1
|
Aoyama N, Nakajo K, Sasabe M, Inaba A, Nakanishi Y, Seno H, Yano T. Effects of artificial intelligence assistance on endoscopist performance: Comparison of diagnostic performance in superficial esophageal squamous cell carcinoma detection using video-based models. DEN OPEN 2026; 6:e70083. [PMID: 40322543 PMCID: PMC12046500 DOI: 10.1002/deo2.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 05/08/2025]
Abstract
Objectives Superficial esophageal squamous cell carcinoma (ESCC) detection is crucial. Although narrow-band imaging improves detection, its effectiveness is diminished by inexperienced endoscopists. The effects of artificial intelligence (AI) assistance on ESCC detection by endoscopists remain unclear. Therefore, this study aimed to develop and validate an AI model for ESCC detection using endoscopic video analysis and evaluate diagnostic improvements. Methods Endoscopic videos with and without ESCC lesions were collected from May 2020 to January 2022. The AI model trained on annotated videos and 18 endoscopists (eight experts, 10 non-experts) evaluated their diagnostic performance. After 4 weeks, the endoscopists re-evaluated the test data with AI assistance. Sensitivity, specificity, and accuracy were compared between endoscopists with and without AI assistance. Results Training data comprised 280 cases (140 with and 140 without lesions), and test data, 115 cases (52 with and 63 without lesions). In the test data, the median lesion size was 14.5 mm (range: 1-100 mm), with pathological depths ranging from high-grade intraepithelial to submucosal neoplasia. The model's sensitivity, specificity, and accuracy were 76.0%, 79.4%, and 77.2%, respectively. With AI assistance, endoscopist sensitivity (57.4% vs. 66.5%) and accuracy (68.6% vs. 75.9%) improved significantly, while specificity increased slightly (87.0% vs. 91.6%). Experts demonstrated substantial improvements in sensitivity (59.1% vs. 70.0%) and accuracy (72.1% vs. 79.3%). Non-expert accuracy increased significantly (65.8% vs. 73.3%), with slight improvements in sensitivity (56.1% vs. 63.7%) and specificity (81.9% vs. 89.2%). Conclusions AI assistance enhances ESCC detection and improves endoscopists' diagnostic performance, regardless of experience.
Collapse
Affiliation(s)
- Naoki Aoyama
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Keiichiro Nakajo
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- NEXT Medical Device Innovation CenterNational Cancer Center Hospital EastChibaJapan
| | - Maasa Sasabe
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- Division of EndoscopySaitama Cancer CenterSaitamaJapan
| | - Atsushi Inaba
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
| | - Yuki Nakanishi
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Hiroshi Seno
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Tomonori Yano
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- NEXT Medical Device Innovation CenterNational Cancer Center Hospital EastChibaJapan
| |
Collapse
|
2
|
Lei C, Sun W, Wang K, Weng R, Kan X, Li R. Artificial intelligence-assisted diagnosis of early gastric cancer: present practice and future prospects. Ann Med 2025; 57:2461679. [PMID: 39928093 PMCID: PMC11812113 DOI: 10.1080/07853890.2025.2461679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Gastric cancer (GC) occupies the first few places in the world among tumors in terms of incidence and mortality, causing serious harm to human health, and at the same time, its treatment greatly consumes the health care resources of all countries in the world. The diagnosis of GC is usually based on histopathologic examination, and it is very important to be able to detect and identify cancerous lesions at an early stage, but some endoscopists' lack of diagnostic experience and fatigue at work lead to a certain rate of under diagnosis. The rapid and striking development of Artificial intelligence (AI) has helped to enhance the ability to extract abnormal information from endoscopic images to some extent, and more and more researchers are applying AI technology to the diagnosis of GC. This initiative has not only improved the detection rate of early gastric cancer (EGC), but also significantly improved the survival rate of patients after treatment. This article reviews the results of various AI-assisted diagnoses of EGC in recent years, including the identification of EGC, the determination of differentiation type and invasion depth, and the identification of borders. Although AI has a better application prospect in the early diagnosis of ECG, there are still major challenges, and the prospects and limitations of AI application need to be further discussed.
Collapse
Affiliation(s)
- Changda Lei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Wenqiang Sun
- Suzhou Medical College, Soochow University, Suzhou, China
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Ruixia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiuji Kan
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Gupta A, Bajaj S, Nema P, Purohit A, Kashaw V, Soni V, Kashaw SK. Potential of AI and ML in oncology research including diagnosis, treatment and future directions: A comprehensive prospective. Comput Biol Med 2025; 189:109918. [PMID: 40037170 DOI: 10.1016/j.compbiomed.2025.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in cancer research, offering the ability to process huge data rapidly and make precise therapeutic decisions. Over the last decade, AI, particularly deep learning (DL) and machine learning (ML), has significantly enhanced cancer prediction, diagnosis, and treatment by leveraging algorithms such as convolutional neural networks (CNNs) and multi-layer perceptrons (MLPs). These technologies provide reliable, efficient solutions for managing aggressive diseases like cancer, which have high recurrence and mortality rates. This review prospective highlights the applications of AI in oncology, a long with FDA-approved technologies like EFAI RTSuite CT HN-Segmentation System, Quantib Prostate, and Paige Prostate, and explore their role in advancing cancer detection, personalized care, and treatment. Furthermore, we also explored broader applications of AI in healthcare, addressing challenges, limitations, regulatory considerations, and ethical implications. By presenting these advancements, we underscore AI's potential to revolutionize cancer care, management and treatment.
Collapse
Affiliation(s)
- Akanksha Gupta
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Samyak Bajaj
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Priyanshu Nema
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Arpana Purohit
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, M.P., India.
