1
|
Zheng Y, Chen Y, Meng X, Zhang L, Ma Y, Zhou R, Fu S, Chen H, Xuanyuan X, Jiang R, Hou P, Song X, Wang Y, Sun J, Zhang W, Li J, Liu Z, Zhang Z, Zeng H, He Y. FADD Functions as an Oncogene in Chr11q13.3-Amplified Head and Neck Squamous Cell Carcinoma. Cancer Res 2025; 85:1909-1927. [PMID: 40370064 DOI: 10.1158/0008-5472.can-24-2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 02/21/2025] [Indexed: 05/16/2025]
Abstract
Chromosomal 11q13.3 amplification is the most common gene copy-number variation event in head and neck squamous cell carcinoma (HNSCC) that corresponds with poor prognosis. Although cyclin D1, a G1/S phase cell-cycle regulatory protein at this locus, is considered as a key driver of malignant progression, further exploration is needed to develop more effective targets for cases with this amplification. Using CRISPR-based gene knockout screening of genes located in chr11q13.3, we found that loss of the gene encoding the Fas-associated death domain (FADD) protein, a well-recognized adapter to caspase-8 that induces cell apoptosis, significantly reduced cancer cell proliferation. FADD expression was elevated in chr11q13.3-amplified tumors and correlated with poor prognosis. RNA sequencing, mass spectrometry, and proteomics analyses revealed a direct relationship between FADD and the DNA helicase MCM5 in the S phase. FADD and cyclin D1 acted at different stages of the cell cycle to synergistically induce proliferation, and caspase-8 deficiency was required for the oncogenic activity of FADD. In a patient-derived xenograft model with chr11q13.3 amplification, combined administration of the DNA helicase complex inhibitor and CDK4/6 inhibitor effectively curtailed tumor growth. Overall, this study identified a nonclassic oncogenic role for FADD in mediating tumor progression in HNSCC and provided a feasible treatment option for patients with chr11q13.3 amplification. Significance: FADD promotes progression of tumors with chr11q13.3 amplification by binding to the DNA helicase complex, which can be targeted in combination with cyclin D1 as a viable therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinan Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Meng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanni Ma
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuiting Fu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Heng Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinyang Xuanyuan
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Jiang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcong Hou
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Jingjing Sun
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglong Liu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Zeng
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Ganne-Carrié N, Nahon P. Differences between hepatocellular carcinoma caused by alcohol and other aetiologies. J Hepatol 2025; 82:909-917. [PMID: 39710147 DOI: 10.1016/j.jhep.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Alcohol-related liver disease is the third leading cause of hepatocellular carcinoma worldwide and the leading cause in Europe. Additionally, the recent definition of metabolic dysfunction-associated steatotic liver disease with increased alcohol intake (MetALD) will enrich this population with a more nuanced phenotype, reflecting recent epidemiological trends. In these patients, the hepatocellular carcinoma diagnosis is often delayed and less frequently detected through screening programmes. Moreover, at the time of diagnosis, patients with alcohol-related hepatocellular carcinoma tend to have a poorer general condition, more severely impaired liver function, and a higher prevalence of comorbidities, leading to increased competitive mortality. However, when hepatocellular carcinoma is diagnosed during surveillance programmes in patients with alcohol-related liver disease or MetALD, the rate of allocation to first-line curative treatments is high (56%) and comparable to that of patients with virus-related hepatocellular carcinoma. As a consequence, the aetiology of the underlying cirrhosis cannot be considered an independent prognostic factor in patients with hepatocellular carcinoma. Instead, prognosis is driven by liver function, general condition, and tumour burden. This underscores the crucial role of early diagnosis through periodic surveillance in patients with alcohol- or MetALD-related cirrhosis.
Collapse
Affiliation(s)
- Nathalie Ganne-Carrié
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France.
| | - Pierre Nahon
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France
| |
Collapse
|
3
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Fu Y, Zhu D, Chen X, Qu L, Guo M, Zhang S, Xu G, Chen Z, Li M, Chen Y. Integrative Multi-Omics Approaches Reveal Selectivity Profiles and Molecular Mechanisms of FIIN-2, a Covalent FGFR Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412578. [PMID: 39976135 PMCID: PMC11984845 DOI: 10.1002/advs.202412578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Indexed: 02/21/2025]
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors are emerged as an important class of targeted therapies in oncology, targeting key pathways associated with tumor growth, angiogenesis, and resistance to conventional treatments. FIIN-2, the first irreversible covalent pan-FGFR inhibitor, has shown promise in overcoming resistance due to gatekeeper mutations; however, its selectivity and molecular mechanisms in tumors remain poorly understood. In this study, an FIIN-2 chemical probe is designed and synthesized to identify both established and novel targets in hepatocellular carcinoma (HCC) via chemoproteomic profiling. An integrative multi-omics approach, including chemoproteomic, phosphoproteomic, transcriptomic, and proteomic analyses, is utilized to elucidate the full spectrum of target proteins, signaling pathways, and downstream effectors regulated by FIIN-2 in HCC. Notably, adenosine monophosphate-activated protein kinase α1 (AMPKα1) is identified as a novel target of FIIN-2, with Cys185 identified as its covalent binding site. These findings reveal that FIIN-2 can induce autophagy by directly binding to and activating AMPKα1, influencing its anti-tumor activity in HCC cells. Overall, this study greatly advances the understanding of FIIN-2's on- and off-target effects, offering a comprehensive view of its molecular mechanisms in cancer cells. The integrative multi-omics approach provides a valuable framework for the development and optimization of covalent kinase inhibitors.
