dose distribution while the patient is still on couch and successfully addressing most of the sources of variability. SHORT CONCLUSION Aim of this study is to present and discuss the state of the art, the main pitfalls and the innovative opportunities offered by online adaptive MRgRT in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Luca Boldrini
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italia
| | - Davide Cusumano
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Fisica Sanitaria, Fondazione Policlinico Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italia
| | - Francesco Cellini
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italia
| | - Luigi Azario
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Fisica Sanitaria, Fondazione Policlinico Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italia
| | - Gian Carlo Mattiucci
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italia
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italia
| |
Collapse
|
17
|
Nakamura A, Hiraoka M, Itasaka S, Nakamura M, Akimoto M, Ishihara Y, Mukumoto N, Goto Y, Kishi T, Yoshimura M, Matsuo Y, Yano S, Mizowaki T. Evaluation of Dynamic Tumor-tracking Intensity-modulated Radiotherapy for Locally Advanced Pancreatic Cancer. Sci Rep 2018; 8:17096. [PMID: 30459454 PMCID: PMC6244273 DOI: 10.1038/s41598-018-35402-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/25/2022] Open
Abstract
Intensity-modulated radiotherapy (IMRT) is now regarded as an important treatment option for patients with locally advanced pancreatic cancer (LAPC). To reduce the underlying tumor motions and dosimetric errors during IMRT as well as the burden of respiratory management for patients, we started to apply a new treatment platform of the dynamic tumor dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT) using the gimbaled linac, which can swing IMRT toward the real-time tumor position under patients' voluntary breathing. Between June 2013 and March 2015, ten patients were treated, and the tumor-tracking accuracy and the practical benefits were evaluated. The mean PTV size in DTT-IMRT was 18% smaller than a conventional ITV-based PTV. The root-mean-squared errors between the predicted and the detected tumor positions were 1.3, 1.2, and 1.5 mm in left-right, anterior-posterior, and cranio-caudal directions, respectively. The mean in-room time was 24.5 min. This high-accuracy of tumor-tracking with reasonable treatment time are promising and beneficial to patients with LAPC.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Satoshi Itasaka
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mami Akimoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitomo Ishihara
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Goto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Kishi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinsuke Yano
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Schneider S, Jølck RI, Troost EGC, Hoffmann AL. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med Phys 2017; 45:37-47. [DOI: 10.1002/mp.12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sergej Schneider
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
| | - Rasmus Irming Jølck
- Nanovi Radiotherapy A/S; DK-2800 Kongens Lyngby Denmark
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 DK-2800 Kongens. Lyngby Denmark
| | - Esther Gera Cornelia Troost
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
- German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ); Heidelberg Germany
- National Center for Tumor Diseases (NCT), partner site Dresden; Dresden Germany
| | - Aswin Louis Hoffmann
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
19
|
Su L, Iordachita I, Zhang Y, Lee J, Ng SK, Jackson J, Hooker T, Wong J, Herman JM, Sen HT, Kazanzides P, Lediju Bell MA, Yang C, Ding K. Feasibility study of ultrasound imaging for stereotactic body radiation therapy with active breathing coordinator in pancreatic cancer. J Appl Clin Med Phys 2017; 18:84-96. [PMID: 28574192 PMCID: PMC5529166 DOI: 10.1002/acm2.12100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) allows for high radiation doses to be delivered to the pancreatic tumors with limited toxicity. Nevertheless, the respiratory motion of the pancreas introduces major uncertainty during SBRT. Ultrasound imaging is a non-ionizing, non-invasive, and real-time technique for intrafraction monitoring. A configuration is not available to place the ultrasound probe during pancreas SBRT for monitoring. METHODS AND MATERIALS An arm-bridge system was designed and built. A CT scan of the bridge-held ultrasound probe was acquired and fused to ten previously treated pancreatic SBRT patient CTs as virtual simulation CTs. Both step-and-shoot intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) planning were performed on virtual simulation CT. The accuracy of our tracking algorithm was evaluated by programmed motion phantom with simulated breath-hold 3D movement. An IRB-approved volunteer study was also performed to evaluate feasibility of system setup. Three healthy subjects underwent the same patient setup required for pancreas SBRT with active breath control (ABC). 4D ultrasound images were acquired for monitoring. Ten breath-hold cycles were monitored for both phantom and volunteers. For the phantom study, the target motion tracked by ultrasound was compared with motion tracked by the infrared camera. For the volunteer study, the reproducibility of ABC breath-hold was assessed. RESULTS The volunteer study results showed that the arm-bridge system allows placement of an ultrasound probe. The ultrasound monitoring showed less than 2 mm reproducibility of ABC breath-hold in healthy volunteers. The phantom monitoring accuracy is 0.14 ± 0.08 mm, 0.04 ± 0.1 mm, and 0.25 ± 0.09 mm in three directions. On dosimetry part, 100% of virtual simulation plans passed protocol criteria. CONCLUSIONS Our ultrasound system can be potentially used for real-time monitoring during pancreas SBRT without compromising planning quality. The phantom study showed high monitoring accuracy of the system, and the volunteer study showed feasibility of the clinical workflow.