| | - Vandana Soni
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| |
Collapse
|
4
|
Dinis-Ribeiro M, Libânio D, Uchima H, Spaander MCW, Bornschein J, Matysiak-Budnik T, Tziatzios G, Santos-Antunes J, Areia M, Chapelle N, Esposito G, Fernandez-Esparrach G, Kunovsky L, Garrido M, Tacheci I, Link A, Marcos P, Marcos-Pinto R, Moreira L, Pereira AC, Pimentel-Nunes P, Romanczyk M, Fontes F, Hassan C, Bisschops R, Feakins R, Schulz C, Triantafyllou K, Carneiro F, Kuipers EJ. Management of epithelial precancerous conditions and early neoplasia of the stomach (MAPS III): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG) and European Society of Pathology (ESP) Guideline update 2025. Endoscopy 2025; 57:504-554. [PMID: 40112834 DOI: 10.1055/a-2529-5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
At a population level, the European Society of Gastrointestinal Endoscopy (ESGE), the European Helicobacter and Microbiota Study Group (EHMSG), and the European Society of Pathology (ESP) suggest endoscopic screening for gastric cancer (and precancerous conditions) in high-risk regions (age-standardized rate [ASR] > 20 per 100 000 person-years) every 2 to 3 years or, if cost-effectiveness has been proven, in intermediate risk regions (ASR 10-20 per 100 000 person-years) every 5 years, but not in low-risk regions (ASR < 10).ESGE/EHMSG/ESP recommend that irrespective of country of origin, individual gastric risk assessment and stratification of precancerous conditions is recommended for first-time gastroscopy. ESGE/EHMSG/ESP suggest that gastric cancer screening or surveillance in asymptomatic individuals over 80 should be discontinued or not started, and that patients' comorbidities should be considered when treatment of superficial lesions is planned.ESGE/EHMSG/ESP recommend that a high quality endoscopy including the use of virtual chromoendoscopy (VCE), after proper training, is performed for screening, diagnosis, and staging of precancerous conditions (atrophy and intestinal metaplasia) and lesions (dysplasia or cancer), as well as after endoscopic therapy. VCE should be used to guide the sampling site for biopsies in the case of suspected neoplastic lesions as well as to guide biopsies for diagnosis and staging of gastric precancerous conditions, with random biopsies to be taken in the absence of endoscopically suspected changes. When there is a suspected early gastric neoplastic lesion, it should be properly described (location, size, Paris classification, vascular and mucosal pattern), photodocumented, and two targeted biopsies taken.ESGE/EHMSG/ESP do not recommend routine performance of endoscopic ultrasonography (EUS), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET)-CT prior to endoscopic resection unless there are signs of deep submucosal invasion or if the lesion is not considered suitable for endoscopic resection.ESGE/EHMSG/ESP recommend endoscopic submucosal dissection (ESD) for differentiated gastric lesions clinically staged as dysplastic (low grade and high grade) or as intramucosal carcinoma (of any size if not ulcerated or ≤ 30 mm if ulcerated), with EMR being an alternative for Paris 0-IIa lesions of size ≤ 10 mm with low likelihood of malignancy.ESGE/EHMSG/ESP suggest that a decision about ESD can be considered for malignant lesions clinically staged as having minimal submucosal invasion if differentiated and ≤ 30 mm; or for malignant lesions clinically staged as intramucosal, undifferentiated and ≤ 20 mm; and in both cases with no ulcerative findings.ESGE/EHMSG/ESP recommends patient management based on the following histological risk after endoscopic resection: Curative/very low-risk resection (lymph node metastasis [LNM] risk < 0.5 %-1 %): en bloc R0 resection; dysplastic/pT1a, differentiated lesion, no lymphovascular invasion, independent of size if no ulceration and ≤ 30 mm if ulcerated. No further staging procedure or treatment is recommended.Curative/low-risk resection (LNM risk < 3 %): en bloc R0 resection; lesion with no lymphovascular invasion and: a) pT1b, invasion ≤ 500 µm, differentiated, size ≤ 30 mm; or b) pT1a, undifferentiated, size ≤ 20 mm and no ulceration. Staging should be completed, and further treatment is generally not necessary, but a multidisciplinary discussion is required. Local-risk resection (very low risk of LNM but increased risk of local persistence/recurrence): Piecemeal resection or tumor-positive horizontal margin of a lesion otherwise meeting curative/very low-risk criteria (or meeting low-risk criteria provided that there is no submucosal invasive tumor at the resection margin in the case of piecemeal resection or tumor-positive horizontal margin for pT1b lesions [invasion ≤ 500 µm; well-differentiated; size ≤ 30 mm, and VM0]). Endoscopic surveillance/re-treatment is recommended rather than other additional treatment. High-risk resection (noncurative): Any lesion with any of the following: (a) a positive vertical margin (if carcinoma) or lymphovascular invasion or deep submucosal invasion (> 500 µm from the muscularis mucosae); (b) poorly differentiated lesions if ulceration or size > 20 mm; (c) pT1b differentiated lesions with submucosal invasion ≤ 500 µm with size > 30 mm; or (d) intramucosal ulcerative lesion with size > 30 mm. Complete staging and strong consideration for additional treatments (surgery) in multidisciplinary discussion.ESGE/EHMSG/ESP suggest the use of validated endoscopic classifications of atrophy (e. g. Kimura-Takemoto) or intestinal metaplasia (e. g. endoscopic grading of gastric intestinal metaplasia [EGGIM]) to endoscopically stage precancerous conditions and stratify the risk for gastric cancer.ESGE/EHMSG/ESP recommend that biopsies should be taken from at least two topographic sites (2 biopsies from the antrum/incisura and 2 from the corpus, guided by VCE) in two separate, clearly labeled vials. Additional biopsy from the incisura is optional.ESGE/EHMSG/ESP recommend that patients with extensive endoscopic changes (Kimura C3 + or EGGIM 5 +) or advanced histological stages of atrophic gastritis (severe atrophic changes or intestinal metaplasia, or changes in both antrum and corpus, operative link on gastritis assessment/operative link on gastric intestinal metaplasia [OLGA/OLGIM] III/IV) should be followed up with high quality endoscopy every 3 years, irrespective of the individual's country of origin.ESGE/EHMSG/ESP recommend that no surveillance is proposed for patients with mild to moderate atrophy or intestinal metaplasia restricted to the antrum, in the absence of endoscopic signs of extensive lesions or other risk factors (family history, incomplete intestinal metaplasia, persistent H. pylori infection). This group constitutes most individuals found in clinical practice.ESGE/EHMSG/ESP recommend H. pylori eradication for patients with precancerous conditions and after endoscopic or surgical therapy.ESGE/EHMSG/ESP recommend that patients should be advised to stop smoking and low-dose daily aspirin use may be considered for the prevention of gastric cancer in selected individuals with high risk for cardiovascular events.