Collapse
Affiliation(s)
- Ying Fu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Dandan Zhu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaojuan Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lingzhi Qu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ming Guo
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shuhong Zhang
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese MedicineMinistry of Educational of ChinaKey Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan ProvinceCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaHunan410081China
| | - Zhuchu Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Maoyu Li
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongheng Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
5
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
6
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
7
|
Wei Y, Yang L, Tang C, Zhuang H, Chen X, Ma X, Deng X, Chen Y, Tan W, Shang C. Lenvatinib inhibits cholangiocarcinoma progression by targeting the FGF19/PI3K/AKT signaling pathway. Apoptosis 2025; 30:185-196. [PMID: 39522105 DOI: 10.1007/s10495-024-02028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is known for its high aggressiveness and dismal prognosis, whose effectiveness of systemic therapy remains limited. As a multi-target drug, lenvatinib has exhibited promising effects in many solid tumors. However, the therapeutic role of lenvatinib in CCA is rarely investigated. Here, the in vitro assays including EdU, colony formation, transwell, wound healing, and apoptosis analyses demonstrated that lenvatinib significantly inhibited the proliferation, migration, and invasion, while simultaneously inducing apoptosis of CCA cells. Mechanistically, lenvatinib downregulated the expression of FGF19 and inactivated the PI3K/AKT signaling pathway. Depletion of FGF19 enhanced the anti-tumor effects of lenvatinib, which was attributed to the inhibition of p-PI3K and p-AKT expression in CCA cells. In contrast, overexpression of FGF19 activated the PI3K/AKT signaling pathway, thereby impairing the inhibitory effects of lenvatinib against CCA. In addition, the AKT inhibitor, MK-2206, reinforced the lenvatinib-induced CCA inhibition. Notably, the in vivo experiment confirmed that the subcutaneous tumorigenicity of CCA cells in nude mice was weakened by lenvatinib. Lenvatinib markedly downregulated the expression of FGF19, p-AKT, Ki-67, vimentin, and VEGF in the xenograft tumor tissues. Collectively, these findings demonstrated that lenvatinib inhibits CCA progression by targeting the FGF19/PI3K/AKT signaling pathway. The present study provides novel experimental evidence for the potential clinical application of lenvatinib in CCA, which also highlights the promising role of targeting FGF19 in combined therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Yingcheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatopancreatobiliary Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, Guangdong, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xinming Chen
- Department of Breast Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, Guangdong, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Wenliang Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
8
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Wu PV, Fish M, Hazard FK, Zhu C, Vennam S, Walton H, Wagh D, Coller J, Przybyl J, Morri M, Neff N, West RB, Nusse R. A developmental biliary lineage program cooperates with Wnt activation to promote cell proliferation in hepatoblastoma. Nat Commun 2024; 15:10007. [PMID: 39567523 PMCID: PMC11579301 DOI: 10.1038/s41467-024-53802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Cancers evolve not only through the acquisition and clonal transmission of somatic mutations but also by epigenetic mechanisms that modify cell phenotype. Here, we use histology-guided and spatial transcriptomics to characterize hepatoblastoma, a childhood liver cancer that exhibits significant histologic and proliferative heterogeneity despite clonal activating mutations in the Wnt/β-catenin pathway. Highly proliferative regions with embryonal histology show high expression of Wnt target genes, the embryonic biliary transcription factor SOX4, and striking focal expression of the growth factor FGF19. In patient-derived tumoroids with constitutive Wnt activation, FGF19 is a required growth signal for FGF19-negative cells. Indeed, some tumoroids contain subsets of cells that endogenously express FGF19, downstream of Wnt/β-catenin and SOX4. Thus, the embryonic biliary lineage program cooperates with stabilized nuclear β-catenin, inducing FGF19 as a paracrine growth signal that promotes tumor cell proliferation, together with active Wnt signaling. In this pediatric cancer presumed to originate from a multipotent hepatobiliary progenitor, lineage-driven heterogeneity results in a functional growth advantage, a non-genetic mechanism whereby developmental lineage programs influence tumor evolution.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Matt Fish
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannah Walton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Population Health, NYC Health + Hospitals, New York, NY, 10004, USA
| | - Dhananjay Wagh
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - John Coller
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - Joanna Przybyl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Surgery, McGill University, Montreal, H4A 3J1, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
| | - Maurizio Morri
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
- Altos Labs, Redwood City, CA, 94065, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
11
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
12
|
Alqabandi W, Dhaunsi GS. L-Glutamine mitigates bile acid-induced inhibition of growth factor activity in rat hepatocyte cultures. Growth Factors 2024; 42:120-127. [PMID: 39320940 DOI: 10.1080/08977194.2024.2407566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Bile acid-induced hepatotoxicity is inevitable in Cholestasis pathogenesis and L-Glutamine (L-Gln) has been reported to prevent total parenteral nutrition (TPN)-induced cholestasis in premature neonates. While mechanisms remain unknown, we hypothesize that bile acids impair growth factor (GF) function in hepatocytes which L-glutamine prevents through NAPDH oxidase (NOX) modulation. Glycochenodeoxycholic acid (GCDC, 0-100 µM) when added to primary hepatocyte cultures significantly (p < 0.01) decreased the FBS-induced BrdU incorporation, however inhibition of Fibroblast Growth factor (FGF)- or Hepatocyte growth factor (HGF)-induced DNA synthesis was more pronounced (p < 0.001). L-Gln markedly attenuated GCDC-mediated inhibition of DNA synthesis in both FBS and GF-treated cells. GCDC significantly increased the NADPH oxidase activity and NOX-1 protein expression that were markedly reduced by L-Gln and protein kinase c (PKC) inhibitor, LY-333531. Apocynin (APCN) and diphenyliodonium (DPI) significantly blocked the GCDC-mediated inhibition of GF-induced DNA synthesis. This study demonstrates that bile acid-induced hepatotoxicity involves dysfunction of certain growth factors via protein kinase c (PKC)- mediated NOX modulation which can be corrected, at least partly, by L-glutamine.
Collapse
|
13
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
14
|
Ucdal M, Burus A, Celtikci B. Cross talk between genetics and biochemistry in the pathogenesis of hepatocellular carcinoma. HEPATOLOGY FORUM 2024; 5:150-160. [PMID: 39006147 PMCID: PMC11237245 DOI: 10.14744/hf.2023.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 07/16/2024]
Abstract
The liver is a crucial organ in the regulation of metabolism, signaling, and homeostasis. Using recent advanced sequencing technologies, several mutations of genes in major metabolic and signaling pathways have been discovered in the pathogenesis of hepatocellular carcinoma (HCC). These gene signatures alter expression and ultimately affect biochemical pathways by modifying enzyme/protein levels, resulting in numerous clinical outcomes related to HCC. It comes with varying forms of genetic and biochemical alterations, associated with carbohydrate, lipid, nucleic acid, and amino acid metabolism, as well as signaling pathways linked to tumorigenesis. Here, we aim to summarize the main components and mechanisms involved in the progression of HCC with a special focus on the metabolic regulation of key effectors of tumorigenesis, through the crosstalk between genetics and biochemistry. This paper provides an overview of hepatocellular carcinoma, underlying the fundamental effect of gene variations on metabolic and signaling pathways. Since there is still an unmet need for biomarkers and novel therapeutic targets, some of these signature genes or proteins can be used as novel biomarkers for diagnosis, prognosis, and novel potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Mete Ucdal
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkiye
| | - Ayse Burus
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| | - Basak Celtikci
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| |
Collapse
|
15
|
Shen L, Li Y, Zhao H. Fibroblast growth factor signaling in macrophage polarization: impact on health and diseases. Front Immunol 2024; 15:1390453. [PMID: 38962005 PMCID: PMC11219802 DOI: 10.3389/fimmu.2024.1390453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.
