Minireviews Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Endosc. Aug 16, 2025; 17(8): 107734
Published online Aug 16, 2025. doi: 10.4253/wjge.v17.i8.107734
Combining techniques and technologies increases adenoma detection rates in colonoscopy: More is more
Ioannis Stasinos, Department of Gastroenterology, 417 Army Equity Fund Hospital (NIMTS), Athens 11528, Greece
Theodoros A Voulgaris, Georgios P Karamanolis, Department of Endoscopy, 2nd Academic Surgical Unit, National and Kapodistrian University of Athens, Aretaieion Hospital, Athens 11528, Greece
Theodoros Alexopoulos, Department of Endoscopy, East Kent Hospital University, NHS Foundation Trust, East Kent CT91UJ, United Kingdom
ORCID number: Theodoros A Voulgaris (0000-0002-8383-825X); Georgios P Karamanolis (0000-0001-9872-1276).
Author contributions: Stasinos I, Voulgaris TA and Alexopoulos T wrote the initial draft; Karamanolis GP reviewed and finalized the manuscript; all of the authors read and approved the final version of the manuscript to be published.
Conflict-of-interest statement: There are no conflicts of interest.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Theodoros A Voulgaris, MD, PhD, Department of Endoscopy, 2nd Academic Surgical Unit, National and Kapodistrian University of Athens, Aretaieion Hospital, Vas Sofias 76, Athens 11528, Greece. thvoulgaris87@gmail.com
Received: March 28, 2025
Revised: April 29, 2025
Accepted: June 19, 2025
Published online: August 16, 2025
Processing time: 140 Days and 6 Hours

Abstract

Screening colonoscopy with adenoma removal is the gold standard strategy to reduce colorectal cancer (CRC) incidence. Nevertheless, it remains an imperfect tool as nearly Twenty-five percent of adenomas can be missed during inspection by experienced endoscopists. Missed lesions are one of the primary reasons for post colonoscopy CRC and are associated with a significant variability in adenoma detection rate (ADR), which is the most important quality indicator for colonoscopy. Increasing ADR unquestionably decreases carcinoma miss rate. Simple measures to improve ADR include among others slower withdrawal time and position change. The introduction of optical imaging innovations has improved mucosal visualization. Moreover, auxiliary devices attached to the colonoscope tip have been introduced, aiming to improve lumen visualization by flattening the folds and revealing lesions hidden in blind spots, thereby increasing ADR. Digital image analysis using artificial intelligence is the latest approach to polyp detection. All of the above approaches have been separately evaluated concerning their effect in ADR; however, it has not been thoroughly investigated whether any benefit exists from their combined use. We aim to review the available data on the efficacy of each technique/technology and whether their combination offers any additional benefit while remaining cost-effective.

Key Words: Screening colonoscopy; Adenoma detection rate; Optical imaging innovations; Endocuff; Computer-aided diagnosis systems

Core Tip: Nowadays, no single measure has uniformly proven its efficacy in increasing the adenoma detection rate (ADR). Optical imaging innovations, auxiliary devices and computer-aided diagnosis systems may be of value when used by trainees and low detectors. Unfortunately, none of these have been able to increase the advanced ADR (AADR). Recent data from studies combining devices and technologies have shown increased ADRs, though failed to provide solid evidence that they increase AADR, especially among expert endoscopists. Data evaluating the combined efficacy of simple measures, such as a second look of the right colon, together with more advanced methods, are needed.



INTRODUCTION

Colonoscopy is the most efficacious screening method for colorectal cancer (CRC)[1,2]. Colonoscopy not only has the highest combined sensitivity and specificity in detecting CRC but also has the ability to detect and treat precancerous lesions, such as adenomas, thus acting as a prevention tool[1,2]. Therefore, its quality as a detection method is of paramount importance. The mostly used, investigated and validated metric assessing the quality of screening colonoscopy is adenoma detection rate (ADR)–the percentage of screening colonoscopies where an adenoma is identified–since ADR is inversely associated with the risk of developing interval CRC[3].

Optimal colonoscopy conditions are critical for a good quality screening procedure. Effective bowel preparation[4-7], reaching the cecum[8-10], and allowing adequate time (> 6 minutes) for the examination are considered fundamental prerequisites for a successful screening examination.

Unfortunately, colonoscopy remains an imperfect tool, with even experienced endoscopists missing up to 25% of adenomas[11]. Over time, several strategies have been introduced to increase ADR, including simple maneuvers, insertion techniques, technological developments enhancing the projected image, auxiliary devices designed to expand the visual field, and more recently, artificial intelligence (AI). Data regarding the efficacy of each of these modalities in altering ADR exist in the literature with varying results; however, the evidence regarding their combined efficacy remains limited. The aim of our review is to evaluate the most recent evidence regarding the efficacy of each modality independently and to summarize all available data from studies investigating whether a combination of such measures offers an additional impact on ADR.

SIMPLE MEASURES

Numerous simple and cost-effective techniques and maneuvers have been proposed to increase ADR without the need for technological developments or auxiliary devices. Among these, Water-Assisted Colonoscopy (WAC), second look of the right colon, position changes and the use of antispasmodics, have all been investigated.

Right colon second look and/or retroflexion

The right colon is a common site for missed adenomas and malignancies mainly due to the presence of flat adenomas and serrated lesions[12]. Data suggests that performing a second look in the right colon, either through retroflexion or a repeated forward view can increase ADR by approximately 5%-20%[13-15].

Water exchange

Water exchange is the gold standard WAC technique as supported by current literature. Water irrigation enhances mucosal visualization and its use has been associated with an increase in ADR[16]. A meta-analysis including 10350 patients demonstrated that water immersion during colonoscope insertion can increase ADR during screening procedures[17]. Another more recent meta-analysis indicated that water exchange, compared to gas insufflation also results in a higher serrated polyp detection rate (SPDR)[18].

Position change

Position change can enhance lumen visibility by facilitating the elevation of gas to the highest point and allowing fluid to move away from the area of interest, thus improving luminal distension. The largest study evaluating the efficacy of position change on ADR was a multi-center randomized control trial (RCT) including 1072 patients, randomized to either a left lateral position or dynamic position changes on withdrawal. A higher ADR, as well as an increase in the number of adenomas detected, was observed in the dynamic position change group (P = 0.002 and P = 0.01, respectively). However, the benefit was mainly attributed to endoscopists with a lower baseline ADR (< 35%) (low detectors). Moreover, no statistically significant improvement in advanced ADR (AADR) was noted in the intervention group[19]. Two recent meta-analyses have further suggested that dynamic position changes during colonoscopy can increase ADR without prolonging mean withdrawal time[20,21]. In contrast, a parallel design RCT of 776 patients by Ou et al[22], failed to show any significant benefit of dynamic position changes over the endoscopist’s usual adopted position in improving ADR.

Antispasmodics

Antispasmodics have been proposed as means to improve mucosal visualization by reducing colonic spasms; however, the evidence[23] regarding their impact on ADR remains controversial[24-28]. Additionally, none of the four meta-analyses assessing hyoscine butylbromide, the most commonly used antispasmodic, demonstrated a significant benefit in increasing ADR[29-32].

OPTICAL IMAGING INNOVATIONS

Image enhancing modalities aim to improve ADR by enhancing visualization of tissue vasculature and surface structures through various technological approaches.