Collapse
Affiliation(s)
- Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Diogo Libânio
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Hugo Uchima
- Endoscopy Unit Gastroenterology Department Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Endoscopy Unit, Teknon Medical Center, Barcelona, Spain
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Bornschein
- Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tamara Matysiak-Budnik
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Georgios Tziatzios
- Agia Olga General Hospital of Nea Ionia Konstantopouleio, Athens, Greece
| | - João Santos-Antunes
- Gastroenterology Department, Centro Hospitalar S. João, Porto, Portugal
- Faculty of Medicine, University of Porto, Portugal
- University of Porto, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Instituto de Investigação e Inovação na Saúde (I3S), Porto, Portugal
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra (IPO Coimbra), Coimbra, Portugal
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
| | - Nicolas Chapelle
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Gloria Fernandez-Esparrach
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Lumir Kunovsky
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mónica Garrido
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Ilja Tacheci
- Gastroenterology, Second Department of Internal Medicine, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University of Prague, Czech Republic
| | | | - Pedro Marcos
- Department of Gastroenterology, Pêro da Covilhã Hospital, Covilhã, Portugal
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ricardo Marcos-Pinto
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Leticia Moreira
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Ana Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Portugal
- Gastroenterology and Clinical Research, Unilabs Portugal
| | - Marcin Romanczyk
- Department of Gastroenterology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
- Endoterapia, H-T. Centrum Medyczne, Tychy, Poland
| | - Filipa Fontes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Public Health and Forensic Sciences, and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Department of Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| | - Roger Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
- University College London, London, United Kingdom
| | - Christian Schulz
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Fatima Carneiro
- Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Pathology Department, Centro Hospitalar de São João and Faculty of Medicine, Porto, Portugal
| | - Ernst J Kuipers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Shin Y, Lee M, Lee Y, Kim K, Kim T. Artificial Intelligence-Powered Quality Assurance: Transforming Diagnostics, Surgery, and Patient Care-Innovations, Limitations, and Future Directions. Life (Basel) 2025; 15:654. [PMID: 40283208 PMCID: PMC12028931 DOI: 10.3390/life15040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Artificial intelligence is rapidly transforming quality assurance in healthcare, driving advancements in diagnostics, surgery, and patient care. This review presents a comprehensive analysis of artificial intelligence integration-particularly convolutional and recurrent neural networks-across key clinical domains, significantly enhancing diagnostic accuracy, surgical performance, and pathology evaluation. Artificial intelligence-based approaches have demonstrated clear superiority over conventional methods: convolutional neural networks achieved 91.56% accuracy in scanner fault detection, surpassing manual inspections; endoscopic lesion detection sensitivity rose from 2.3% to 6.1% with artificial intelligence assistance; and gastric cancer invasion depth classification reached 89.16% accuracy, outperforming human endoscopists by 17.25%. In pathology, artificial intelligence achieved 93.2% accuracy in identifying out-of-focus regions and an F1 score of 0.94 in lymphocyte quantification, promoting faster and more reliable diagnostics. Similarly, artificial intelligence improved surgical workflow recognition with over 81% accuracy and exceeded 95% accuracy in skill assessment classification. Beyond traditional diagnostics and surgical support, AI-powered wearable sensors, drug delivery systems, and biointegrated devices are advancing personalized treatment by optimizing physiological monitoring, automating care protocols, and enhancing therapeutic precision. Despite these achievements, challenges remain in areas such as data standardization, ethical governance, and model generalizability. Overall, the findings underscore artificial intelligence's potential to outperform traditional techniques across multiple parameters, emphasizing the need for continued development, rigorous clinical validation, and interdisciplinary collaboration to fully realize its role in precision medicine and patient safety.
Collapse
Affiliation(s)
- Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea; (Y.S.); (M.L.); (Y.L.)
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea; (Y.S.); (M.L.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea; (Y.S.); (M.L.); (Y.L.)
| | - Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 07804, Republic of Korea;
| | - Taejung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
6
|
Gebrehiwot NT, Liu Y, Li J, Liu HM. Molecular Alterations in Gastric Intestinal Metaplasia Shed Light on Alteration of Methionine Metabolism: Insight into New Diagnostic and Treatment Approaches. Biomedicines 2025; 13:964. [PMID: 40299656 PMCID: PMC12025106 DOI: 10.3390/biomedicines13040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Gastric intestinal metaplasia (GIM) is a precancerous lesion and the key risk factor in the development of gastric cancer (GC), but early detection and treatment remain challenging. The traditional endoscopic diagnosis of metaplastic lesions is complicated by an increased rate of inappropriateness and false negativity. Although early interventions with H. pylori eradication, as well as endoscopic therapy results, were promising, there is still a significant unmet need to control GIM progression and recurrences. Molecular alterations, such as an increased DNA methylation index, have been identified as a crucial factor in the downregulation of tumor suppressor genes, such as the caudal-type homeobox (CDX2) gene, which regulates epithelial cell proliferation and GIM progression and is associated with treatment failure. CDX2 is downregulated by promoter hypermethylation in the colonic-type epithelium, in which the methylation was correlated with reduced intake of dietary folate sources. Tumor cells alter to dietary methionine sources in the biosynthesis of S-Adenosylmethionine, a universal methyl donor for transmethylation, under the conditions of limited folate and B12 availability. The gut microbiota also exhibited a shift in microbial composition, which could influence the host's dietary methionine metabolism. Meanwhile, activated oncogenic signaling via the PI3K/Akt/mTORC1/c-MYC pathway could promotes rewiring dietary methionine and cellular proliferation. Tumor methionine dependence is a metabolic phenotype that could be helpful in predictive screening of tumorigenesis and as a target for preventive therapy to enhance precision oncology. This review aimed to discuss the molecular alterations in GIM to shed light on the alteration of methionine metabolism, with insight into new diagnostic and treatment approaches and future research directions.
Collapse
Affiliation(s)
- Nigatu Tadesse Gebrehiwot
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China;
- Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Ministry of Education, Zhengzhou 450001, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Juan Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China;
- Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Ministry of Education, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China;
- Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Ministry of Education, Zhengzhou 450001, China
| |
Collapse
|
7
|
Baik YS, Lee H, Kim YJ, Chung JW, Kim KG. Early detection of esophageal cancer: Evaluating AI algorithms with multi-institutional narrowband and white-light imaging data. PLoS One 2025; 20:e0321092. [PMID: 40184395 PMCID: PMC11970661 DOI: 10.1371/journal.pone.0321092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
Esophageal cancer is one of the most common cancers worldwide, especially esophageal squamous cell carcinoma, which is often diagnosed at a late stage and has a poor prognosis. This study aimed to develop an algorithm to detect tumors in esophageal endoscopy images using innovative artificial intelligence (AI) techniques for early diagnosis and detection of esophageal cancer. We used white light and narrowband imaging data collected from Gachon University Gil Hospital, and applied YOLOv5 and RetinaNet detection models to detect lesions. The models demonstrated high performance, with RetinaNet achieving a precision of 98.4% and sensitivity of 91.3% in the NBI dataset, and YOLOv5 attaining a precision of 93.7% and sensitivity of 89.9% in the WLI dataset. The generalizability of these models was further validated using external data from multiple institutions. This study demonstrates an effective method for detecting esophageal tumors through AI-based esophageal endoscopic image analysis. These efforts are expected to significantly reduce misdiagnosis rates, enhance the effective diagnosis and treatment of esophageal cancer, and promote the standardization of medical services.