Collapse
Affiliation(s)
- Luyao Shen
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
16
|
Kaneko S, Takasawa K, Asada K, Shiraishi K, Ikawa N, Machino H, Shinkai N, Matsuda M, Masuda M, Adachi S, Takahashi S, Kobayashi K, Kouno N, Bolatkan A, Komatsu M, Yamada M, Miyake M, Watanabe H, Tateishi A, Mizuno T, Okubo Y, Mukai M, Yoshida T, Yoshida Y, Horinouchi H, Watanabe SI, Ohe Y, Yatabe Y, Saloura V, Kohno T, Hamamoto R. Mechanism of ERBB2 gene overexpression by the formation of super-enhancer with genomic structural abnormalities in lung adenocarcinoma without clinically actionable genetic alterations. Mol Cancer 2024; 23:126. [PMID: 38862995 PMCID: PMC11165761 DOI: 10.1186/s12943-024-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Noriko Ikawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Maiko Matsuda
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mari Masuda
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hirokazu Watanabe
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Akiko Tateishi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takaaki Mizuno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yu Okubo
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masami Mukai
- Division of Medical Informatics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Vassiliki Saloura
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| |
Collapse
|
17
|
Mofunanya A, Cameron ER, Braun CJ, Celeste F, Zhao X, Hemann MT, Scott KL, Li J, Powers S. Simultaneous screening of overexpressed genes in breast cancer for oncogenic drivers and tumor dependencies. Sci Rep 2024; 14:13227. [PMID: 38851782 PMCID: PMC11162420 DOI: 10.1038/s41598-024-64297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving β-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Adaobi Mofunanya
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
| | - Eleanor R Cameron
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christian J Braun
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Frank Celeste
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xiaoyu Zhao
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jinyu Li
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
| | - Scott Powers
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA.
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA.
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
18
|
Bi JG, Li Q, Guo YS, Liu LP, Bao SY, Xu P. Long Non-coding RNA PCED1B Antisense RNA 1 Promotes Cell Proliferation and Invasion in Hepatocellular Carcinoma by Regulating the MicroRNA-34a/CD44 Axis. Curr Med Sci 2024; 44:503-511. [PMID: 38748366 DOI: 10.1007/s11596-023-2823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/19/2023] [Indexed: 06/29/2024]
Abstract
OBJECTIVE This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1 (PCED1B-AS1) in the development of hepatocellular carcinoma (HCC). METHODS A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients. The interactions of PCED1B-AS1 and microRNA-34a (miR-34a) were detected by dual luciferase activity assay and RNA pull-down assay. The RNA expression levels of PCED1B-AS1, miR-34a and CD44 were detected by RT-qPCR, and the protein expression level of CD44 was determined by Western blotting. The cell proliferation was detected by cell proliferation assay, and the cell invasion and migration by transwell invasion assay. The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study. RESULTS PCED1B-AS1 was highly expressed in HCC tissues, which was associated with poor survival of HCC patients. Furthermore, PCED1B-AS1 interacted with miR-34a in HCC cells, but they did not regulate the expression of each other. Additionally, PCED1B-AS1 increased the expression level of CD44, which was targeted by miR-34a. The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro, while CD44 exhibited the opposite effects. Furthermore, PCED1B-AS1 suppressed the role of miR-34a. Moreover, the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo. CONCLUSION PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.
Collapse
Affiliation(s)
- Jian-Gang Bi
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Jinan, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Qi Li
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Jinan, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yu-Sheng Guo
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Jinan, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Jinan, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Shi-Yun Bao
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Jinan, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Ping Xu
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Jinan, China.
| |
Collapse
|
19
|
Zheng S, Chan SW, Liu F, Liu J, Chow PKH, Toh HC, Hong W. Hepatocellular Carcinoma: Current Drug Therapeutic Status, Advances and Challenges. Cancers (Basel) 2024; 16:1582. [PMID: 38672664 PMCID: PMC11048862 DOI: 10.3390/cancers16081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.
Collapse
Affiliation(s)
- Shunzhen Zheng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Pierce Kah Hoe Chow
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore;
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| |
Collapse
|
20
|
Raghav A, Jeong GB. Nanoquercetin and Extracellular Vesicles as Potential Anticancer Therapeutics in Hepatocellular Carcinoma. Cells 2024; 13:638. [PMID: 38607076 PMCID: PMC11011524 DOI: 10.3390/cells13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Despite world-class sophisticated technologies, robotics, artificial intelligence, and machine learning approaches, cancer-associated mortalities and morbidities have shown continuous increments posing a healthcare burden. Drug-based interventions were associated with systemic toxicities and several limitations. Natural bioactive compounds derived nanoformulations, especially nanoquercetin (nQ), are alternative options to overcome drug-associated limitations. Moreover, the EVs-based cargo targeted delivery of nQ can have enormous potential in treating hepatocellular carcinoma (HCC). EVs-based nQ delivery synergistically regulates and dysregulates several pathways, including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin, and PI3K/AKT, along with PBX3/ERK1/2/CDK2, and miRNAs intonation. Furthermore, discoveries on possible checkpoints of anticancer signaling pathways were studied, which might lead to the development of modified EVs infused with nQ for the development of innovative treatments for HCC. In this work, we abridged the control of such signaling systems using a synergetic strategy with EVs and nQ. The governing roles of extracellular vesicles controlling the expression of miRNAs were investigated, particularly in relation to HCC.
Collapse
Affiliation(s)
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
21
|
Hua K, Wu C, Lin C, Chen C. E2F1 promotes cell migration in hepatocellular carcinoma via FNDC3B. FEBS Open Bio 2024; 14:687-694. [PMID: 38403291 PMCID: PMC10988749 DOI: 10.1002/2211-5463.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
FNDC3B (fibronectin type III domain containing 3B) is highly expressed in hepatocellular carcinoma (HCC) and other cancer types, and fusion genes involving FNDC3B have been identified in HCC and leukemia. Growing evidence suggests the significance of FNDC3B in tumorigenesis, particularly in cell migration and tumor metastasis. However, its regulatory mechanisms remain elusive. In this study, we employed bioinformatic, gene regulation, and protein-DNA interaction screening to investigate the transcription factors (TFs) involved in regulating FNDC3B. Initially, 338 candidate TFs were selected based on previous chromatin immunoprecipitation (ChIP)-seq experiments available in public domain databases. Through TF knockdown screening and ChIP coupled with Droplet Digital PCR assays, we identified that E2F1 (E2F transcription factor 1) is crucial for the activation of FNDC3B. Overexpression or knockdown of E2F1 significantly impacts the expression of FNDC3B. In conclusion, our study elucidated the mechanistic link between FNDC3B and E2F1. These findings contribute to a better understanding of FNDC3B in tumorigenesis and provide insights into potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kate Hua
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chen‐Tang Wu
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chin‐Hui Lin
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chian‐Feng Chen
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
22
|
Cai J, Lian C, Lu Z, Shang Q, Wang L, Han Z, Gu Y. FGF19-Based Mini Probe Targeting FGFR4 for Diagnosis and Surgical Navigation of Hepatocellular Carcinoma. J Med Chem 2024; 67:3764-3777. [PMID: 38385325 DOI: 10.1021/acs.jmedchem.3c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a frequent malignancy that has a high death rate and a high rate of recurrence following surgery, owing to insufficient surgical resection. Furthermore, HCC is prone to peritoneal metastasis (HCC-PM), resulting in a significant number of tiny cancer lesions, making surgical removal more challenging. As a potential imaging target, FGFR4 is highly expressed in tumors, especially in HCC, but is less expressed in the normal liver. In this study, we used computational simulation approaches to develop peptide I0 derived from FGF19, a particular ligand of FGFR4, and labeled it with the NIRF dye, MPA, for HCC detection. In surgical navigation, the TBR was 9.31 ± 1.36 and 8.57 ± 1.15 in HepG2 in situ tumor and HCC-PM models, respectively, indicating considerable tumor uptake. As a result, peptide I0 is an excellent clinical diagnostic reagent for HCC, as well as a tool for surgically resecting HCC peritoneal metastases.