Collapse
Affiliation(s)
- Lin Su
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Iulian Iordachita
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yin Zhang
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Junghoon Lee
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sook Kien Ng
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Juan Jackson
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ted Hooker
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - John Wong
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph M Herman
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - H Tutkun Sen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Peter Kazanzides
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Chen Yang
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Kai Ding
- School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Song LB, Gao S, Zhang AQ, Qian X, Liu LM. Babaodan Capsule (八宝丹胶囊) combined with Qingyi Huaji Formula (清胰化积方) in advanced pancreatic cancer—a feasibility study. Chin J Integr Med 2017; 23:937-942. [DOI: 10.1007/s11655-017-2279-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 12/24/2022]
|
21
|
Choi W, Xue M, Lane BF, Kang MK, Patel K, Regine WF, Klahr P, Wang J, Chen S, D'Souza W, Lu W. Individually optimized contrast-enhanced 4D-CT for radiotherapy simulation in pancreatic ductal adenocarcinoma. Med Phys 2016; 43:5659. [PMID: 27782710 PMCID: PMC5035305 DOI: 10.1118/1.4963213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/26/2016] [Accepted: 09/08/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop an individually optimized contrast-enhanced (CE) 4D-computed tomography (CT) for radiotherapy simulation in pancreatic ductal adenocarcinomas (PDA). METHODS Ten PDA patients were enrolled. Each underwent three CT scans: a 4D-CT immediately following a CE 3D-CT and an individually optimized CE 4D-CT using test injection. Three physicians contoured the tumor and pancreatic tissues. Image quality scores, tumor volume, motion, tumor-to-pancreas contrast, and contrast-to-noise ratio (CNR) were compared in the three CTs. Interobserver variations were also evaluated in contouring the tumor using simultaneous truth and performance level estimation. RESULTS Average image quality scores for CE 3D-CT and CE 4D-CT were comparable (4.0 and 3.8, respectively; P = 0.082), and both were significantly better than that for 4D-CT (2.6, P < 0.001). Tumor-to-pancreas contrast results were comparable in CE 3D-CT and CE 4D-CT (15.5 and 16.7 Hounsfield units (HU), respectively; P = 0.21), and the latter was significantly higher than in 4D-CT (9.2 HU, P = 0.001). Image noise in CE 3D-CT (12.5 HU) was significantly lower than in CE 4D-CT (22.1 HU, P = 0.013) and 4D-CT (19.4 HU, P = 0.009). CNRs were comparable in CE 3D-CT and CE 4D-CT (1.4 and 0.8, respectively; P = 0.42), and both were significantly better in 4D-CT (0.6, P = 0.008 and 0.014). Mean tumor volumes were significantly smaller in CE 3D-CT (29.8 cm3, P = 0.03) and CE 4D-CT (22.8 cm3, P = 0.01) than in 4D-CT (42.0 cm3). Mean tumor motion was comparable in 4D-CT and CE 4D-CT (7.2 and 6.2 mm, P = 0.17). Interobserver variations were comparable in CE 3D-CT and CE 4D-CT (Jaccard index 66.0% and 61.9%, respectively) and were worse for 4D-CT (55.6%) than CE 3D-CT. CONCLUSIONS CE 4D-CT demonstrated characteristics comparable to CE 3D-CT, with high potential for simultaneously delineating the tumor and quantifying tumor motion with a single scan.