Narrow-band imaging

Narrow band imaging (NBI) (Olympus) was the first system introduced and the one most studied. Meta-analyses comparing NBI with white light endoscopy (WLE) has not provided conclusive evidence supporting its superiority in adenoma detection among average risk screening populations[33-37]. However, it must be underlined that in certain high-risk populations, such as patients with inflammatory bowel disease, NBI has now been shown to enhance the detection of dysplastic lesions[38-41].

Blue laser imaging

Comparative analyses of blue laser imaging (BLI) and high definition (HD)-WLE have yielded controversial results as the majority have failed to demonstrate a significant advantage of BLI in terms of ADR, taking into account that the available studies are limited in number and lacking meta-analyses[42-46]. Nevertheless, a recent study comparing BLI, NBI and WLE reported a lower proximal adenoma miss rate with BLI [difference in ADR of 8.3% (95%CI: 2.7-15.9)] in favor of BLI compared to WLE[47].

I-scan

Two meta-analyses have evaluated the efficacy of i-scan technology in adenoma detection compared to HD-WLE, with both providing evidence that i-scan improves ADR[48,49].

Linked color imaging

Two recent meta-analyses provide evidence and assessed the efficacy of linked color imaging (LCI) in adenoma detection compared to HD-WLE including 10 studies (5510 patients) and 17 studies (10624 patients), respectively[50,51]. Both analyses concluded that LCI increases ADR, although the benefit appears confined to specific categories of adenomas (< 10 mm) and among endoscopists with lower baseline detection rates[50,51].

Texture and color enhancement imaging

Tree studies have investigated the impact of texture and color enhancement imaging (TXI), all showing some benefit. Reported ADRs with TXI were 58.2%, 55% and 58.9% compared to 46.8%, 49.4% and 42.9% with HD-WLE[52-54]. However, it must be stated that only one study reported an increase in the detection of high-risk adenomas [17.6% vs 12.8%; odds ratio (OR): 1.45] and data from the only available randomized study, indicated that the benefit was primarily limited to adenomas < 10 mm[53,54].

Summary

In conclusion current evidence regarding the use of image-enhanced endoscopy for adenoma detection, regardless of the modality applied, does not consistently support a generalized benefit among average risk individuals undergoing screening endoscopy. These technologies appear to improve detection rates particularly when used by non-expert endoscopists, under optimal bowel preparation conditions and predominantly or non-advanced adenomas measuring less than 1 cm.

AUXILIARY DEVICES ATTACHED TO THE TIP OF THE COLONOSCOPE

One of the major causes for missed polyps during colonoscopy is the restricted visualization of blind spots, such as areas behind colonic folds. To address the limitation, several attachments have been developed, including systems permanently integrated into the scope, such as the G-EYE system, and removable devices such as the Endocuff, EndoRing and Transparent cap.

G-EYE

A recent meta-analysis assessing the use of G-EYE, encompassing 3868 colonoscopies, confirmed its efficacy in improving both ADR and SPDR. The pooled analysis showed a statistically significant improvement with G-EYE with an OR of 1.744 for ADR (95%CI: 1.534-1.984, P < 0.001); and 1.603 for SPDR (95%CI: 1.176-2.185, P = 0.003)[55].

Cap

Data regarding cap-assisted colonoscopy and its impact in ADR are mixed. Two meta-analyses failed to demonstrate a significant improvement in ADR with the use of cap. However, another meta-analysis, including four studies suggested that cap may increase ADR in the proximal colon as well as increase the detection of flat adenomas and serrated colonic lesions compared with standard colonoscopy (SC)[56-58].

Endocuff

Regarding the use of Endocuff-assisted colonoscopy (EAC), RCTs, including studies conducted within different national bowel cancer screening programs, have failed to provide definitive evidence that EAC consistently increases ADR[59-63]. Nevertheless, meta-analytic data suggest that EAC use can significantly improve ADR, particularly among endoscopists with lower baseline detection rates (ADRs < 30%) where an increase of 9.4%, in ADR (P = 0.03)[64-66]. However, similar to other auxiliary devices, no improvement in AADR has been demonstrated.

EndoRing

Apart from findings from an initial study, subsequent data derived from RCTs, retrospective studies and meta-analyses have failed to demonstrate a consistent benefit of EndoRing use in improving ADR[67-71].

Summary

Overall, the evidence regarding the impact of add-on devices on ADR remains controversial. Most positive results have been associated with the use of Endocuff. However, a recent multicenter RCT found no significant benefit in ADR when comparing the use of distal attachment devices (EAC or cap) with HD-WLE, particularly among high-detector endoscopists[72]. Similarly, a recent meta-analysis evaluating all three methods demonstrated that while add-on devices were associated with increased ADR compared to SC, no significant differences were observed in AADR[73].

When considering the available data collectively, it appears that, similar to image-enhancing modalities, the primary benefit of add-on devices–particularly Endocuff–may be limited to low-detector endoscopists and trainees. Moreover, their advantage seems to be on the detection of non-advanced adenomas raising questions regarding the clinical significance of their use among experienced endoscopists. In conclusion, the decision to use add-on devices may largely depend on their cost-effectiveness and the potential for modest gain in certain settings.

WIDE-ANGLE COLONOSCOPES AND RETROGRADE VIEWING DEVICES

Standard colonoscopes are limited by a relative narrow field of view (typically 140°-170°) which may contribute to missed polyp detection. Several innovations have aimed to address this limitation, either by increasing the endoscope’s viewing angle through the addition of lateral lenses or by the incorporation of removable devices equipped with supplementary cameras. However, at present, the routine use of wide-angle colonoscopes or retrograde viewing devices cannot be recommended primarily due to limited device availability and a paucity of robust evidence supporting their efficacy[74,75].

COMPUTER-AIDED DIAGNOSIS SYSTEMS

The application of AI in endoscopy has led to the development of computer-aided diagnosis (CADe) systems which utilize deep learning models to assist in the real-time detection of lesions during colonoscopy. The first CADe system received approval from the United States Food and Drug Administration in 2020[76] and since then, several CADe systems have become commercially available. The four most extensively studied CADe systems are CAD EYE (Fujifilm, Tokyo, Japan); EN-DOAID (Olympus, Tokyo, Japan); EndoScreener (Shanghai Wision AI, Shanghai, China), and GI-Genius (Medtronic, Minneapolis, Minn, United States).

CADe systems hold significant promise in reducing inter-operator variability and improving the ADR. A number of past and recent meta-analyses have demonstrated that AI-assisted colonoscopy increases ADR by approximately 8%-20%[77-79] with the most commonly investigated CADe systems exhibiting similar performance [relative risk (RR) estimates ranging from 1.14 to 1.27]. In addition to improving ADR the CADe appears to substantially lower the adenoma missing rate (AMR), a metric directly associated with the incidence of interval cancer and considered a more stringent measure of screening efficacy[80,81]. For example, Wang et al[82], reported an AMR of 13.89% with CADe vs 40% with WLC. A meta-analysis including six tandem studies demonstrated a significantly lower AMR with CADe compared to WLC (RR = 0.46, 95%CI: 0.38-0.55, P < 0.001)[83]. However, the benefit of CADe systems appears more pronounced among low-detectors endoscopists than among high performer[79]. This finding was further supported by a recent RCT in which CADe did not significantly improve ADR among high-performing endoscopists who routinely used Endocuff[84]. Additionally, a recent metanalysis suggests that the increase in ADR attributed to AI is predominantly related to the detection of diminutive polyps (< 5 mm) with no significant impact on advanced adenoma detection[85]. Consequently, while CADe technologies represent a promising advancement, their true clinical impact remains uncertain and further studies assessing patient-important outcomes, such as CRC incidence and mortality, are warranted.