Collapse
Affiliation(s)
- Jiaxian Cai
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Lian
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China
| | - Zeyu Lu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Shang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Li Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering and Diagnostic Pharmacy, School of engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
23
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
25
|
Mahieu CI, Mancini AG, Vikram EP, Planells-Palop V, Joseph NM, Tward AD. ORAOV1, CCND1, and MIR548K Are the Driver Oncogenes of the 11q13 Amplicon in Squamous Cell Carcinoma. Mol Cancer Res 2024; 22:152-168. [PMID: 37930255 PMCID: PMC10831340 DOI: 10.1158/1541-7786.mcr-23-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
11q13 amplification is a frequent event in human cancer and in particular in squamous cell carcinomas (SCC). Despite almost invariably spanning 10 genes, it is unclear which genetic components of the amplicon are the key driver events in SCC. A combination of computational, in vitro, ex vivo, and in vivo models leveraging efficient primary human keratinocyte genome editing by Cas9-RNP electroporation, identified ORAOV1, CCND1, and MIR548K as the critical drivers of the amplicon in head and neck SCC. CCND1 amplification drives the cell cycle in a CDK4/6/RB1-independent fashion and may confer a novel dependency on RRM2. MIR548K contributes to epithelial-mesenchymal transition. Finally, we identify ORAOV1 as an oncogene that acts likely via its ability to modulate reactive oxygen species. Thus, the 11q13 amplicon drives SCC through at least three independent genetic elements and suggests therapeutic targets for this morbid and lethal disease. IMPLICATIONS This work demonstrates novel mechanisms and ways to target these mechanisms underlying the most common amplification in squamous cell carcinoma, one of the most prevalent and deadly forms of human cancer.
Collapse
Affiliation(s)
- Céline I. Mahieu
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | | | - Ellee P. Vikram
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | - Vicente Planells-Palop
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | - Nancy M. Joseph
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Aaron D. Tward
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| |
Collapse
|
26
|
Ursic-Bedoya J, Desandré G, Chavey C, Marie P, Polizzi A, Rivière B, Guillou H, Assenat E, Hibner U, Gregoire D. FGF19 and its analog Aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis. EMBO Mol Med 2024; 16:238-250. [PMID: 38228803 PMCID: PMC10897482 DOI: 10.1038/s44321-023-00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
Collapse
Affiliation(s)
- José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Guillaume Desandré
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Marie
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Benjamin Rivière
- Department of Pathology, Gui de Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Eric Assenat
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Urszula Hibner
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
27
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
28
|
Raghav A, Goo-Bo-Jeong. Two-Dimensional (2D) Based Hybrid Polymeric Nanoparticles as Novel Potential Therapeutics in the Treatment of Hepatocellular Carcinoma. ENGINEERING MATERIALS 2024:329-349. [DOI: 10.1007/978-981-99-8010-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Hendriks D, Brouwers JF, Hamer K, Geurts MH, Luciana L, Massalini S, López-Iglesias C, Peters PJ, Rodríguez-Colman MJ, Chuva de Sousa Lopes S, Artegiani B, Clevers H. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat Biotechnol 2023; 41:1567-1581. [PMID: 36823355 PMCID: PMC10635827 DOI: 10.1038/s41587-023-01680-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
The lack of registered drugs for nonalcoholic fatty liver disease (NAFLD) is partly due to the paucity of human-relevant models for target discovery and compound screening. Here we use human fetal hepatocyte organoids to model the first stage of NAFLD, steatosis, representing three different triggers: free fatty acid loading, interindividual genetic variability (PNPLA3 I148M) and monogenic lipid disorders (APOB and MTTP mutations). Screening of drug candidates revealed compounds effective at resolving steatosis. Mechanistic evaluation of effective drugs uncovered repression of de novo lipogenesis as the convergent molecular pathway. We present FatTracer, a CRISPR screening platform to identify steatosis modulators and putative targets using APOB-/- and MTTP-/- organoids. From a screen targeting 35 genes implicated in lipid metabolism and/or NAFLD risk, FADS2 (fatty acid desaturase 2) emerged as an important determinant of hepatic steatosis. Enhancement of FADS2 expression increases polyunsaturated fatty acid abundancy which, in turn, reduces de novo lipogenesis. These organoid models facilitate study of steatosis etiology and drug targets.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Jos F Brouwers
- Research Group Analysis Techniques in the Life Sciences, School of Life Sciences and Technology, Avans University of Applied Sciences, Breda, The Netherlands
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karien Hamer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Léa Luciana
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Maria J Rodríguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Benedetta Artegiani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
30
|
Nelakurthi VM, Paul P, Reche A. Bioinformatics in Early Cancer Detection. Cureus 2023; 15:e46931. [PMID: 38021627 PMCID: PMC10640668 DOI: 10.7759/cureus.46931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Bioinformatics is a pretty recent branch of biology that encompasses the use of algebraic, analytic, and computing approaches to the processing and interpretation of biological information. A wide term, "bioinformatics" refers to the use of digital technology to study biological processes using high-dimensional data collected from many resources. The design and testing of the software tools required to evaluate the information are the core of bioinformatics research, which is conducted in great portions in silico and typically involves the synthesis of new learning from available data. Early diagnosis of cancer results in improved prognosis, but at the same time, it is difficult to conform to diagnosis at a very early stage. The use of DNA microarrays and proteomics studies for large-scale gene expression research has advanced technology, thus elevating the significance of bioinformatics tools. In today's research, wet experimentation and the application of bioinformatics analytics go side by side. Molecular profiling of tumor biopsies is becoming more and more crucial to both cancer research and the treatment of cancer.