Collapse
Affiliation(s)
- Wookjin Choi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ming Xue
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Barton F Lane
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Min Kyu Kang
- Department of Radiation Oncology, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Kruti Patel
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - William F Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Paul Klahr
- Philips Healthcare, Highland Heights, Ohio 44143
| | - Jiahui Wang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shifeng Chen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Warren D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
22
|
Detappe A, Kunjachan S, Sancey L, Motto-Ros V, Biancur D, Drane P, Guieze R, Makrigiorgos GM, Tillement O, Langer R, Berbeco R. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J Control Release 2016; 238:103-113. [PMID: 27423325 DOI: 10.1016/j.jconrel.2016.07.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 11/28/2022]
Abstract
Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment.
Collapse
Affiliation(s)
- Alexandre Detappe
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Sijumon Kunjachan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lucie Sancey
- Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Vincent Motto-Ros
- Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Douglas Biancur
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Pascal Drane
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Romain Guieze
- Division of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Olivier Tillement
- Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
23
|
Hypofractionated radiotherapy in pancreatic cancer: Lessons from the past in the era of stereotactic body radiation therapy. Crit Rev Oncol Hematol 2016; 103:49-61. [DOI: 10.1016/j.critrevonc.2016.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022] Open
|
24
|
Wilson JM, Fokas E, Dutton SJ, Patel N, Hawkins MA, Eccles C, Chu KY, Durrant L, Abraham AG, Partridge M, Woodward M, O'Neill E, Maughan T, McKenna WG, Mukherjee S, Brunner TB. ARCII: A phase II trial of the HIV protease inhibitor Nelfinavir in combination with chemoradiation for locally advanced inoperable pancreatic cancer. Radiother Oncol 2016; 119:306-11. [PMID: 27117177 PMCID: PMC4917892 DOI: 10.1016/j.radonc.2016.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE Nelfinavir can enhance intrinsic radiosensitivity, reduce hypoxia and improve vascularity. We conducted a phase II trial combining nelfinavir with chemoradiotherapy (CRT) for locally advanced inoperable pancreatic cancer (LAPC). MATERIALS AND METHODS Radiotherapy (50.4Gy/28 fractions; boost to 59.4Gy/33 fractions) was administered with weekly gemcitabine and cisplatin. Nelfinavir started 3-10days before and was continued during CRT. The primary end-point was 1-year overall survival (OS). Secondary end-points included histological downstaging, radiological response, 1-year progression free survival (PFS), overall survival (OS) and treatment toxicity. An imaging sub-study (n=6) evaluated hypoxia ((18)F-Fluoromisonidazole-PET) and perfusion (perfusion CT) during induction nelfinavir. RESULTS The study closed after recruiting 23 patients, due to non-availability of Nelfinavir in Europe. The 1-year OS was 73.4% (90% CI: 54.5-85.5%) and median OS was 17.4months (90% CI: 12.8-18.8). The 1-year PFS was 21.8% (90% CI: 8.9-38.3%) and median PFS was 5.5months (90% CI: 4.1-8.3). All patients experienced Grade 3/4 toxicity, but many were asymptomatic laboratory abnormalities. Four of 6 patients on the imaging sub-study demonstrated reduced hypoxia and increased perfusion post-nelfinavir. CONCLUSIONS CRT combined with nelfinavir showed acceptable toxicity and promising survival in pancreatic cancer.