STUDIES USING COMBINATION OF METHODS

To date no single measure has uniformly proved its efficacy in increasing ADR, especially among expert endoscopists, and with respect to AADR. Consequently, it is reasonable to hypothesize that the combination of different methods may offer additive benefits, even when using such stringent endpoints. However, only a limited number of studies evaluating combined approaches are available in the literature mainly involving the combination of EAC with either image-enhanced modalities or CADe systems.

An initial prospective, multicenter, RCT including 1905 participants assessed the efficacy of combining a transparent cap with virtual chromoendoscopy (CAP/CHROMO) in compared to SC in a screening population. The study demonstrated a significant increase in ADR (38.6% vs 31.2%) (P = 0.001) and higher proximal SPDRs in the CAP/CHROMO group, although this effect was only observed among female participants. However, there was no significant difference in AADR between the CAP/CHROMO and SC groups (9.3% vs 7.6%, P = 0.180)[86]. Subsequently, a randomized trial investigating the combination of EAC and LCI reported that their concomitant use significantly improved proximal ADR compared to either modality alone or to SC [ADRs of LCI + EAC, LCI, EAC, and HD colonoscopy: (1) 57.2%; (2) 52.8%; (3) 51.6%; and (4) 47.6%, respectively]. Nevertheless, the benefit was not maintained among high-ADR performers[87].

More recently Pattarajierapan et al[88] evaluated the combination of TXI with EAC finding that the ADR was significantly higher in the TXI + EAC group than in the TXI-only group (65.6% vs 52.1%, P = 0.007).

Regarding the combination of EAC with CADe, a pivotal study by Aniwan et al[89], including 1245 participants evaluated whether CADe combined with EAC would be superior to either modality alone or to SC. The authors concluded that the CADe + EAC combination significantly improved both ADR and AADR compared to SC (13.6% vs 7.7%, P = 0.02). However, when comparing the combination to CADe or EAC individually, no additional benefit in AADR was demonstrated, despite increased ADRs.

A more recent study similarly found that combining EAC with AI-assisted colonoscopy significantly improved ADR and SPDR compared to AI alone (P = 0.03 and P < 0.001 respectively). Both the EAC-AI and AI-alone groups demonstrated higher ADR, SPDR, and AADR compared to the HD colonoscopy group (P < 0.001 for all comparisons, EAC-AI (58.7%), AI (53.8%), HD:ADR (46.3%); EAC-AI (41.7%), AI (35.3%), HD:SPDR (21.5%); EAC-AI (17.4%), AI (17.2%), HD:AADR (11.7%), respectively[90].

Conversely, a small study with a sample size of 90 participants, while confirming that the combination of CADe and EAC increased ADR, reported that the benefit was primarily driven by the increased detection of diminutive adenomas, with no improvement observed for adenomas > 5 mm[91].

CONCLUSION

In conclusion, although the available data regarding the combination of EAC with either image-enhanced modalities or CADe systems suggest an increased ADR, once again a clear and universal benefit from combining methods cannot yet be firmly established. As with previous studies evaluating individual interventions, the observed improvements appear to be primarily attributable to the detection of diminutive polyps. Moreover, although two studies evaluating the addition of CADe to EAC reported an increase in AADR, neither study accounted for the level of endoscopist expertise, which is now recognized as a crucial determinant of ADR outcomes.

Consequently, although there are indications that the synchronous use of multiple methods used may improve not only ADR but also AADR and SPDR, further data stratified by endoscopist expertise are necessary. To date, no studies have evaluated the combined efficacy of simple measures–such as a second look at the right colon, or dynamic position changes–with more advanced modalities such as CADe systems or adjunctive devices. We believe it is of paramount importance that future research investigates the synergistic effects of combining simple procedural techniques with emerging technological innovations. The integration of new technologies should not lead to the abandonment of fundamental, simple measures; rather technological advancements should build upon established practices to improve further adenoma detection outcomes (Table 1).

Table 1 Different technological innovations and their benefit in adenoma detection rate, advanced adenoma detection rate.

Increase in ADR
Increase in AADR
Comments
Optical imaging innovation
Narrow-band imaging No clear benefitNo benefitBenefit in detection of dysplastic lesions in patients with inflammatory bowel disease
Blue laser imagingNo clear benefitNo benefitLower proximal adenoma miss rate compared to white light endoscopy in one study
I-scanImproves ADRNo benefit
Linked color imagingImproves ADRNo benefitThe benefit was mainly attributed to selected categories of adenomas (< 10 mm) and among low detectors
Texture and color enhancement imagingImproves ADRNo clear benefitIncreased AADR in 1/3 studies–benefit in ADR restricted in adenomas < 10 mm
Auxiliary devices attached to the tip of the colonoscope
G-EYEImproves ADRNo benefitBenefit in detection of serrated polyp detection rate–not commonly accessible, paucity of data compared to cap, Endocuff
CapNo clear benefitNo benefitEasily accessible, one meta-analysis showing increased ADR in the proximal colon as also to increased detection of flat adenomas and serrated colonic lesions
EndocuffNo clear benefitNo benefitEasily accessible, increase in ADR among low detectors
EndoRingNo benefitNo benefit
CADe systemsImproves ADRNo benefitBenefit is restricted mainly to low detectors and adenomas < 10 mm
Combining optical imaging innovation with EndocuffImproves ADRNo benefitBenefit is restricted mainly to low detectors
Combining CADe systems with EndocuffImproves ADRPossible benefitNo study comparing low with high detectors exist, 1/3 available studies failed to prove any benefit in adenomas > 5 mm
Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Gastroenterology and hepatology