Collapse
Affiliation(s)
- Vidya Maheswari Nelakurthi
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
31
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
32
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [PMID: 39958385 PMCID: PMC11792070 DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 01/03/2025]
Abstract
Bile acids (BAs) play important roles in the digestion of dietary fats and molecular signal transduction, and modulation of the BA composition usually affects the progression of metabolic diseases. While the liver produces primary BAs, the gut microbiota modifies these products into various forms that greatly increase their diversity and biological functions. Mechanistically, BAs can regulate their own metabolism and transport as well as other key aspects of metabolic processes via dedicated BA receptors. Disruption of BA transport and homeostasis leads to the progression of liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). Here, we summarize the microbial transformations of BAs and their downstream signaling in the development of metabolic diseases and present new insights into novel therapeutic strategies targeting BA pathways that may contribute to these diseases.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Siqi Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
Matsumoto S, Harada A, Seta M, Akita M, Gon H, Fukumoto T, Kikuchi A. Wnt Signaling Stimulates Cooperation between GREB1 and HNF4α to Promote Proliferation in Hepatocellular Carcinoma. Cancer Res 2023; 83:2312-2327. [PMID: 37347203 DOI: 10.1158/0008-5472.can-22-3518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Wnt signaling is known to maintain two cell states, hepatocyte differentiation and proliferation, in hepatocellular carcinoma (HCC). On the other hand, activation of Wnt signaling in colon cancer promotes uncontrollable stereotypic proliferation, whereas cells remain undifferentiated. To elucidate the unique mode of Wnt signaling in HCC, we comprehensively investigated HCC-specific Wnt pathway target genes and identified GREB1. Wnt signaling induced expression of GREB1 coupled with HNF4α and FOXA2, master transcription factors that maintain hepatic differentiation. Moreover, GREB1 was enriched at the regulatory region of atypical HNF4α target genes, including progrowth genes, thereby stimulating HCC proliferation. Therefore, GREB1 acts as a unique mediator of versatile Wnt signaling in HCC progression, bridging the roles of the Wnt pathway in differentiation and proliferation. SIGNIFICANCE GREB1 is a liver cancer-specific Wnt signaling target gene that induces an oncogenic shift of HNF4α, a putative tumor suppressor, and may represent a therapeutic target in Wnt-activated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Akikazu Harada
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine, Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Minami Seta
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masayuki Akita
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hidetoshi Gon
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Center of Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
34
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
35
|
Chen P, Chen D, Bu D, Gao J, Qin W, Deng K, Ren L, She S, Xu W, Yang Y, Xie X, Liao W, Chen H. Dominant neoantigen verification in hepatocellular carcinoma by a single-plasmid system coexpressing patient HLA and antigen. J Immunother Cancer 2023; 11:jitc-2022-006334. [PMID: 37076248 PMCID: PMC10124323 DOI: 10.1136/jitc-2022-006334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Previous studies confirmed that most neoantigens predicted by algorithms do not work in clinical practice, and experimental validations remain indispensable for confirming immunogenic neoantigens. In this study, we identified the potential neoantigens with tetramer staining, and established the Co-HA system, a single-plasmid system coexpressing patient human leukocyte antigen (HLA) and antigen, to detect the immunogenicity of neoantigens and verify new dominant hepatocellular carcinoma (HCC) neoantigens. METHODS First, we enrolled 14 patients with HCC for next-generation sequencing for variation calling and predicting potential neoantigens. Then, the Co-HA system was established. To test the feasibility of the system, we constructed target cells coexpressing HLA-A*11:01 and the reported KRAS G12D neoantigen as well as specific T-cell receptor (TCR)-T cells. The specific cytotoxicity generated by this neoantigen was shown using the Co-HA system. Moreover, potential HCC-dominant neoantigens were screened out by tetramer staining and validated by the Co-HA system using methods including flow cytometry, enzyme-linked immunospot assay and ELISA. Finally, antitumor test in mouse mode and TCR sequencing were performed to further evaluate the dominant neoantigen. RESULTS First, 2875 somatic mutations in 14 patients with HCC were identified. The main base substitutions were C>T/G>A transitions, and the main mutational signatures were 4, 1 and 16. The high-frequency mutated genes included HMCN1, TTN and TP53. Then, 541 potential neoantigens were predicted. Importantly, 19 of the 23 potential neoantigens in tumor tissues also existed in portal vein tumor thrombi. Moreover, 37 predicted neoantigens restricted by HLA-A*11:01, HLA-A*24:02 or HLA-A*02:01 were performed by tetramer staining to screen out potential HCC-dominant neoantigens. HLA-A*24:02-restricted epitope 5'-FYAFSCYYDL-3' and HLA-A*02:01-restricted epitope 5'-WVWCMSPTI-3' demonstrated strong immunogenicity in HCC, as verified by the Co-HA system. Finally, the antitumor efficacy of 5'-FYAFSCYYDL-3'-specific T cells was verified in the B-NDG-B2mtm1Fcrntm1(mB2m) mouse and their specific TCRs were successfully identified. CONCLUSION We found the dominant neoantigens with high immunogenicity in HCC, which were verified with the Co-HA system.
Collapse
Affiliation(s)
- Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Wanying Qin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Guilin Medical University Affiliated Hospital, Guilin, Guangxi, China
| | - Kangjian Deng
- Laboratory of Hepatobiliary and Pancreatic Surgery, Guilin Medical University Affiliated Hospital, Guilin, Guangxi, China
| | - Liying Ren
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
| | - Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
| | - Wentao Xu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Guilin Medical University Affiliated Hospital, Guilin, Guangxi, China
| | - Yao Yang
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
| | - Xingwang Xie
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
- Corregene Biotechnology Co., Ltd, Beijing, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Guilin Medical University Affiliated Hospital, Guilin, Guangxi, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, China
| |
Collapse
|
36
|
Yan K, Zhang D, Chen Y, Lu W, Huang M, Cai J, Chen S, Bei T, Bai Y, Lv J, Fu Y, Zhang H. Chromosome 11q13 amplification correlates with poor response and prognosis to PD-1 blockade in unresectable hepatocellular carcinoma. Front Immunol 2023; 14:1116057. [PMID: 37056769 PMCID: PMC10086239 DOI: 10.3389/fimmu.2023.1116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background & aimsLittle is known about molecular biomarkers that predict the response and prognosis in unresectable hepatocellular carcinoma (HCC) treated with programmed death (PD)-1 inhibitors.MethodsA total of 62 HCC patients who underwent next-generation sequencing were retrospectively included in our department for this study. Patients with unresectable disease were subjected to systemic therapy. PD-1 inhibitors intervention (PD-1Ab) group and nonPD-1Ab group included 20 and 13 patients, respectively. Primary resistance was defined as initial on-treatment progression or progression with an initial stable disease of less than 6 months.ResultsChromosome 11q13 amplification (Amp11q13) was the most common copy number variation in our cohort. Fifteen (24.2%) patients harbored Amp11q13 in our dataset. Patients with Amp11q13 showed higher level of Des-γ-carboxy-prothrombin (DCP), tumor number and were more prone to be combined with portal vein tumor thrombosis (PVTT). In the PD-1Ab group, the proportion of progressive disease (PD) in patients with Amp11q13 was significantly higher than that in patients with nonAmp11q13 (100% vs 33.3%, P=0.03). In the nonPD-1Ab group, the proportion of PD in patients with Amp11q13 and nonAmp11q13 had no significant difference (0% vs 11.1%, P>0.99). In the PD-1Ab group, the median progression-free survival (PFS) was 1.5 months in Amp11q13 patients vs 16.2 months in non-Amp11q13 patients (HR, 0.05; 95% CI 0.01-0.45; P = 0.0003). No significant difference was observed in the nonPD-1Ab group. Notably, we found that hyperprogressive disease (HPD) might be associated with Amp11q13. The increased density of Foxp3+ Treg cells in HCC patients with Amp11q13 might be one of potential mechanisms.ConclusionHCC patients with Amp11q13 are less likely to benefit from PD-1 blockade therapies. These findings may help guide the use of immunotherapy for HCC in routine clinical practice.