Collapse
Affiliation(s)
- James M Wilson
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Susan J Dutton
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Neel Patel
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Maria A Hawkins
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Cynthia Eccles
- Department of Radiotherapy, Oxford University Hospitals NHS Foundation Trust, UK
| | - Kwun-Ye Chu
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK; Department of Radiotherapy, Oxford University Hospitals NHS Foundation Trust, UK
| | - Lisa Durrant
- Department of Radiotherapy, Oxford University Hospitals NHS Foundation Trust, UK
| | - Aswin G Abraham
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Mike Partridge
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Martha Woodward
- Early Phase Research Hub, Department of Oncology, Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, UK
| | - Eric O'Neill
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Tim Maughan
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - W Gillies McKenna
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK
| | - Somnath Mukherjee
- Department of Oncology, CRUK/MRC Institute for Radiation Oncology, University of Oxford, UK.
| | - Thomas B Brunner
- Department of Radiation Oncology, University of Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Partner Site Freiburg, Germany
| |
Collapse
|
25
|
Affiliation(s)
- Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Roeder F. Neoadjuvant radiotherapeutic strategies in pancreatic cancer. World J Gastrointest Oncol 2016; 8:186-197. [PMID: 26909133 PMCID: PMC4753169 DOI: 10.4251/wjgo.v8.i2.186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 02/05/2023] Open
Abstract
This review summarizes the current status of neoadjuvant radiation approaches in the treatment of pancreatic cancer, including a description of modern radiation techniques, and an overview on the literature regarding neoadjuvant radio- or radiochemotherapeutic strategies both for resectable and irresectable pancreatic cancer. Neoadjuvant chemoradiation for locally-advanced, primarily non- or borderline resectable pancreas cancer results in secondary resectability in a substantial proportion of patients with consecutively markedly improved overall prognosis and should be considered as possible alternative in pretreatment multidisciplinary evaluations. In resectable pancreatic cancer, outstanding results in terms of response, local control and overall survival have been observed with neoadjuvant radio- or radiochemotherapy in several phase I/II trials, which justify further evaluation of this strategy. Further investigation of neoadjuvant chemoradiation strategies should be performed preferentially in randomized trials in order to improve comparability of the current results with other treatment modalities. This should include the evaluation of optimal sequencing with newer and more potent systemic induction therapy approaches. Advances in patient selection based on new molecular markers might be of crucial interest in this context. Finally modern external beam radiation techniques (intensity-modulated radiation therapy, image-guided radiation therapy and stereotactic body radiation therapy), new radiation qualities (protons, heavy ions) or combinations with alternative boosting techniques widen the therapeutic window and contribute to the reduction of toxicity.
Collapse
|
27
|
Avanzo M, Chiovati P, Boz G, Sartor G, Dozza F, Capra E. Image-guided volumetric arc radiotherapy of pancreatic cancer with simultaneous integrated boost: Optimization strategies and dosimetric results. Phys Med 2015; 32:169-75. [PMID: 26626610 DOI: 10.1016/j.ejmp.2015.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 08/28/2015] [Accepted: 11/07/2015] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To introduce volumetric modulated arc therapy treatments (VMAT) with simultaneous integrated boost (SIB) for pancreatic cancer and describe dosimetric results on a large patient series. METHODS AND MATERIALS 45 patients with pancreatic malignancies were treated with 18 MV single-arc VMAT. Image guidance was performed with daily online kilo-volt cone-beam computed tomography (CBCT). The conformity index (CI) and homogeneity index (HI) to the target volumes, PTV45Gy and PTV54Gy, and dose-volume indices to OARs from the QUANTEC task group were reported. The risk of clinical nephritis was evaluated using normal tissue complication probability (NTCP). Treatments were verified in-phantom with the Delta4 system. RESULTS Average CI was 1.06 with 95% confidence intervals (95% CI) of 0.97-1.22 for PTV45Gy and 1.17 (0.66-1.61) for PTV54Gy. HI of PTV54Gy was 1.06 (1.04-1.10). OAR constraints were achieved in all patients, except for kidneys V12Gy of 48 (35.4-72.3)%. NTCP of the kidneys was 0.98 (0.6-1.7)%. Kidneys V12Gy and V20Gy were inversely related to PTV54Gy CI and maximum dose. All in-phantom tests had gamma pass rates exceeding 95% with global 3% dose difference and 3 mm distance to agreement. Patient shifts measured with CBCT had 95% CI of -0.8, +0.8 in the RL, -0.7, +0.8 in the SI, and -0.8, +0.7 cm in the AP directions. CONCLUSIONS Dosimetric results of VMAT were excellent on PTVs and organs at risk. The kidneys represent the dose-limiting organ at risk for this technique. NTCP indicates that this technique is safe from radiation-induced side effects to the kidneys.