Country of origin: Greece

Peer-review report’s classification

Scientific Quality: Grade B

Novelty: Grade C

Creativity or Innovation: Grade C

Scientific Significance: Grade C

P-Reviewer: Lu Q S-Editor: Luo ML L-Editor: Filipodia P-Editor: Zhang L

References
1.  Shaukat A, Kahi CJ, Burke CA, Rabeneck L, Sauer BG, Rex DK. ACG Clinical Guidelines: Colorectal Cancer Screening 2021. Am J Gastroenterol. 2021;116:458-479.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 160]  [Cited by in RCA: 456]  [Article Influence: 114.0]  [Reference Citation Analysis (0)]
2.  Qaseem A, Harrod CS, Crandall CJ, Wilt TJ; Clinical Guidelines Committee of the American College of Physicians, Balk EM, Cooney TG, Cross JT Jr, Fitterman N, Maroto M, Obley AJ, Tice J, Tufte JE, Shamliyan T, Yost J. Screening for Colorectal Cancer in Asymptomatic Average-Risk Adults: A Guidance Statement From the American College of Physicians (Version 2). Ann Intern Med. 2023;176:1092-1100.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 26]  [Cited by in RCA: 39]  [Article Influence: 19.5]  [Reference Citation Analysis (0)]
3.  Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, Zauber AG, de Boer J, Fireman BH, Schottinger JE, Quinn VP, Ghai NR, Levin TR, Quesenberry CP. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370:1298-1306.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1251]  [Cited by in RCA: 1559]  [Article Influence: 141.7]  [Reference Citation Analysis (0)]
4.  Chokshi RV, Hovis CE, Hollander T, Early DS, Wang JS. Prevalence of missed adenomas in patients with inadequate bowel preparation on screening colonoscopy. Gastrointest Endosc. 2012;75:1197-1203.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 223]  [Cited by in RCA: 273]  [Article Influence: 21.0]  [Reference Citation Analysis (0)]
5.  Froehlich F, Wietlisbach V, Gonvers JJ, Burnand B, Vader JP. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: the European Panel of Appropriateness of Gastrointestinal Endoscopy European multicenter study. Gastrointest Endosc. 2005;61:378-384.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 642]  [Cited by in RCA: 700]  [Article Influence: 35.0]  [Reference Citation Analysis (0)]
6.  Bretthauer M, Kaminski MF, Løberg M, Zauber AG, Regula J, Kuipers EJ, Hernán MA, McFadden E, Sunde A, Kalager M, Dekker E, Lansdorp-Vogelaar I, Garborg K, Rupinski M, Spaander MC, Bugajski M, Høie O, Stefansson T, Hoff G, Adami HO; Nordic-European Initiative on Colorectal Cancer (NordICC) Study Group. Population-Based Colonoscopy Screening for Colorectal Cancer: A Randomized Clinical Trial. JAMA Intern Med. 2016;176:894-902.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 226]  [Cited by in RCA: 248]  [Article Influence: 27.6]  [Reference Citation Analysis (0)]
7.  Kaminski MF, Thomas-Gibson S, Bugajski M, Bretthauer M, Rees CJ, Dekker E, Hoff G, Jover R, Suchanek S, Ferlitsch M, Anderson J, Roesch T, Hultcranz R, Racz I, Kuipers EJ, Garborg K, East JE, Rupinski M, Seip B, Bennett C, Senore C, Minozzi S, Bisschops R, Domagk D, Valori R, Spada C, Hassan C, Dinis-Ribeiro M, Rutter MD. Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy. 2017;49:378-397.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 337]  [Cited by in RCA: 483]  [Article Influence: 60.4]  [Reference Citation Analysis (0)]
8.  Lee TJ, Rutter MD, Blanks RG, Moss SM, Goddard AF, Chilton A, Nickerson C, McNally RJ, Patnick J, Rees CJ. Colonoscopy quality measures: experience from the NHS Bowel Cancer Screening Programme. Gut. 2012;61:1050-1057.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 209]  [Cited by in RCA: 252]  [Article Influence: 19.4]  [Reference Citation Analysis (0)]
9.  Jover R, Zapater P, Polanía E, Bujanda L, Lanas A, Hermo JA, Cubiella J, Ono A, González-Méndez Y, Peris A, Pellisé M, Seoane A, Herreros-de-Tejada A, Ponce M, Marín-Gabriel JC, Chaparro M, Cacho G, Fernández-Díez S, Arenas J, Sopeña F, de-Castro L, Vega-Villaamil P, Rodríguez-Soler M, Carballo F, Salas D, Morillas JD, Andreu M, Quintero E, Castells A; COLONPREV study investigators. Modifiable endoscopic factors that influence the adenoma detection rate in colorectal cancer screening colonoscopies. Gastrointest Endosc. 2013;77:381-389.e1.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 102]  [Cited by in RCA: 108]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
10.  Barclay RL, Vicari JJ, Doughty AS, Johanson JF, Greenlaw RL. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med. 2006;355:2533-2541.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 911]  [Cited by in RCA: 950]  [Article Influence: 50.0]  [Reference Citation Analysis (0)]
11.  Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS, Dash C, Giardiello FM, Glick S, Levin TR, Pickhardt P, Rex DK, Thorson A, Winawer SJ; American Cancer Society Colorectal Cancer Advisory Group;  US Multi-Society Task Force;  American College of Radiology Colon Cancer Committee. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58:130-160.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1169]  [Cited by in RCA: 1202]  [Article Influence: 70.7]  [Reference Citation Analysis (0)]
12.  Soetikno RM, Kaltenbach T, Rouse RV, Park W, Maheshwari A, Sato T, Matsui S, Friedland S. Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA. 2008;299:1027-1035.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 453]  [Cited by in RCA: 434]  [Article Influence: 25.5]  [Reference Citation Analysis (1)]
13.  Desai M, Bilal M, Hamade N, Gorrepati VS, Thoguluva Chandrasekar V, Jegadeesan R, Gupta N, Bhandari P, Repici A, Hassan C, Sharma P. Increasing adenoma detection rates in the right side of the colon comparing retroflexion with a second forward view: a systematic review. Gastrointest Endosc. 2019;89:453-459.e3.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 33]  [Cited by in RCA: 55]  [Article Influence: 9.2]  [Reference Citation Analysis (0)]
14.  Tang RSY, Lee JWJ, Chang LC, Ong DEH, Chiu HM, Matsuda T, Kim HS, Sekiguchi M, Leong RW, Ho AMY, Lam TYT, Tse YK, Lin L, Yeoh KG, Lau JYW, Sung JJY; Asia Pacific Working Group on Colorectal Cancer Screening. Two vs One Forward View Examination of Right Colon on Adenoma Detection: An International Multicenter Randomized Trial. Clin Gastroenterol Hepatol. 2022;20:372-380.e2.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 12]  [Cited by in RCA: 20]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
15.  Núñez Rodríguez MH, Díez Redondo P, Riu Pons F, Cimavilla M, Hernández L, Loza A, Pérez-Miranda M. Proximal retroflexion versus second forward view of the right colon during screening colonoscopy: A multicentre randomized controlled trial. United European Gastroenterol J. 2020;8:725-735.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 18]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
16.  Leung FW. Water-Aided Colonoscopy: Results of Recent Randomized Controlled Trials (RCTs) and Survey Findings of Current Practice of Members of the International Water-Aided Techniques in Endoscopy and Research Society (WATERS). Am J Gastroenterol. 2017;112:S1472.  [PubMed]  [DOI]  [Full Text]