Collapse
Affiliation(s)
- Kai Yan
- Department of Hepatic Surgery (V), The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yanan Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Wenfeng Lu
- Department of Hepatic Surgery (V), The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jinping Cai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Ting Bei
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jian Lv
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Yong Fu
- Department of Hepatic Surgery (V), The Third Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Haibin Zhang, ; Yong Fu,
| | - Haibin Zhang
- Department of Hepatic Surgery (V), The Third Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Haibin Zhang, ; Yong Fu,
| |
Collapse
|
37
|
Chia L, Wang B, Kim JH, Luo LZ, Shuai S, Herrera I, Chen SY, Li L, Xian L, Huso T, Heydarian M, Reddy K, Sung WJ, Ishiyama S, Guo G, Jaffee E, Zheng L, Cope LM, Gabrielson K, Wood L, Resar L. HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. J Clin Invest 2023; 133:151601. [PMID: 36919699 PMCID: PMC10014113 DOI: 10.1172/jci151601] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/25/2023] [Indexed: 03/15/2023] Open
Abstract
High mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation. HMGA1 deficiency disrupts oncogenic properties in vitro while impairing tumor inception and progression in KPC mice and subcutaneous or orthotopic models of PDAC. RNA sequencing revealed HMGA1 transcriptional networks governing proliferation and tumor-stroma interactions, including the FGF19 gene. HMGA1 directly induces FGF19 expression and increases its protein secretion by recruiting active histone marks (H3K4me3, H3K27Ac). Surprisingly, disrupting FGF19 via gene silencing or the FGFR4 inhibitor BLU9931 recapitulates most phenotypes observed with HMGA1 deficiency, decreasing tumor growth and formation of a desmoplastic stroma in mouse models of PDAC. In human PDAC, overexpression of HMGA1 and FGF19 defines a subset of tumors with extremely poor outcomes. Our results reveal what we believe is a new paradigm whereby HMGA1 and FGF19 drive tumor progression and stroma formation, thus illuminating FGF19 as a rational therapeutic target for a molecularly defined PDAC subtype.
Collapse
Affiliation(s)
- Lionel Chia
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bowen Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Z Luo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuai Shuai
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Liping Li
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tait Huso
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Woo Jung Sung
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shun Ishiyama
- Department of Pathology.,Department of Molecular and Comparative Pathobiology
| | - Gongbo Guo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Leslie M Cope
- Department of Oncology, and.,Division of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Laura Wood
- Pathobiology Graduate Program, Department of Pathology and.,Department of Pathology.,Department of Oncology, and
| | - Linda Resar
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Pathology.,Department of Oncology, and
| |
Collapse
|
38
|
Pons G, Gallo-Oller G, Navarro N, Zarzosa P, Sansa-Girona J, García-Gilabert L, Magdaleno A, Segura MF, Sánchez de Toledo J, Gallego S, Moreno L, Roma J. Analysis of Cancer Genomic Amplifications Identifies Druggable Collateral Dependencies within the Amplicon. Cancers (Basel) 2023; 15:1636. [PMID: 36980521 PMCID: PMC10046350 DOI: 10.3390/cancers15061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The identification of novel therapeutic targets for specific cancer molecular subtypes is crucial for the development of precision oncology. In the last few years, CRISPR/Cas9 screens have accelerated the discovery and validation of new targets associated with different tumor types, mutations, and fusions. However, there are still many cancer vulnerabilities associated with specific molecular features that remain to be explored. Here, we used data from CRISPR/Cas9 screens in 954 cancer cell lines to identify gene dependencies associated with 16 common cancer genomic amplifications. We found that high-copy-number genomic amplifications generate multiple collateral dependencies within the amplified region in most cases. Further, to prioritize candidate targets for each chromosomal region amplified, we integrated gene dependency parameters with both druggability data and subcellular location. Finally, analysis of the relationship between gene expression and gene dependency led to the identification of genes, the expression of which may constitute predictive biomarkers of dependency. In conclusion, our study provides a set of druggable targets specific for each amplification, opening the possibility to specifically target amplified tumors on this basis.
Collapse
Affiliation(s)
- Guillem Pons
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Natalia Navarro
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Patricia Zarzosa
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Júlia Sansa-Girona
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia García-Gilabert
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Ainara Magdaleno
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Laboratory of Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
39
|
Tian H, Zhang S, Liu Y, Wu Y, Zhang D. Fibroblast Growth Factors for Nonalcoholic Fatty Liver Disease: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24054583. [PMID: 36902015 PMCID: PMC10003526 DOI: 10.3390/ijms24054583] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic condition associated with metabolic dysfunction and obesity, has reached epidemic proportions worldwide. Although early NAFLD can be treated with lifestyle changes, the treatment of advanced liver pathology, such as nonalcoholic steatohepatitis (NASH), remains a challenge. There are currently no FDA-approved drugs for NAFLD. Fibroblast growth factors (FGFs) play essential roles in lipid and carbohydrate metabolism and have recently emerged as promising therapeutic agents for metabolic diseases. Among them, endocrine members (FGF19 and FGF21) and classical members (FGF1 and FGF4) are key regulators of energy metabolism. FGF-based therapies have shown therapeutic benefits in patients with NAFLD, and substantial progress has recently been made in clinical trials. These FGF analogs are effective in alleviating steatosis, liver inflammation, and fibrosis. In this review, we describe the biology of four metabolism-related FGFs (FGF19, FGF21, FGF1, and FGF4) and their basic action mechanisms, and then summarize recent advances in the biopharmaceutical development of FGF-based therapies for patients with NAFLD.