Collapse
Affiliation(s)
- Young Seo Baik
- Department of Biomedical Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hannah Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Young Jae Kim
- Department of Gachon Biomedical & Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Kwang Gi Kim
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Ono S, Inoue M, Higashino M, Hayasaka S, Tanaka S, Egami H, Sakamoto N. Linked color imaging and upper gastrointestinal neoplasia. Dig Endosc 2025; 37:352-361. [PMID: 39582388 DOI: 10.1111/den.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
White light imaging (WLI) can sometimes miss early upper gastrointestinal (UGI) neoplasms, particularly minimal changes and flat lesions. Moreover, endoscopic diagnosis of UGI neoplasia is strongly influenced by the condition of the surrounding mucosa. Recently, image-enhanced endoscopy techniques have been developed and used in clinical practice; one of which is linked color imaging (LCI), which has an expanded color range for better recognition of slight differences in mucosal color and enables easy diagnosis and differentiation of noncancerous mucosa from carcinoma. LCI does not require magnified observation and can clearly visualize structures using an ultrathin scope; therefore, it is useful for screening and surveillance endoscopy. LCI is particularly useful for detecting gastric cancer after Helicobacter pylori eradication, which accounts for most gastric cancers currently discovered, and displays malignant areas in orange or orange-red surrounded by intestinal metaplasia in lavender. Data on the use of convolutional neural network and computer-aided diagnosis with LCI for UGI neoplasm detection are currently being collected. Further studies are needed to determine the clinical role of LCI and whether it can replace WLI.
Collapse
Affiliation(s)
- Shoko Ono
- Division of Endoscopy, Hokkaido University Hospital, Hokkaido, Japan
| | - Masaki Inoue
- Division of Endoscopy, Hokkaido University Hospital, Hokkaido, Japan
| | - Masayuki Higashino
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Hayasaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shugo Tanaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hiroki Egami
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| |
Collapse
|
9
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
10
|
Chen J, Xiong H, Zhou S, Wang X, Lou B, Ning L, Hu Q, Tang Y, Gu G. A Hybrid Deep Learning and Improved SVM Framework for Real-Time Railroad Construction Personnel Detection with Multi-Scale Feature Optimization. SENSORS (BASEL, SWITZERLAND) 2025; 25:2061. [PMID: 40218575 PMCID: PMC11990998 DOI: 10.3390/s25072061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Railroad construction sites are high-risk environments where monitoring personnel safety is critical for preventing accidents and enhancing construction efficiency. Traditional manual monitoring and image processing methods exhibit deficiencies in real-time performance and accuracy. This paper proposes a railway worker detection method based on improved support vector machines (ISVM), while using non-local mean noise reduction and histogram equalisation pre-processing techniques to optimise image quality to improve detection efficiency and accuracy. Multiscale features are then extracted with Inception v3 and combined with principal component analysis (PCA) for dimensionality reduction. Finally, an SVM classification algorithm is employed for personnel detection. To process small sample categories, data enhancement techniques (e.g., random flip and rotation) and K-fold cross-validation are applied to optimize the model parameters. The experimental results demonstrate that the ISVM method significantly improves accuracy and real-time performance compared to traditional detection methods and single deep learning models. This method provides technical support for railroad construction safety monitoring and effectively addresses personnel detection tasks in complex construction environments.
Collapse
Affiliation(s)
- Jianqiu Chen
- Guangxi Key Laboratory of International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 530200, China; (J.C.); (S.Z.); (L.N.); (Y.T.)
| | - Huan Xiong
- Guangxi Key Laboratory of Intelligent Transportation System (ITS), Guilin University of Electronic Technology, Guilin 541004, China; (H.X.); (X.W.); (Q.H.)
| | - Shixuan Zhou
- Guangxi Key Laboratory of International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 530200, China; (J.C.); (S.Z.); (L.N.); (Y.T.)
| | - Xiang Wang
- Guangxi Key Laboratory of Intelligent Transportation System (ITS), Guilin University of Electronic Technology, Guilin 541004, China; (H.X.); (X.W.); (Q.H.)
| | - Benxiao Lou
- School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China;
| | - Longtang Ning
- Guangxi Key Laboratory of International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 530200, China; (J.C.); (S.Z.); (L.N.); (Y.T.)
- Faculty of Logistics and Digital Supply Chain, Naresuan University, Phitsanulok 65000, Thailand
| | - Qingwei Hu
- Guangxi Key Laboratory of Intelligent Transportation System (ITS), Guilin University of Electronic Technology, Guilin 541004, China; (H.X.); (X.W.); (Q.H.)
| | - Yang Tang
- Guangxi Key Laboratory of International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 530200, China; (J.C.); (S.Z.); (L.N.); (Y.T.)
| | - Guobin Gu
- Guangxi Key Laboratory of International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 530200, China; (J.C.); (S.Z.); (L.N.); (Y.T.)
- Faculty of Logistics and Digital Supply Chain, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Li R, Li J, Wang Y, Liu X, Xu W, Sun R, Xue B, Zhang X, Ai Y, Du Y, Jiang J. The artificial intelligence revolution in gastric cancer management: clinical applications. Cancer Cell Int 2025; 25:111. [PMID: 40119433 PMCID: PMC11929235 DOI: 10.1186/s12935-025-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/18/2025] [Indexed: 03/24/2025] Open
Abstract
Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.
Collapse
Affiliation(s)
- Runze Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Jingfan Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yuman Wang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xiaoyu Liu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Weichao Xu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Runxue Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Binqing Xue
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xinqian Zhang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yikun Ai
- North China University of Science and Technology, Tanshan 063000, China
| | - Yanru Du
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Provincial Key Laboratory of Integrated Traditional and Western Medicine Research on Gastroenterology, Hebei, 050011, China.