17.  Fuccio L, Frazzoni L, Hassan C, La Marca M, Paci V, Smania V, De Bortoli N, Bazzoli F, Repici A, Rex D, Cadoni S. Water exchange colonoscopy increases adenoma detection rate: a systematic review with network meta-analysis of randomized controlled studies. Gastrointest Endosc. 2018;88:589-597.e11.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 74]  [Cited by in RCA: 72]  [Article Influence: 10.3]  [Reference Citation Analysis (0)]
18.  Aziz M, Mehta TI, Weissman S, Sharma S, Fatima R, Khan Z, Dasari CS, Lee-Smith W, Nawras A, Adler DG. Do Water-aided Techniques Improve Serrated Polyp Detection Rate During Colonoscopy?: A Systematic Review With Meta-Analysis. J Clin Gastroenterol. 2021;55:520-527.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 3]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
19.  Lee SW, Chang JH, Ji JS, Maeong IH, Cheung DY, Kim JS, Cho YS, Chung WJ, Lee BI, Kim SW, Kim BW, Choi H, Choi MG. Effect of Dynamic Position Changes on Adenoma Detection During Colonoscope Withdrawal: A Randomized Controlled Multicenter Trial. Am J Gastroenterol. 2016;111:63-69.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 47]  [Cited by in RCA: 52]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
20.  Nutalapati V, Desai M, Thoguluva-Chandrasekar VS, Olyaee M, Rastogi A. Effect of dynamic position changes on adenoma detection rate during colonoscope withdrawal: systematic review and meta-analysis. Endosc Int Open. 2020;8:E1842-E1849.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 14]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
21.  Li P, Ma B, Gong S, Zhang X, Li W. Effect of dynamic position changes during colonoscope withdrawal: a meta-analysis of randomized controlled trials. Surg Endosc. 2021;35:1171-1181.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6]  [Cited by in RCA: 12]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
22.  Ou G, Kim E, Lakzadeh P, Tong J, Enns R, Ramji A, Whittaker S, Ko HH, Bressler B, Halparin L, Lam E, Amar J, Telford J. A randomized controlled trial assessing the effect of prescribed patient position changes during colonoscope withdrawal on adenoma detection. Gastrointest Endosc. 2014;80:277-283.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 28]  [Cited by in RCA: 34]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
23.  East JE, Saunders BP, Burling D, Tam E, Boone D, Halligan S, Taylor SA. Mechanisms of hyoscine butylbromide to improve adenoma detection: A case-control study of surface visualization at simulated colonoscope withdrawal. Endosc Int Open. 2015;3:E636-E641.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 6]  [Cited by in RCA: 8]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
24.  Lee TJ, Rees CJ, Blanks RG, Moss SM, Nickerson C, Wright KC, James PW, McNally RJ, Patnick J, Rutter MD. Colonoscopic factors associated with adenoma detection in a national colorectal cancer screening program. Endoscopy. 2014;46:203-211.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 67]  [Cited by in RCA: 80]  [Article Influence: 7.3]  [Reference Citation Analysis (0)]
25.  Rondonotti E, Radaelli F, Paggi S, Amato A, Imperiali G, Terruzzi V, Mandelli G, Lenoci N, Terreni NL, Baccarin A, Spinzi G. Hyoscine N-butylbromide for adenoma detection during colonoscopy: a randomized, double-blind, placebo-controlled study. Dig Liver Dis. 2013;45:663-668.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 14]  [Cited by in RCA: 17]  [Article Influence: 1.4]  [Reference Citation Analysis (0)]
26.  Lee JM, Cheon JH, Park JJ, Moon CM, Kim ES, Kim TI, Kim WH. Effects of Hyosine N-butyl bromide on the detection of polyps during colonoscopy. Hepatogastroenterology. 2010;57:90-94.  [PubMed]  [DOI]
27.  Corte C, Dahlenburg L, Selby W, Griffin S, Byrne C, Chua T, Kaffes A. Hyoscine butylbromide administered at the cecum increases polyp detection: a randomized double-blind placebo-controlled trial. Endoscopy. 2012;44:917-922.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 35]  [Cited by in RCA: 45]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
28.  de Brouwer EJ, Arbouw ME, van der Zwet WC, van Herwaarden MA, Ledeboer M, Jansman FG, ter Borg F. Hyoscine N-butylbromide does not improve polyp detection during colonoscopy: a double-blind, randomized, placebo-controlled, clinical trial. Gastrointest Endosc. 2012;75:835-840.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 21]  [Cited by in RCA: 30]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
29.  Ashraf I, Ashraf S, Siddique S, Nguyen DL, Choudhary A, Bechtold ML. Hyoscine for polyp detection during colonoscopy: A meta-analysis and systematic review. World J Gastrointest Endosc. 2014;6:549-554.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 14]  [Cited by in RCA: 19]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
30.  Cui PJ, Yao J, Han HZ, Zhao YJ, Yang J. Does hyoscine butylbromide really improve polyp detection during colonoscopy? A meta-analysis of randomized controlled trials. World J Gastroenterol. 2014;20:7034-7039.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 17]  [Cited by in RCA: 19]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
31.  Rondonotti E, Zolk O, Amato A, Paggi S, Baccarin A, Spinzi G, Radaelli F. The impact of hyoscine-N-butylbromide on adenoma detection during colonoscopy: meta-analysis of randomized, controlled studies. Gastrointest Endosc. 2014;80:1103-12.e2.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 21]  [Cited by in RCA: 26]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
32.  Madhoun MF, Ali T, Tierney WM, Maple JT. Effect of hyoscine N-butylbromide on adenoma detection rate: meta-analysis of randomized clinical trials. Dig Endosc. 2015;27:354-360.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 17]  [Cited by in RCA: 22]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
33.  Pasha SF, Leighton JA, Das A, Harrison ME, Gurudu SR, Ramirez FC, Fleischer DE, Sharma VK. Comparison of the yield and miss rate of narrow band imaging and white light endoscopy in patients undergoing screening or surveillance colonoscopy: a meta-analysis. Am J Gastroenterol. 2012;107:363-70; quiz 371.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 113]  [Cited by in RCA: 128]  [Article Influence: 9.8]  [Reference Citation Analysis (0)]
34.  Dinesen L, Chua TJ, Kaffes AJ. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc. 2012;75:604-611.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 104]  [Cited by in RCA: 111]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
35.  Atkinson NSS, Ket S, Bassett P, Aponte D, De Aguiar S, Gupta N, Horimatsu T, Ikematsu H, Inoue T, Kaltenbach T, Leung WK, Matsuda T, Paggi S, Radaelli F, Rastogi A, Rex DK, Sabbagh LC, Saito Y, Sano Y, Saracco GM, Saunders BP, Senore C, Soetikno R, Vemulapalli KC, Jairath V, East JE. Narrow-Band Imaging for Detection of Neoplasia at Colonoscopy: A Meta-analysis of Data From Individual Patients in Randomized Controlled Trials. Gastroenterology. 2019;157:462-471.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 78]  [Cited by in RCA: 115]  [Article Influence: 19.2]  [Reference Citation Analysis (0)]
36.  Qi ZP, Xu EP, He DL, Wang Y, Chen BS, Dong XS, Shi Q, Cai SL, Guo Q, Li N, Li X, Huang HY, Li B, Sun D, Xu JG, Chen ZH, Yalikong A, Liu JY, Lv ZT, Xu JM, Zhou PH, Zhong YS. Efficacy of image-enhanced endoscopy for colorectal adenoma detection: A multicenter, randomized trial. World J Gastrointest Oncol. 2023;15:878-891.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