Collapse
Affiliation(s)
- Haoyu Tian
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Shuairan Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Correspondence: or
| |
Collapse
|
40
|
Harding JJ, Jungels C, Machiels JP, Smith DC, Walker C, Ji T, Jiang P, Li X, Asatiani E, Van Cutsem E, Abou-Alfa GK. First-in-Human Study of INCB062079, a Fibroblast Growth Factor Receptor 4 Inhibitor, in Patients with Advanced Solid Tumors. Target Oncol 2023; 18:181-193. [PMID: 36787089 PMCID: PMC10042765 DOI: 10.1007/s11523-023-00948-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Fibroblast growth factor receptor (FGFR)-4/FGF19 pathway dysregulation is implicated in hepatobiliary and other solid tumors. INCB062079, an oral, selective, FGFR4 inhibitor, inhibits growth in FGF19/FGFR4-driven liver cancer models. METHODS This was a two-part, phase I study (NCT03144661) in previously treated patients with advanced solid tumors. The primary objective was to determine safety, tolerability, and maximum tolerated dose (MTD), while secondary objectives included pharmacokinetics, pharmacodynamics (plasma FGF19; bile acid salts/7α-hydroxy-4-cholesten-3-one [C4] levels), and preliminary efficacy. In Part 1, patients received INCB062079 starting at 10 mg once daily, with 3 + 3 dose escalation. Part 2 (dose expansion) was not conducted because of study termination. RESULTS Twenty-three patients were treated (hepatobiliary, n = 11; ovarian, n = 9; other, n = 3). Among six patients receiving 15 mg twice daily, two patients had dose-limiting toxicities (DLTs; grade 3 diarrhea, grade 3 transaminitis). Both had high pretreatment C4 concentrations, prompting a protocol amendment requiring pretreatment C4 concentrations < 40.9 ng/mL and concomitant prophylactic bile acid sequestrant treatment. No additional DLTs were reported at 10 and 15 mg twice daily; higher doses were not assessed. The most common toxicity was diarrhea (60.9%). INCB062079 exposure was dose-proportional; FGF19 and bile acid/C4 concentrations increased with exposure. One partial response was achieved (15 mg twice daily; ovarian cancer; FGF/FGFR status unknown; duration of response, 7.5 months); two patients had stable disease. CONCLUSIONS With C4 cut-off and prophylactic bile acid sequestrant implementation, INCB062079 demonstrated a manageable safety profile and evidence of target inhibition. In view of the rarity of FGF19/FGFR4 alterations and slow patient accrual, the study was terminated before establishing an MTD.
Collapse
Affiliation(s)
- James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA. .,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA.
| | - Christiane Jungels
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pascal Machiels
- Service d'Oncologie Médicale, Institut Roi Albert II, Cliniques universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - David C Smith
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Tao Ji
- Incyte Corporation, Wilmington, DE, USA
| | | | - Xin Li
- Incyte Corporation, Wilmington, DE, USA
| | | | - Eric Van Cutsem
- Department of Digestive Oncology, University Hospitals Gasthuisberg/Leuven and KU Leuven, Leuven, Belgium
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| |
Collapse
|
41
|
Campani C, Zucman-Rossi J, Nault JC. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers (Basel) 2023; 15:cancers15030817. [PMID: 36765775 PMCID: PMC9913369 DOI: 10.3390/cancers15030817] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.
Collapse
Affiliation(s)
- Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, 75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Liver Unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, 93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-6-1067-9461
| |
Collapse
|
42
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
43
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
44
|
Hepatocellular Carcinoma: Current Therapeutic Algorithm for Localized and Advanced Disease. JOURNAL OF ONCOLOGY 2022; 2022:3817724. [PMID: 36624801 PMCID: PMC9825221 DOI: 10.1155/2022/3817724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in patients with liver cirrhosis of various etiologies. In recent years, there has been an advance in the knowledge of molecular mechanisms and a better staging definition of patients which has allowed the development of new therapies that have entered the therapeutic workup of these patients. Deep information on molecular drivers of HCC contributed to the development of targeted therapies with remarkable benefits. The novel strategies of targeting immune evasion using immune checkpoint inhibitors and CAR-T and TCR-T therapeutics have also shown promising results. For advanced diseases, the therapeutic algorithm has been recently updated, thanks to the efficacy of combining immunotherapy and antiangiogenic therapy in the first-line setting, and new drugs, both as single-agents or combinations, are currently under investigation.
Collapse
|
45
|
Yang F, Chen X, Song X, Ortega R, Lin X, Deng W, Guo J, Tu Z, Patterson AV, Smaill JB, Chen Y, Lu X. Design, Synthesis, and Biological Evaluation of 5-Formyl-pyrrolo[3,2- b]pyridine-3-carboxamides as New Selective, Potent, and Reversible-Covalent FGFR4 Inhibitors. J Med Chem 2022; 65:14809-14831. [PMID: 36278929 DOI: 10.1021/acs.jmedchem.2c01319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The FGF19-FGFR4 signaling pathway has been extensively studied as a promising target for the treatment of hepatocellular carcinoma (HCC). Several FGFR4-selective inhibitors have been developed, but none of them receives approval. Additionally, acquired resistance caused by FGFR4 gatekeeper mutations is emerging as a serious limitation for these targeted therapies. Herein, we report a novel series of 5-formyl-pyrrolo[3,2-b]pyridine derivatives as new reversible-covalent inhibitors targeting wild-type and gatekeeper mutant variants of FGFR4 kinase. The representative compound 10z exhibited single-digit nanomolar activity against wild-type FGFR4 and the FGFR4V550L/M mutant variants in biochemical and Ba/F3 cellular assays, while sparing FGFR1/2/3. Furthermore, 10z showed significant antiproliferative activity against Hep3B, JHH-7, and HuH-7 HCC cells with IC50 values of 37, 32, and 94 nM, respectively. MALDI-TOF-MS and X-ray protein crystallography studies were consistent with 10z acting as a reversible-covalent inhibitor of FGFR4, serving as a promising lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Fang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Song
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Raquel Ortega
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaojing Lin
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wuqing Deng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
46
|
Serum Fibroblast Growth Factor 19 as a Biomarker in Hepatitis B Virus-Related Liver Disease. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Past research has found that fibroblast growth factor 19 (FGF19) is associated with several hepatic disorders, such as alcoholic liver disease and primary biliary cirrhosis. However, there is currently a lack of relevant studies on the relationship between FGF19 and hepatitis B virus (HBV)-related liver disease. Objectives: This study aimed to assess the role of serum FGF19 as a new biomarker for HBV-related liver disease and provide scientific data to show the clinical value of this biomarker. Methods: A retrospective study included 37 patients with chronic hepatitis B (CHB), 33 patients with HBV-related cirrhosis (HBV-cirrhosis), and 32 patients with HBV-related hepatocellular carcinoma (HBV-HCC). Furthermore, 33 normal people were randomly selected as healthy controls. The serum levels of FGF19 were measured by ELISA. Results: Serum FGF19 levels were increased sequentially in the CHB group, HBV-cirrhosis group, and HBV-HCC group. Furthermore, serum FGF19 levels positively correlated with alpha-fetoprotein, prothrombin time, international normalized ratio, total bilirubin, direct bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl-transferase, alkaline phosphatase, total bile acid, serum markers for liver fibrosis, ascites, cirrhosis, Child-Pugh classification and model for end-stage liver disease sodium (MELD-Na) score, while negatively correlated with platelet count, prothrombin activity, and albumin. The diagnostic threshold of serum FGF19 for HBV-related HCC was 165.32 pg/mL, with a sensitivity of 81.25% and specificity of 58.57%. Conclusions: Serum FGF19 levels are positively associated with cholestasis, hepatocyte damage, and liver fibrosis but negatively correlated with liver synthetic function and liver functional reserve in HBV-related liver disease. Diverse changes in serum FGF19 may be used as a predictive marker for the progression of HBV-related liver disease. In addition, serum FGF19 has a potential role in monitoring carcinogenesis in patients with HBV-related liver disease.
