Published online Aug 16, 2020. doi: 10.4253/wjge.v12.i8.212
Peer-review started: March 26, 2020
First decision: April 22, 2020
Revised: June 4, 2020
Accepted: July 18, 2020
Article in press: July 18, 2020
Published online: August 16, 2020
Processing time: 139 Days and 9.3 Hours
Endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) has emerged as a safe, efficacious alternative to fine needle aspiration (FNA) for tissue acquisition. EUS-FNB is reported to have higher diagnostic yield while preserving specimen tissue architecture. However, data on the optimal method of EUS-FNB specimen processing is limited.
To evaluate EUS-FNB with specimen processing as histology vs EUS-FNA cytology with regards to diagnostic yield and specimen adequacy.
All EUS-FNA and EUS-FNB performed at our institution from July 1, 2016, to January 31, 2018, were retrospectively analyzed. We collected data on demographics, EUS findings, pathology, clinical outcomes, and procedural complications in two periods, July 2016 through March 2017, and April 2017 through January 2018, with predominant use of FNB in the second data collection time period. FNA specimens were processed as cytology with cell block technique and reviewed by a cytopathologist; FNB specimens were fixed in formalin, processed for histopathologic analysis and immunohistochemical staining, and reviewed by an anatomic pathologist. Final diagnosis was based on surgical pathology when available, repeat biopsy or imaging, and length of clinical follow up.
One hundred six EUS-FNA and EUS-FNB procedures were performed. FNA alone was performed in 17 patients; in 56 patients, FNB alone was done; and in 33 patients, both FNA and FNB were performed. For all indications, diagnostic yield was 47.1% (8/17) in FNA alone cases, 85.7% (48/56) in FNB alone cases, and 84.8% (28/33) in cases where both FNA and FNB were performed (P = 0.0039). Specimens were adequate for pathologic evaluation in 52.9% (9/17) of FNA alone cases, in 89.3% (50/56) of FNB alone cases, and 84.8% (28/33) in cases where FNA with FNB were performed (P = 0.0049). Tissue could not be aspirated for cytology in 10.0% (5/50) of cases where FNA was done, while in 3.4% (3/89) of FNB cases, tissue could not be obtained for histology. In patients who underwent FNA with FNB, there was a statistically significant difference in both specimen adequacy (P = 0.0455) and diagnostic yield (P = 0.0455) between the FNA and FNB specimens (processed correspondingly as cytology or histology).
EUS-FNB has a higher diagnostic yield and specimen adequacy than EUS-FNA. In our experience, specimen processing as histology may have contributed to the overall increased diagnostic yield of EUS-FNB.
Core tip: Endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) is rapidly gaining in popularity. However, the optimal method for EUS-FNB specimen processing is not well defined, with recent studies on fine needle biopsy (FNB) varying widely in the use of histology vs cytology for FNB sample evaluation. Our data suggest that processing FNB specimens in formalin for histology, followed by evaluation by an anatomic pathologist, could contribute to overall improved diagnostic yield of EUS-FNB. An additional benefit is the decreased need for on-site cytopathology.