37.  Duan CW, Zhai HH, Xie H, Ma XZ, Yu DL, Yang L, Wang X, Tang YF, Zhang J, Su H, Sheng JQ, Xu JF, Jin P. Standard-definition White-light, High-definition White-light versus Narrow-band Imaging Endoscopy for Detecting Colorectal Adenomas: A Multicenter Randomized Controlled Trial. Curr Med Sci. 2024;44:554-560.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
38.  Subramanian V, Mannath J, Ragunath K, Hawkey CJ. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33:304-312.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 162]  [Cited by in RCA: 158]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
39.  Bisschops R, Bessissow T, Joseph JA, Baert F, Ferrante M, Ballet V, Willekens H, Demedts I, Geboes K, De Hertogh G, Vermeire S, Rutgeerts P, Van Assche G. Chromoendoscopy versus narrow band imaging in UC: a prospective randomised controlled trial. Gut. 2018;67:1087-1094.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 67]  [Cited by in RCA: 99]  [Article Influence: 14.1]  [Reference Citation Analysis (0)]
40.  Murthy SK, Feuerstein JD, Nguyen GC, Velayos FS. AGA Clinical Practice Update on Endoscopic Surveillance and Management of Colorectal Dysplasia in Inflammatory Bowel Diseases: Expert Review. Gastroenterology. 2021;161:1043-1051.e4.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 37]  [Cited by in RCA: 153]  [Article Influence: 38.3]  [Reference Citation Analysis (0)]
41.  Gordon H, Biancone L, Fiorino G, Katsanos KH, Kopylov U, Al Sulais E, Axelrad JE, Balendran K, Burisch J, de Ridder L, Derikx L, Ellul P, Greuter T, Iacucci M, Di Jiang C, Kapizioni C, Karmiris K, Kirchgesner J, Laharie D, Lobatón T, Molnár T, Noor NM, Rao R, Saibeni S, Scharl M, Vavricka SR, Raine T. ECCO Guidelines on Inflammatory Bowel Disease and Malignancies. J Crohns Colitis. 2023;17:827-854.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 151]  [Reference Citation Analysis (0)]
42.  Ikematsu H, Sakamoto T, Togashi K, Yoshida N, Hisabe T, Kiriyama S, Matsuda K, Hayashi Y, Matsuda T, Osera S, Kaneko K, Utano K, Naito Y, Ishihara H, Kato M, Yoshimura K, Ishikawa H, Yamamoto H, Saito Y. Detectability of colorectal neoplastic lesions using a novel endoscopic system with blue laser imaging: a multicenter randomized controlled trial. Gastrointest Endosc. 2017;86:386-394.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 82]  [Cited by in RCA: 87]  [Article Influence: 10.9]  [Reference Citation Analysis (0)]
43.  Shimoda R, Sakata Y, Fujise T, Yamanouchi K, Tsuruoka N, Hara M, Nakayama A, Yamaguchi D, Akutagawa T, Fujimoto K, Iwakiri R. The adenoma miss rate of blue-laser imaging vs. white-light imaging during colonoscopy: a randomized tandem trial. Endoscopy. 2017;49:186-190.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 22]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
44.  Oliveira Dos Santos CE, Malaman D, Pereira-Lima JC, de Quadros Onófrio F, Ribas Filho JM. Impact of linked-color imaging on colorectal adenoma detection. Gastrointest Endosc. 2019;90:826-834.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 33]  [Cited by in RCA: 55]  [Article Influence: 9.2]  [Reference Citation Analysis (0)]
45.  Dos Santos CEO, Malaman D, Arciniegas Sanmartin ID, Onófrio FDQ, Pereira-Lima JC. Effect of Linked-color Imaging on the Detection of Adenomas in Screening Colonoscopies. J Clin Gastroenterol. 2022;56:e268-e272.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5]  [Cited by in RCA: 16]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
46.  Ang TL, Li JW, Wong YJ, Tan YJ, Fock KM, Tan MTK, Kwek ABE, Teo EK, Ang DS, Wang LM. A prospective randomized study of colonoscopy using blue laser imaging and white light imaging in detection and differentiation of colonic polyps. Endosc Int Open. 2019;7:E1207-E1213.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 11]  [Cited by in RCA: 22]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
47.  Leung WK, Tsui VWM, Mak LL, Cheung MK, Hui CK, Lam CP, Wong SY, Liu KS, Ko MK, To EW, Guo CG, Lui TK. Blue-light imaging or narrow-band imaging for proximal colonic lesions: a prospective randomized tandem colonoscopy study. Gastrointest Endosc. 2023;98:813-821.e3.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 7]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
48.  Aziz M, Ahmed Z, Haghbin H, Pervez A, Goyal H, Kamal F, Kobeissy A, Nawras A, Adler DG. Does i-scan improve adenoma detection rate compared to high-definition colonoscopy? A systematic review and meta-analysis. Endosc Int Open. 2022;10:E824-E831.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 14]  [Reference Citation Analysis (0)]
49.  Hussain MR, Ali FS, Tangri A, Rashtak S, Joseph-Talreja M, Mutha PR, Wadhwa V, Guha S, DaVee RT, Thosani N. Correction to: The incremental yield of adenoma detection with I-Scan versus high-definition white light colonoscopy-a systematic review and meta-analysis of randomized studies. Int J Colorectal Dis. 2023;38:251.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
50.  Wang J, Ye C, Wu K, Fei S. The Effect of Linked Color Imaging for Adenoma Detection. A Meta-analysis of Randomized Controlled Studies. J Gastrointestin Liver Dis. 2022;31:67-73.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 17]  [Article Influence: 5.7]  [Reference Citation Analysis (0)]
51.  Sun Y, Lv XH, Zhang X, Wang J, Wang H, Yang JL. Linked color imaging versus white light imaging in the diagnosis of colorectal lesions: a meta-analysis of randomized controlled trials. Therap Adv Gastroenterol. 2023;16:17562848231196636.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 9]  [Reference Citation Analysis (0)]
52.  Sakamoto T, Ikematsu H, Tamai N, Mizuguchi Y, Takamaru H, Murano T, Shinmura K, Sasabe M, Furuhashi H, Sumiyama K, Saito Y. Detection of colorectal adenomas with texture and color enhancement imaging: Multicenter observational study. Dig Endosc. 2023;35:529-537.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 20]  [Reference Citation Analysis (0)]
53.  Toyoshima O, Nishizawa T, Hiramatsu T, Matsuno T, Yoshida S, Mizutani H, Ebinuma H, Matsuda T, Saito Y, Fujishiro M. Colorectal adenoma detection rate using texture and color enhancement imaging versus white light imaging with chromoendoscopy: a propensity score matching study. J Gastroenterol Hepatol. 2024;39:2105-2111.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 6]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
54.  Antonelli G, Bevivino G, Pecere S, Ebigbo A, Cereatti F, Akizue N, Di Fonzo M, Coppola M, Barbaro F, Walter BM, Sharma P, Caruso A, Okimoto K, Antenucci C, Matsumura T, Zerboni G, Grossi C, Meinikheim M, Papparella LG, Correale L, Costamagna G, Repici A, Spada C, Messmann H, Hassan C, Iacopini F. Texture and color enhancement imaging versus high definition white-light endoscopy for detection of colorectal neoplasia: a randomized trial. Endoscopy. 2023;55:1072-1080.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 16]  [Cited by in RCA: 20]  [Article Influence: 10.0]  [Reference Citation Analysis (1)]