Collapse
|
47
|
Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab 2022; 34:1700-1718. [PMID: 36208625 DOI: 10.1016/j.cmet.2022.09.017] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Bidirectional crosstalk along the gut-liver axis controls gastrointestinal health and disease and exploits environmental and host mediators. Nutrients, microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the gut and liver, which reciprocally shape microbial community structure and function. Perturbation of such host-microbe interactions is observed in a variety of experimental liver diseases and is facilitated by an impaired intestinal barrier, which is fueling hepatic inflammation and disease progression. Clinical evidence describes perturbation of the gut-liver crosstalk in non-alcoholic fatty liver disease, alcoholic liver disease, and primary sclerosing cholangitis. In liver cirrhosis, a common sequela of these diseases, the intestinal microbiota and microbial pathogen-associated molecular patterns constitute liver inflammation and clinical complications, such as hepatic encephalopathy. Understanding the intricate metabolic interplay between the gut and liver in health and disease opens an avenue for targeted therapies in the future, which is probed in controlled clinical trials.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University, Vienna, Austria
| |
Collapse
|
48
|
FGFR redundancy limits the efficacy of FGFR4-selective inhibitors in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2022; 119:e2208844119. [PMID: 36179047 PMCID: PMC9546626 DOI: 10.1073/pnas.2208844119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The fibroblast growth factor 19 (FGF19)–FGF receptor 4 (FGFR4)–coreceptor klotho β (KLB) signaling axis has been implicated as a therapeutic target in 20 to 30% of hepatocellular carcinomas. However, patient responses to FGFR4-selective inhibitors were unsatisfactory in recent clinical trials. In this study, we reveal the redundancy of FGFR3 and FGFR4 as mechanisms of de novo resistance to FGFR4-selective inhibitors, supporting the clinical evaluation of pan-FGFR inhibitors for treating FGF19-positive hepatocellular carcinoma. Aberrant fibroblast growth factor 19 (FGF19) signaling mediated by its receptor, FGF receptor 4 (FGFR4), and coreceptor, klotho β (KLB), is a driver of hepatocellular carcinoma (HCC). Several potent FGFR4-selective inhibitors have been developed but have exhibited limited efficacy in HCC clinical trials. Here, by using HCC cell line models from the Cancer Cell Line Encyclopedia (CCLE) and the Liver Cancer Model Repository (LIMORE), we show that selective FGFR4 inactivation was not sufficient to inhibit cancer cell proliferation and tumor growth in FGF19-positive HCC. Moreover, genetic inactivation of KLB in these HCC cells resulted in a fitness defect more severe than that resulting from inactivation of FGFR4. By a combination of biochemical and genetic approaches, we found that KLB associated with FGFR3 and FGFR4 to mediate the prosurvival functions of FGF19. KLB mutants defective in interacting with FGFR3 or FGFR4 could not support the growth or survival of HCC cells. Genome-wide CRISPR loss-of-function screening revealed that FGFR3 restricted the activity of FGFR4-selective inhibitors in inducing cell death; the pan-FGFR inhibitor erdafitinib displayed superior potency than FGFR4-selective inhibitors in suppressing the growth and survival of FGF19-positive HCC cells. Among FGF19-positive HCC cases from The Cancer Genome Atlas (TCGA), FGFR3 is prevalently coexpressed with FGFR4 and KLB, suggesting that FGFR redundancy may be a common mechanism underlying the de novo resistance to FGFR4 inhibitors. Our study provides a rationale for clinical testing of pan-FGFR inhibitors as a treatment strategy for FGF19-positive HCC.
Collapse
|
49
|
Park JS, Choi J, Cao L, Mohanty J, Suzuki Y, Park A, Baker D, Schlessinger J, Lee S. Isoform-specific inhibition of FGFR signaling achieved by a de-novo-designed mini-protein. Cell Rep 2022; 41:111545. [PMID: 36288716 PMCID: PMC9636537 DOI: 10.1016/j.celrep.2022.111545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular signaling by fibroblast growth factor receptors (FGFRs) is a highly regulated process mediated by specific interactions between distinct subsets of fibroblast growth factor (FGF) ligands and two FGFR isoforms generated by alternative splicing: an epithelial b- and mesenchymal c-isoforms. Here, we investigate the properties of a mini-protein, mb7, developed by an in silico design strategy to bind to the ligand-binding region of FGFR2. We describe structural, biophysical, and cellular analyses demonstrating that mb7 binds with high affinity to the c-isoforms of FGFR, resulting in inhibition of cellular signaling induced by a subset of FGFs that preferentially activate c-isoforms of FGFR. Notably, as mb7 blocks interaction between FGFR with Klotho proteins, it functions as an antagonist of the metabolic hormones FGF19 and FGF21, providing mechanistic insights and strategies for the development of therapeutics for diseases driven by aberrantly activated FGFRs. Park et al. show that a de-novo-designed mini-protein, mb7, can specifically recognize c-isoforms of FGFRs. By masking the regions of FGFR that are critical for the FGFR activation, mb7 can potently inhibit cellular signaling by a subset of FGFs that preferentially activate FGFR c-isoform signaling.
Collapse
|
50
|
Enbanathan S, Munusamy S, Jothi D, Manojkumar S, Manickam S, Iyer SK. Zinc ion detection using a benzothiazole-based highly selective fluorescence "turn-on" chemosensor and its real-time application. RSC Adv 2022; 12:27839-27845. [PMID: 36320258 PMCID: PMC9520313 DOI: 10.1039/d2ra04874d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/19/2022] [Indexed: 07/25/2023] Open
Abstract
A new photochromic fluorescence chemosensor was devised and effectively synthesized using benzothiazole and imidazopyridine derivatives. A "turn-on" fluorescence sensor BIPP for Zn2+ detection was developed and has a quick response, excellent sensitivity, and remarkable selectivity over other metal ions. When Zn2+ was added to the BIPP solution, a new strong fluorescence emission peak at 542 nm formed with a considerable increase in intensity. The fluorescence color of the BIPP solution changed from blue to bright green. The binding ratio 8 : 2 was found between BIPP and Zn2+ by the results of Job's plot, HRMS and 1H-NMR. The detection limit (LOD) of BIPP towards Zn2+ was determined to be 2.36 × 10-8, which is remarkably low. The ability to detect Zn2+ in real water samples demonstrates that BIPP may also be used in environmental systems. Additionally, BIPP can be used to measure Zn2+ levels in living cells.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Selin Manojkumar
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Saravanakumar Manickam
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai-602 105 Tamil Nadu India
| | | |
Collapse
|