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, 050011, China.
| | - Jianming Jiang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
| |
Collapse
|
12
|
Ebigbo A, Messmann H, Lee SH. Artificial Intelligence Applications in Image-Based Diagnosis of Early Esophageal and Gastric Neoplasms. Gastroenterology 2025:S0016-5085(25)00471-8. [PMID: 40043857 DOI: 10.1053/j.gastro.2025.01.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
Artificial intelligence (AI) holds the potential to transform the management of upper gastrointestinal (GI) conditions, such as Barrett's esophagus, esophageal squamous cell cancer, and early gastric cancer. Advancements in deep learning and convolutional neural networks offer improved diagnostic accuracy and reduced diagnostic variability across different clinical settings, particularly where human error or fatigue may impair diagnostic precision. Deep learning models have shown the potential to improve early cancer detection and lesion characterization, predict invasion depth, and delineate lesion margins with remarkable accuracy, all contributing to effective treatment planning. Several challenges, however, limit the broad application of AI in GI endoscopy, particularly in the upper GI tract. Subtle lesion morphology and restricted diversity in training datasets, which are often sourced from specialized centers, may constrain the generalizability of AI models in various clinical settings. Furthermore, the "black box" nature of some AI systems can impede explainability and clinician trust. To address these issues, efforts are underway to incorporate multimodal data, such as combining endoscopic and histopathologic imaging, to bolster model robustness and transparency. In the future, AI promises substantial advancements in automated real-time endoscopic guidance, personalized risk assessment, and optimized biopsy decision making. As it evolves, it would substantially impact not only early diagnosis and prognosis, but also the cost-effectiveness of managing upper GI diseases, ultimately leading to improved patient outcomes and more efficient health care delivery.
Collapse
Affiliation(s)
- Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Seoul St. Mary's Hospital, Seoul, South Korea.
| |
Collapse
|
13
|
Feng J, Zhang Y, Feng Z, Ma H, Gou Y, Wang P, Feng Y, Wang X, Huang X. A prospective and comparative study on improving the diagnostic accuracy of early gastric cancer based on deep convolutional neural network real-time diagnosis system (with video). Surg Endosc 2025; 39:1874-1884. [PMID: 39843600 DOI: 10.1007/s00464-025-11527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Endoscopic diagnosis of early gastric cancer (EGC) is a challenge. It is not clear whether deep convolutional neural network (DCNN) model could improve the endoscopists' diagnostic performance. METHODS We established a DCNN-assisted system and found that accuracy of diagnosis is higher than endoscopists. We prospectively collected an independent image test set of 1289 images and a video test set of 130 patients from three endoscopic centers to compare the diagnostic efficacy of 12 endoscopists before and after DCNN model assistance. Accuracy, sensitivity, specificity, time, and AUC were the main indicators for comparison. RESULTS The DCNN model discriminated EGC from the control group (including ulcers and chronic gastritis) with an AUC of 0.917, a sensitivity of 93.38% (95% CI 91.09-95.12%), and a specificity of 90.07% (95% CI 87.59-92.10%) in the image dataset. The video test dataset have an AUC of 0.930, a sensitivity of 96.92% (95% CI 88.83-99.78%), and a specificity of 89.23% (95% CI 79.11-94.98%). The diagnostic performance of novice endoscopists was comparable to those of expert endoscopists with the DCNN model's assistance (accuracy: 95.22 vs. 96.16%) in image test dataset. In the video test, the novice endoscopists, accuracy after DCNN assistance was also improved from 79.36 to 86.41%, and from 86.28 to 91.03% for expert endoscopists. The mean pairwise kappa value of endoscopists was increased significantly with the DCNN model's assistance (0.705-0.753 vs.0.767-0.890) in image testing, and (0.657-0.793 vs. 0.738-0.905) in video testing. The diagnostic duration reduced considerably with the assistance of the DCNN model from 7.09 ± 0.6 s to 5.05 ± 0.55 s in image test, and from 2392.17 ± 7.77 s to2378.34 ± 23.51 s in video test. CONCLUSION We developed a DCNN-assisted diagnostic system. And the system can improve the diagnostic performance of endoscopists and help novice endoscopists achieve diagnostic accuracy comparable to that of expert endoscopists.
Collapse
Affiliation(s)
- Jie Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China.
| | - Yaoping Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China
| | - Zhijun Feng
- Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huiming Ma
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China
| | - Yani Gou
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Pengfei Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yanhu Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiang Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiaojun Huang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
14
|
He C, Zhang J, Liang Y, Li H. A unified framework harnessing multi-scale feature ensemble and attention mechanism for gastric polyp and protrusion identification in gastroscope imaging. Sci Rep 2025; 15:5734. [PMID: 39962226 PMCID: PMC11833082 DOI: 10.1038/s41598-025-90034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
This study aims to address the diagnostic challenges in distinguishing gastric polyps from protrusions, emphasizing the need for accurate and cost-effective diagnosis strategies. It explores the application of Convolutional Neural Networks (CNNs) to improve diagnostic accuracy. This research introduces MultiAttentiveScopeNet, a deep learning model that incorporates multi-layer feature ensemble and attention mechanisms to enhance gastroscopy image analysis accuracy. A weakly supervised labeling strategy was employed to construct a large multi-class gastroscopy image dataset for training and validation. MultiAttentiveScopeNet demonstrates significant improvements in prediction accuracy and interpretability. The integrated attention mechanism effectively identifies critical areas in images to aid clinical decisions. Its multi-layer feature ensemble enables robust analysis of complex gastroscopy images. Comparative testing against human experts shows exceptional diagnostic performance, with accuracy, micro and macro precision, micro and macro recall, and micro and macro AUC reaching 0.9308, 0.9312, 0.9325, 0.9283, 0.9308, 0.9847 and 0.9853 respectively. This highlights its potential as an effective tool for primary healthcare settings. This study provides a comprehensive solution to address diagnostic challenges differentiating gastric polyps and protrusions. MultiAttentiveScopeNet improves accuracy and interpretability, demonstrating the potential of deep learning for gastroscopy image analysis. The constructed dataset facilitates continued model optimization and validation. The model shows promise in enhancing diagnostic outcomes in primary care.
Collapse
Affiliation(s)
- Chunyou He
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Jingda Zhang
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Yunxiao Liang
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China.
| | - Hao Li
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China.