55.  Haghbin H, Zakirkhodjaev N, Beran A, Lee Smith W, Aziz M. G-EYE Improves Polyp, Adenoma, and Serrated Polyp Detection Rates in Colonoscopy: A Systematic Review and Meta-analysis. J Clin Gastroenterol. 2024;58:668-673.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
56.  Mir FA, Boumitri C, Ashraf I, Matteson-Kome ML, Nguyen DL, Puli SR, Bechtold ML. Cap-assisted colonoscopy versus standard colonoscopy: is the cap beneficial? A meta-analysis of randomized controlled trials. Ann Gastroenterol. 2017;30:640-648.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 9]  [Article Influence: 1.1]  [Reference Citation Analysis (0)]
57.  Ng SC, Tsoi KK, Hirai HW, Lee YT, Wu JC, Sung JJ, Chan FK, Lau JY. The efficacy of cap-assisted colonoscopy in polyp detection and cecal intubation: a meta-analysis of randomized controlled trials. Am J Gastroenterol. 2012;107:1165-1173.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 102]  [Cited by in RCA: 108]  [Article Influence: 8.3]  [Reference Citation Analysis (0)]
58.  Desai M, Sanchez-Yague A, Choudhary A, Pervez A, Gupta N, Vennalaganti P, Vennelaganti S, Fugazza A, Repici A, Hassan C, Sharma P. Impact of cap-assisted colonoscopy on detection of proximal colon adenomas: systematic review and meta-analysis. Gastrointest Endosc. 2017;86:274-281.e3.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 21]  [Cited by in RCA: 37]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
59.  Ngu WS, Bevan R, Tsiamoulos ZP, Bassett P, Hoare Z, Rutter MD, Clifford G, Totton N, Lee TJ, Ramadas A, Silcock JG, Painter J, Neilson LJ, Saunders BP, Rees CJ. Improved adenoma detection with Endocuff Vision: the ADENOMA randomised controlled trial. Gut. 2019;68:280-288.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 71]  [Cited by in RCA: 99]  [Article Influence: 16.5]  [Reference Citation Analysis (0)]
60.  Zorzi M, Hassan C, Battagello J, Antonelli G, Pantalena M, Bulighin G, Alicante S, Meggiato T, Rosa-Rizzotto E, Iacopini F, Luigiano C, Monica F, Arrigoni A, Germanà B, Valiante F, Mallardi B, Senore C, Grazzini G, Mantellini P; ItaVision Working Group. Adenoma detection by Endocuff-assisted versus standard colonoscopy in an organized screening program: the "ItaVision" randomized controlled trial. Endoscopy. 2022;54:138-147.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 23]  [Cited by in RCA: 23]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
61.  Jaensch C, Jepsen MH, Christiansen DH, Madsen AH, Madsen MR. Adenoma and serrated lesion detection with distal attachment in screening colonoscopy: a randomized controlled trial. Surg Endosc. 2022;36:1-9.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
62.  van Doorn SC, van der Vlugt M, Depla A, Wientjes CA, Mallant-Hent RC, Siersema PD, Tytgat K, Tuynman H, Kuiken SD, Houben G, Stokkers P, Moons L, Bossuyt P, Fockens P, Mundt MW, Dekker E. Adenoma detection with Endocuff colonoscopy versus conventional colonoscopy: a multicentre randomised controlled trial. Gut. 2017;66:438-445.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 86]  [Cited by in RCA: 98]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
63.  Floer M, Tschaikowski L, Schepke M, Kempinski R, Neubauer K, Poniewierka E, Kunsch S, Ameis D, Heinzow HS, Auer A, Schmidt HH, Ellenrieder V, Meister T. Standard versus Endocuff versus cap-assisted colonoscopy for adenoma detection: A randomised controlled clinical trial. United European Gastroenterol J. 2021;9:443-450.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 5]  [Cited by in RCA: 12]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
64.  Patel HK, Chandrasekar VT, Srinivasan S, Patel SK, Dasari CS, Singh M, Le Cam E, Spadaccini M, Rex D, Sharma P. Second-generation distal attachment cuff improves adenoma detection rate: meta-analysis of randomized controlled trials. Gastrointest Endosc. 2021;93:544-553.e7.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 43]  [Cited by in RCA: 44]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
65.  Wang J, Ye C, Fei S. Endocuff-assisted versus standard colonoscopy for improving adenoma detection rate: meta-analysis of randomized controlled trials. Tech Coloproctol. 2023;27:91-101.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 8]  [Reference Citation Analysis (0)]
66.  Walls M, Houwen BBSL, Rice S, Seager A, Dekker E, Sharp L, Rees CJ. The effect of the endoscopic device Endocuff™/Endocuff vision™ on quality standards in colonoscopy: A systematic review and meta-analysis of randomized trials. Colorectal Dis. 2023;25:573-585.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 10]  [Reference Citation Analysis (0)]
67.  Dik VK, Gralnek IM, Segol O, Suissa A, Belderbos TD, Moons LM, Segev M, Domanov S, Rex DK, Siersema PD. Multicenter, randomized, tandem evaluation of EndoRings colonoscopy--results of the CLEVER study. Endoscopy. 2015;47:1151-1158.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 82]  [Cited by in RCA: 91]  [Article Influence: 9.1]  [Reference Citation Analysis (0)]
68.  Hassan C, Senore C, Manes G, Fuccio L, Iacopini F, Ricciardiello L, Anderloni A, Frazzoni L, Ballanti R, de Nucci G, Colussi D, Redaelli D, Lorenzetti R, Devani M, Arena I, Grossi C, Andrei F, Balestrazzi E, Sharma P, Rex DK, Repici A. Diagnostic yield and miss rate of EndoRings in an organized colorectal cancer screening program: the SMART (Study Methodology for ADR-Related Technology) trial. Gastrointest Endosc. 2019;89:583-590.e1.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 19]  [Cited by in RCA: 26]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
69.  Rex DK, Kessler WR, Sagi SV, Rogers NA, Fischer M, Bohm ME, Wo JM, Dewitt JM, McHenry L, Lahr RE, Searight MP, MacPhail M, Sullivan AW, McWhinney CD, Vemulapalli KC. Impact of a ring-fitted cap on insertion time and adenoma detection: a randomized controlled trial. Gastrointest Endosc. 2020;91:115-120.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 14]  [Cited by in RCA: 18]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
70.  Thayalasekaran S, Bhattacharyya R, Chedgy F, Basford P, Subramaniam S, Kandiah K, Thursby-Pelham F, Brown J, Alkandari A, Ellis R, Coda S, Goggin P, Amos M, Fogg C, Longcroft-Wheaton G, Bhandari P. Randomized controlled trial of EndoRings assisted colonoscopy versus standard colonoscopy. Dig Endosc. 2023;35:354-360.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 7]  [Reference Citation Analysis (0)]
71.  Facciorusso A, Mohan BP, Crinò SF, Muscatiello N. Impact of EndoRings on colon adenoma detection rate: A meta-analysis of randomized trials. J Gastroenterol Hepatol. 2021;36:337-343.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 9]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
72.  Desai M, Rex DK, Bohm ME, Davitkov P, DeWitt JM, Fischer M, Faulx G, Heath R, Imler TD, James-Stevenson TN, Kahi CJ, Kessler WR, Kohli DR, McHenry L, Rai T, Rogers NA, Sagi SV, Sathyamurthy A, Vennalaganti P, Sundaram S, Patel H, Higbee A, Kennedy K, Lahr R, Stojadinovikj G, Dasari C, Parasa S, Faulx A, Sharma P. High-Definition Colonoscopy Compared With Cuff- and Cap-Assisted Colonoscopy: Results From a Multicenter, Prospective, Randomized Controlled Trial. Clin Gastroenterol Hepatol. 2022;20:2023-2031.e6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 10]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