Collapse
Affiliation(s)
- Michele Avanzo
- Medical Physics Unit, Centro di Riferimento Oncologico, 33081 Aviano, Italy.
| | - Paola Chiovati
- Medical Physics Unit, Centro di Riferimento Oncologico, 33081 Aviano, Italy
| | - Giovanni Boz
- Radiation Oncology Department, Centro di Riferimento Oncologico, 33081 Aviano, Italy
| | - Giovanna Sartor
- Medical Physics Unit, Centro di Riferimento Oncologico, 33081 Aviano, Italy
| | - Francesca Dozza
- Radiation Oncology Department, Centro di Riferimento Oncologico, 33081 Aviano, Italy
| | - Elvira Capra
- Medical Physics Unit, Centro di Riferimento Oncologico, 33081 Aviano, Italy
| |
Collapse
|
28
|
Comparison of toxicity after IMRT and 3D-conformal radiotherapy for patients with pancreatic cancer – A systematic review. Radiother Oncol 2015; 114:117-21. [DOI: 10.1016/j.radonc.2014.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
|
29
|
Souris JS, Cheng SH, Pelizzari C, Chen NT, La Riviere P, Chen CT, Lo LW. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy. APPLIED PHYSICS LETTERS 2014; 105:203110. [PMID: 25425747 PMCID: PMC4240777 DOI: 10.1063/1.4900962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/22/2014] [Indexed: 05/25/2023]
Abstract
Europium-doped yttrium oxide (Y2O3:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y2O3:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y2O3:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ.
Collapse
Affiliation(s)
- Jeffrey S Souris
- Department of Radiology, The University of Chicago , Chicago, Illinois 60637, USA
| | | | - Charles Pelizzari
- Deaprtment of Radiation and Cellular Oncology, The University of Chicago , Chicago, Illinois 60637, USA
| | | | - Patrick La Riviere
- Department of Radiology, The University of Chicago , Chicago, Illinois 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago , Chicago, Illinois 60637, USA
| | | |
Collapse
|
30
|
Intensity-modulated and image-guided radiotherapy in patients with locally advanced inoperable pancreatic cancer after preradiation chemotherapy. ScientificWorldJournal 2014; 2014:452089. [PMID: 25401140 PMCID: PMC4221866 DOI: 10.1155/2014/452089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023] Open
Abstract
Background. Radiotherapy (RT) in patients with pancreatic cancer is still a controversial subject and its benefit in inoperable stages of locally advanced pancreatic cancer (LAPC), even after induction chemotherapy, remains unclear. Modern radiation techniques such as image-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) may improve effectiveness and reduce radiotherapy-related toxicities. Methods. Patients with LAPC who underwent radiotherapy after chemotherapy between 09/2004 and 05/2013 were retrospectively analyzed with regard to preradiation chemotherapy (PRCT), modalities of radiotherapy, and toxicities. Progression-free (PFS) and overall survival (OS) were estimated by Kaplan-Meier curves. Results. 15 (68%) women and 7 men (median age 64 years; range 40–77) were identified. Median duration of PRCT was 11.1 months (range 4.3–33.0). Six patients (27%) underwent conventional RT and 16 patients (73%) advanced IMRT and IGRT; median dosage was 50.4 (range 9–54) Gray. No grade III or IV toxicities occurred. Median PFS (estimated from the beginning of RT) was 5.8 months, 2.6 months in the conventional RT group (conv-RT), and 7.1 months in the IMRT/IGRT group (P = 0.029); median OS was 11.0 months, 4.2 months (conv-RT), and 14.0 months (IMRT/IGRT); P = 0.141. Median RT-specific PFS for patients with prolonged PRCT > 9 months was 8.5 months compared to 5.6 months for PRCT < 9 months (P = 0.293). This effect was translated into a significantly better median RT-specific overall survival of patients in the PRCT > 9 months group, with 19.0 months compared to 8.5 months in the PRCT < 9 months group (P = 0.049). Conclusions. IGRT and IMRT after PRCT are feasible and effective options for patients with LAPC after prolonged preradiation chemotherapy.
Collapse
|