| |
Collapse
|
15
|
Ryu S, Imaizumi Y, Goto K, Iwauchi S, Kobayashi T, Ito R, Nakabayashi Y. Artificial intelligence-enhanced navigation for nerve recognition and surgical education in laparoscopic colorectal surgery. Surg Endosc 2025; 39:1388-1396. [PMID: 39762611 PMCID: PMC11794642 DOI: 10.1007/s00464-024-11489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/14/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Devices that help educate young doctors and enable safe, minimally invasive surgery are needed. Eureka is a surgical artificial intelligence (AI) system that can intraoperatively highlight loose connective tissues (LCTs) in the dissected layers and nerves in the surgical field displayed on a monitor. In this study, we examined whether AI navigation (AIN) with Eureka can assist trainees in recognizing nerves during colorectal surgery. METHODS In left-sided colorectal surgery (n = 51, between July 2023 and February 2024), Eureka was connected to the laparoscopic system side by side, and the nerve was highlighted on the monitor during the surgery. We examined the rate of failure to recognize nerves by trainee surgeons over a total of 101 scenarios after it was recognized intraoperatively by the supervising surgeon (certified by the Japanese Society of Endoscopic Surgery). We also examined the frequency of nerve recognition by the trainee physicians viewing the Eureka monitor when recognition was not possible (recognition assistance rate). RESULTS The nerve recognition failure rate and recognition assistance rate with AIN were as follows: right hypogastric nerve during sigmoid colon mobilization, 44/101 (43.6%) and 19/44 (43.2%); left hypogastric nerves during dissection of the dorsal rectum, 27/101 (26.7%) and 13/27 (48.1%); right lumbar splanchnic nerves, 32/101 (31.7%) and 29/32 (90.6%); left lumbar splanchnic nerves, 44/101 (43.6%) and 39/44 (88.6%); and pelvic visceral nerves during dissection of the dorsal rectum, 29/45 (64.4%) and 6/29 (20.7%), respectively. CONCLUSION Although the rate of recognition with assistance from AIN differed for the different nerves, this system can potentially assist in anatomic recognition, enhance surgical education, and contribute to nerve preservation. TRIAL REGISTRATION Improvement of AI navigation in minimally invasive surgery and examination of its intraoperative support and educational effectiveness. Research Ethics Committee of the Kawaguchi Municipal Medical Center (Saitama, Japan) approval number: 2022-27.
Collapse
Affiliation(s)
- Shunjin Ryu
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan.
| | - Yuta Imaizumi
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan
| | - Keisuke Goto
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan
| | - Sotaro Iwauchi
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan
| | - Takehiro Kobayashi
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan
| | - Ryusuke Ito
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan
| | - Yukio Nakabayashi
- Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Kawaguchi City, Saitama, 180, Nishiaraijuku333-0833, Japan
| |
Collapse
|
16
|
Jiang Q, Yu Y, Ren Y, Li S, He X. A review of deep learning methods for gastrointestinal diseases classification applied in computer-aided diagnosis system. Med Biol Eng Comput 2025; 63:293-320. [PMID: 39343842 DOI: 10.1007/s11517-024-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Recent advancements in deep learning have significantly improved the intelligent classification of gastrointestinal (GI) diseases, particularly in aiding clinical diagnosis. This paper seeks to review a computer-aided diagnosis (CAD) system for GI diseases, aligning with the actual clinical diagnostic process. It offers a comprehensive survey of deep learning (DL) techniques tailored for classifying GI diseases, addressing challenges inherent in complex scenes, clinical constraints, and technical obstacles encountered in GI imaging. Firstly, the esophagus, stomach, small intestine, and large intestine were located to determine the organs where the lesions were located. Secondly, location detection and classification of a single disease are performed on the premise that the organ's location corresponding to the image is known. Finally, comprehensive classification for multiple diseases is carried out. The results of single and multi-classification are compared to achieve more accurate classification outcomes, and a more effective computer-aided diagnosis system for gastrointestinal diseases was further constructed.
Collapse
Affiliation(s)
- Qianru Jiang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yulin Yu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yipei Ren
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China.
| |
Collapse
|
17
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
18
|
Farinati F, Pelizzaro F. Gastric cancer screening in Western countries: A call to action. Dig Liver Dis 2024; 56:1653-1662. [PMID: 38403513 DOI: 10.1016/j.dld.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Gastric cancer is a major cause of cancer-related death worldwide, despite the reduction in its incidence. The disease is still burdened with a poor prognosis, particularly in Western countries. The main risk factor is the infection by Helicobacter pylori, classified as a class I carcinogen by the IARC, and It is well-known that primary prevention of gastric cancer can be achieved with the eradication of the infection. Moreover, non-invasive measurement of pepsinogens (PGI and PGI/PGII ratio) allows the identification of patients that should undergo upper gastrointestinal (GI) endoscopy. Gastric non-cardia adenocarcinoma is indeed preceded by a well-defined precancerous process that involves consecutive stages, described for the first time by Correa et al. more than 40 years ago, and patients with advance stages of gastric atrophy/intestinal metaplasia and with dysplastic changes should be followed-up periodically with upper GI endoscopies. Despite these effective screening and surveillance methods, national-level screening campaigns have been adopted only in few countries in eastern Asia (Japan and South Korea). In this review, we describe primary and secondary preventive measures for gastric cancer, discussing the need to introduce screening also in Western countries. Moreover, we propose a simple algorithm for screening that could be easily applied in clinical practice.
Collapse
Affiliation(s)
- Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, Padova 35128, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Via Giustiniani 2, Padova 35128, Italy.
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, Padova 35128, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Via Giustiniani 2, Padova 35128, Italy
| |
Collapse
|
19
|
Zhao Y, Dohi O, Ishida T, Yoshida N, Ochiai T, Mukai H, Seya M, Yamauchi K, Miyazaki H, Fukui H, Yasuda T, Iwai N, Inoue K, Itoh Y, Liu X, Zhang R, Zhu X. Linked Color Imaging with Artificial Intelligence Improves the Detection of Early Gastric Cancer. Dig Dis 2024; 42:503-511. [PMID: 39102801 DOI: 10.1159/000540728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Esophagogastroduodenoscopy is the most important tool to detect gastric cancer (GC). In this study, we developed a computer-aided detection (CADe) system to detect GC with white light imaging (WLI) and linked color imaging (LCI) modes and aimed to compare the performance of CADe with that of endoscopists. METHODS The system was developed based on the deep learning framework from 9,021 images in 385 patients between 2017 and 2020. A total of 116 LCI and WLI videos from 110 patients between 2017 and 2023 were used to evaluate per-case sensitivity and per-frame specificity. RESULTS The per-case sensitivity and per-frame specificity of CADe with a confidence level of 0.5 in detecting GC were 78.6% and 93.4% for WLI and 94.0% and 93.3% for LCI, respectively (p < 0.001). The per-case sensitivities of nonexpert endoscopists for WLI and LCI were 45.8% and 80.4%, whereas those of expert endoscopists were 66.7% and 90.6%, respectively. Regarding detectability between CADe and endoscopists, the per-case sensitivities for WLI and LCI were 78.6% and 94.0% in CADe, respectively, which were significantly higher than those for LCI in experts (90.6%, p = 0.004) and those for WLI and LCI in nonexperts (45.8% and 80.4%, respectively, p < 0.001); however, no significant difference for WLI was observed between CADe and experts (p = 0.134). CONCLUSIONS Our CADe system showed significantly better sensitivity in detecting GC when used in LCI compared with WLI mode. Moreover, the sensitivity of CADe using LCI is significantly higher than those of expert endoscopists using LCI to detect GC.