73.  Manti M, Tziatzios G, Facciorusso A, Papaefthymiou A, Ramai D, Papanikolaou I, Hassan C, Triantafyllou K, Paraskeva K, Gkolfakis P. Effects of add-on devices in screening colonoscopy outcomes: a systematic review and meta-analysis. Endoscopy. 2023;.  [PubMed]  [DOI]  [Full Text]
74.  Bronzwaer MES, Dekker E, Weingart V, Groth S, Pioche M, Rivory J, Beyna T, Neuhaus H, Ponchon T, Allescher H, Fockens P, Rösch T. Feasibility, safety, and diagnostic yield of the Extra Wide Angle View (EWAVE) colonoscope for the detection of colorectal lesions. Endoscopy. 2018;50:63-68.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 5]  [Reference Citation Analysis (0)]
75.  Rubin M, Lurie L, Bose K, Kim SH. Expanding the view of a standard colonoscope with the Third Eye Panoramic cap. World J Gastroenterol. 2015;21:10683-10687.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 16]  [Cited by in RCA: 17]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
76.  Spadaccini M, Marco A, Franchellucci G, Sharma P, Hassan C, Repici A. Discovering the first US FDA-approved computer-aided polyp detection system. Future Oncol. 2022;18:1405-1412.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 14]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
77.  Barua I, Vinsard DG, Jodal HC, Løberg M, Kalager M, Holme Ø, Misawa M, Bretthauer M, Mori Y. Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis. Endoscopy. 2021;53:277-284.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 86]  [Cited by in RCA: 158]  [Article Influence: 39.5]  [Reference Citation Analysis (1)]
78.  Hassan C, Spadaccini M, Mori Y, Foroutan F, Facciorusso A, Gkolfakis P, Tziatzios G, Triantafyllou K, Antonelli G, Khalaf K, Rizkala T, Vandvik PO, Fugazza A, Rondonotti E, Glissen-Brown JR, Kamba S, Maida M, Correale L, Bhandari P, Jover R, Sharma P, Rex DK, Repici A. Real-Time Computer-Aided Detection of Colorectal Neoplasia During Colonoscopy : A Systematic Review and Meta-analysis. Ann Intern Med. 2023;176:1209-1220.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 106]  [Cited by in RCA: 90]  [Article Influence: 45.0]  [Reference Citation Analysis (0)]
79.  Makar J, Abdelmalak J, Con D, Hafeez B, Garg M. Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis. Gastrointest Endosc. 2025;101:68-81.e8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 8]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
80.  Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, Guo L, Meng Q, Yang F, Qian W, Xu Z, Wang Y, Wang Z, Gu L, Wang R, Jia F, Yao J, Li Z, Bai Y. Magnitude, Risk Factors, and Factors Associated With Adenoma Miss Rate of Tandem Colonoscopy: A Systematic Review and Meta-analysis. Gastroenterology. 2019;156:1661-1674.e11.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 205]  [Cited by in RCA: 372]  [Article Influence: 62.0]  [Reference Citation Analysis (0)]
81.  Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, Didkowska J, Zwierko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362:1795-1803.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1287]  [Cited by in RCA: 1466]  [Article Influence: 97.7]  [Reference Citation Analysis (0)]
82.  Wang P, Liu P, Glissen Brown JR, Berzin TM, Zhou G, Lei S, Liu X, Li L, Xiao X. Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study. Gastroenterology. 2020;159:1252-1261.e5.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 81]  [Cited by in RCA: 147]  [Article Influence: 29.4]  [Reference Citation Analysis (0)]
83.  Maida M, Marasco G, Maas MHJ, Ramai D, Spadaccini M, Sinagra E, Facciorusso A, Siersema PD, Hassan C. Effectiveness of artificial intelligence assisted colonoscopy on adenoma and polyp miss rate: A meta-analysis of tandem RCTs. Dig Liver Dis. 2025;57:169-175.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 6]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
84.  Ahmad A, Wilson A, Haycock A, Humphries A, Monahan K, Suzuki N, Thomas-Gibson S, Vance M, Bassett P, Thiruvilangam K, Dhillon A, Saunders BP. Evaluation of a real-time computer-aided polyp detection system during screening colonoscopy: AI-DETECT study. Endoscopy. 2023;55:313-319.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 38]  [Article Influence: 12.7]  [Reference Citation Analysis (0)]
85.  Soleymanjahi S, Huebner J, Elmansy L, Rajashekar N, Lüdtke N, Paracha R, Thompson R, Grimshaw AA, Foroutan F, Sultan S, Shung DL. Artificial Intelligence-Assisted Colonoscopy for Polyp Detection : A Systematic Review and Meta-analysis. Ann Intern Med. 2024;177:1652-1663.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 14]  [Cited by in RCA: 16]  [Article Influence: 16.0]  [Reference Citation Analysis (0)]
86.  Kim SY, Park HJ, Kim HS, Park DI, Cha JM, Park SJ, Choi H, Shin JE, Eun CS, Kim JO, Kim HG, Kim SE, Park CH, Kim TI, Hong SN. Cap-Assisted Chromoendoscopy Using a Mounted Cap Versus Standard Colonoscopy for Adenoma Detection. Am J Gastroenterol. 2020;115:465-472.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 14]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
87.  Aniwan S, Vanduangden K, Kerr SJ, Piyachaturawat P, Jangsirikul S, Luangsukrerk T, Kulpatcharapong S, Tiankanon K, Kongtab N, Wisedopas N, Kullavanijaya P, Rerknimitr R. Linked color imaging, mucosal exposure device, their combination, and standard colonoscopy for adenoma detection: a randomized trial. Gastrointest Endosc. 2021;94:969-977.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 20]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
88.  Pattarajierapan S, Tipmanee P, Supasiri T, Wisedopas N, Khomvilai S. Texture and color enhancement imaging (TXI) plus endocuff vision versus TXI alone for colorectal adenoma detection: a randomized controlled trial. Surg Endosc. 2023;37:8340-8348.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6]  [Cited by in RCA: 9]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
89.  Aniwan S, Mekritthikrai K, Kerr SJ, Tiankanon K, Vandaungden K, Sritunyarat Y, Piyachaturawat P, Luangsukrerk T, Kulpatcharapong S, Wisedopas N, Kongtub N, Kullavanijaya P, Rerknimitr R. Computer-aided detection, mucosal exposure device, their combination, and standard colonoscopy for adenoma detection: a randomized controlled trial. Gastrointest Endosc. 2023;97:507-516.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 30]  [Reference Citation Analysis (0)]
90.  Lui TK, Lam CP, To EW, Ko MK, Tsui VWM, Liu KS, Hui CK, Cheung MK, Mak LL, Hui RW, Wong SY, Seto WK, Leung WK. Endocuff With or Without Artificial Intelligence-Assisted Colonoscopy in Detection of Colorectal Adenoma: A Randomized Colonoscopy Trial. Am J Gastroenterol. 2024;119:1318-1325.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 10]  [Article Influence: 10.0]  [Reference Citation Analysis (0)]
91.  Caillo L, Delliot C, Chevallier T, Bourgaux JF, Prost A, Brunaud-Gagniard B, Phoutthasang V, Clerc C, Borderie T, Daniel J, Pouderoux P, Debourdeau A. COLODETECT 1: comparative evaluation of endocuff with computer-aided detection versus computer-aided detection alone versus standard colonoscopy for enhancing adenoma detection rates during screening colonoscopy-a pilot study. Therap Adv Gastroenterol. 2024;17:17562848241290433.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]