Collapse
Affiliation(s)
- Youshen Zhao
- Graduate School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsugitaka Ishida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Ochiai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Mukai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayuko Seya
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuma Yamauchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Miyazaki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Fukui
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yasuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoto Iwai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Xinkai Liu
- Graduate School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| | - Ruiyao Zhang
- Graduate School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| | - Xin Zhu
- Graduate School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| |
Collapse
|
20
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
21
|
Li N, Yang J, Li X, Shi Y, Wang K. Accuracy of artificial intelligence-assisted endoscopy in the diagnosis of gastric intestinal metaplasia: A systematic review and meta-analysis. PLoS One 2024; 19:e0303421. [PMID: 38743709 PMCID: PMC11093381 DOI: 10.1371/journal.pone.0303421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND AIMS Gastric intestinal metaplasia is a precancerous disease, and a timely diagnosis is essential to delay or halt cancer progression. Artificial intelligence (AI) has found widespread application in the field of disease diagnosis. This study aimed to conduct a comprehensive evaluation of AI's diagnostic accuracy in detecting gastric intestinal metaplasia in endoscopy, compare it to endoscopists' ability, and explore the main factors affecting AI's performance. METHODS The study followed the PRISMA-DTA guidelines, and the PubMed, Embase, Web of Science, Cochrane, and IEEE Xplore databases were searched to include relevant studies published by October 2023. We extracted the key features and experimental data of each study and combined the sensitivity and specificity metrics by meta-analysis. We then compared the diagnostic ability of the AI versus the endoscopists using the same test data. RESULTS Twelve studies with 11,173 patients were included, demonstrating AI models' efficacy in diagnosing gastric intestinal metaplasia. The meta-analysis yielded a pooled sensitivity of 94% (95% confidence interval: 0.92-0.96) and specificity of 93% (95% confidence interval: 0.89-0.95). The combined area under the receiver operating characteristics curve was 0.97. The results of meta-regression and subgroup analysis showed that factors such as study design, endoscopy type, number of training images, and algorithm had a significant effect on the diagnostic performance of AI. The AI exhibited a higher diagnostic capacity than endoscopists (sensitivity: 95% vs. 79%). CONCLUSIONS AI-aided diagnosis of gastric intestinal metaplasia using endoscopy showed high performance and clinical diagnostic value. However, further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Jian Yang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiaodong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yanting Shi
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Kunhong Wang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
22
|
Ueyama H, Hirasawa T, Yano T, Doyama H, Isomoto H, Yagi K, Kawai T, Yao K. Advanced diagnostic endoscopy in the upper gastrointestinal tract: Review of the Japan Gastroenterological Endoscopic Society core sessions. DEN OPEN 2024; 4:e359. [PMID: 38601269 PMCID: PMC11004903 DOI: 10.1002/deo2.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
The Japan Gastroenterological Endoscopy Society (JGES) held four serial symposia between 2021 and 2022 on state-of-the-art issues related to advanced diagnostic endoscopy of the upper gastrointestinal tract. This review summarizes the four core sessions and presents them as a conference report. Eleven studies were discussed in the 101st JGES Core Session, which addressed the challenges and prospects of upper gastroenterological endoscopy. Ten studies were also explored in the 102nd JGES Core Session on advanced upper gastrointestinal endoscopic diagnosis for decision-making regarding therapeutic strategies. Moreover, eight studies were presented during the 103rd JGES Core Session on the development and evaluation of endoscopic artificial intelligence in the field of upper gastrointestinal endoscopy. Twelve studies were also discussed in the 104th JGES Core Session, which focused on the evidence and new developments related to the upper gastrointestinal tract. The endoscopic diagnosis of upper gastrointestinal diseases using image-enhanced endoscopy and AI is one of the most recent topics and has received considerable attention. These four core sessions enabled us to grasp the current state-of-the-art in upper gastrointestinal endoscopic diagnostics and identify future challenges. Based on these studies, we hope that an endoscopic diagnostic system useful in clinical practice is established for each field of upper gastrointestinal endoscopy.
Collapse
Affiliation(s)
- Hiroya Ueyama
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Toshiaki Hirasawa
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Tomonori Yano
- Department of Gastroenterology, Endoscopy DivisionNational Cancer Center Hospital EastChibaJapan
| | - Hisashi Doyama
- Department of GastroenterologyIshikawa Prefectural Central HospitalIshikawaJapan
| | - Hajime Isomoto
- Division of Gastroenterology and NephrologyTottori University Faculty of MedicineTottoriJapan
| | - Kazuyoshi Yagi
- Department of GastroenterologyNiigata University Local Medical Care Education CenterUonuma Kikan HospitalNiigataJapan
| | - Takashi7 Kawai
- Department of Gastroenterological EndoscopyTokyo Medical University HospitalTokyoJapan
| | - Kenshi Yao
- Department of EndoscopyFukuoka University Chikushi HospitalFukuokaJapan
| |
Collapse
|
23
|
Yonazu S, Ozawa T, Nakanishi T, Ochiai K, Shibata J, Osawa H, Hirasawa T, Kato Y, Tajiri H, Tada T. Cost-effectiveness analysis of the artificial intelligence diagnosis support system for early gastric cancers. DEN OPEN 2024; 4:e289. [PMID: 37644958 PMCID: PMC10461711 DOI: 10.1002/deo2.289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Objectives The introduction of artificial intelligence into the medical field has improved the diagnostic capabilities of physicians. However, few studies have analyzed the economic impact of employing artificial intelligence technologies in the clinical environment. This study evaluated the cost-effectiveness of a computer-assisted diagnosis (CADx) system designed to support clinicians in differentiating early gastric cancers from non-cancerous lesions in Japan, where the universal health insurance system was introduced. Methods The target population to be used for the CADx was estimated as those with moderate to severe gastritis caused by Helicobacter pylori infection. Decision trees with Markov models were built to analyze the cumulative cost-effectiveness of using CADx relative to the pre-artificial intelligence status quo, a condition reconstructed from data in published reports. After conducting a base-case analysis, we performed sensitivity analyses by modifying several parameters. The primary outcome was the incremental cost-effectiveness ratio. Results Compared with the status quo as represented in the base-case analysis, the incremental cost-effectiveness ratio of CADx in the Japanese market was forecasted to be 11,093 USD per quality-adjusted life year. The sensitivity analyses demonstrated that the expected incremental cost-effectiveness ratios were within the willingness-to-pay threshold of 50,000 USD per quality-adjusted life year when the cost of the CAD was less than 104 USD. Conclusions Using CADx for EGCs may decrease their misdiagnosis, contributing to improved cost-effectiveness in Japan.
Collapse
Affiliation(s)
- Shion Yonazu
- Faculty of MedicineThe University of TokyoTokyoJapan
- AI Medical Service Inc.TokyoJapan
| | - Tsuyoshi Ozawa
- AI Medical Service Inc.TokyoJapan
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| | | | - Kentaro Ochiai
- AI Medical Service Inc.TokyoJapan
- Department of Surgical Oncology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Junichi Shibata
- AI Medical Service Inc.TokyoJapan
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| | - Hiroyuki Osawa
- Departments of Medicine and GastroenterologyDivision of Gastroenterology, Jichi Medical UniversityTochigiJapan
| | - Toshiaki Hirasawa
- Department of GastroenterologyCancer Institute Hospital of the Japanese Foundation for Cancer ResearchTokyoJapan
| | | | - Hisao Tajiri
- Department of Innovative Interventional Endoscopy ResearchThe Jikei University School of MedicineTokyoJapan
| | - Tomohiro Tada
- AI Medical Service Inc.TokyoJapan
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
- Department of Surgical Oncology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
24
|
Zhao SQ, Liu WT. Progress in artificial intelligence assisted digestive endoscopy diagnosis of digestive system diseases. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:171-181. [DOI: 10.11569/wcjd.v32.i3.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
25
|
Shi Y, Fan H, Li L, Hou Y, Qian F, Zhuang M, Miao B, Fei S. The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:40. [PMID: 38297303 PMCID: PMC10832162 DOI: 10.1186/s12957-024-03321-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The application of machine learning (ML) for identifying early gastric cancer (EGC) has drawn increasing attention. However, there lacks evidence-based support for its specific diagnostic performance. Hence, this systematic review and meta-analysis was implemented to assess the performance of image-based ML in EGC diagnosis. METHODS We performed a comprehensive electronic search in PubMed, Embase, Cochrane Library, and Web of Science up to September 25, 2022. QUADAS-2 was selected to judge the risk of bias of included articles. We did the meta-analysis using a bivariant mixed-effect model. Sensitivity analysis and heterogeneity test were performed. RESULTS Twenty-one articles were enrolled. The sensitivity (SEN), specificity (SPE), and SROC of ML-based models were 0.91 (95% CI: 0.87-0.94), 0.85 (95% CI: 0.81-0.89), and 0.94 (95% CI: 0.39-1.00) in the training set and 0.90 (95% CI: 0.86-0.93), 0.90 (95% CI: 0.86-0.92), and 0.96 (95% CI: 0.19-1.00) in the validation set. The SEN, SPE, and SROC of EGC diagnosis by non-specialist clinicians were 0.64 (95% CI: 0.56-0.71), 0.84 (95% CI: 0.77-0.89), and 0.80 (95% CI: 0.29-0.97), and those by specialist clinicians were 0.80 (95% CI: 0.74-0.85), 0.88 (95% CI: 0.85-0.91), and 0.91 (95% CI: 0.37-0.99). With the assistance of ML models, the SEN of non-specialist physicians in the diagnosis of EGC was significantly improved (0.76 vs 0.64). CONCLUSION ML-based diagnostic models have greater performance in the identification of EGC. The diagnostic accuracy of non-specialist clinicians can be improved to the level of the specialists with the assistance of ML models. The results suggest that ML models can better assist less experienced clinicians in diagnosing EGC under endoscopy and have broad clinical application value.
Collapse
Affiliation(s)
- Yiheng Shi
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Haohan Fan
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- Key Laboratory of Gastrointestinal Endoscopy, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Yaqi Hou
- College of Nursing, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Qian
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Mengting Zhuang
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China
- First Clinical Medical College, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China
| | - Bei Miao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China.
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Jiangsu Province, 221002, Xuzhou, China.
- Key Laboratory of Gastrointestinal Endoscopy, Xuzhou Medical University, Jiangsu Province, 221002, Xuzhou, China.
| |
Collapse
|
26
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Lee GP, Kim YJ, Park DK, Kim YJ, Han SK, Kim KG. Gastro-BaseNet: A Specialized Pre-Trained Model for Enhanced Gastroscopic Data Classification and Diagnosis of Gastric Cancer and Ulcer. Diagnostics (Basel) 2023; 14:75. [PMID: 38201385 PMCID: PMC10795822 DOI: 10.3390/diagnostics14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Most of the development of gastric disease prediction models has utilized pre-trained models from natural data, such as ImageNet, which lack knowledge of medical domains. This study proposes Gastro-BaseNet, a classification model trained using gastroscopic image data for abnormal gastric lesions. To prove performance, we compared transfer-learning based on two pre-trained models (Gastro-BaseNet and ImageNet) and two training methods (freeze and fine-tune modes). The effectiveness was verified in terms of classification at the image-level and patient-level, as well as the localization performance of lesions. The development of Gastro-BaseNet had demonstrated superior transfer learning performance compared to random weight settings in ImageNet. When developing a model for predicting the diagnosis of gastric cancer and gastric ulcers, the transfer-learned model based on Gastro-BaseNet outperformed that based on ImageNet. Furthermore, the model's performance was highest when fine-tuning the entire layer in the fine-tune mode. Additionally, the trained model was based on Gastro-BaseNet, which showed higher localization performance, which confirmed its accurate detection and classification of lesions in specific locations. This study represents a notable advancement in the development of image analysis models within the medical field, resulting in improved diagnostic predictive accuracy and aiding in making more informed clinical decisions in gastrointestinal endoscopy.
Collapse
Affiliation(s)
- Gi Pyo Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21565, Republic of Korea;
| | - Young Jae Kim
- Department of Biomedical Engineering, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| | - Dong Kyun Park
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (D.K.P.); (Y.J.K.)
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (D.K.P.); (Y.J.K.)
| | - Su Kyeong Han
- Health IT Research Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea;
| | - Kwang Gi Kim
- Department of Biomedical Engineering, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| |
Collapse
|
28
|
Klang E, Sourosh A, Nadkarni GN, Sharif K, Lahat A. Deep Learning and Gastric Cancer: Systematic Review of AI-Assisted Endoscopy. Diagnostics (Basel) 2023; 13:3613. [PMID: 38132197 PMCID: PMC10742887 DOI: 10.3390/diagnostics13243613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gastric cancer (GC), a significant health burden worldwide, is typically diagnosed in the advanced stages due to its non-specific symptoms and complex morphological features. Deep learning (DL) has shown potential for improving and standardizing early GC detection. This systematic review aims to evaluate the current status of DL in pre-malignant, early-stage, and gastric neoplasia analysis. METHODS A comprehensive literature search was conducted in PubMed/MEDLINE for original studies implementing DL algorithms for gastric neoplasia detection using endoscopic images. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The focus was on studies providing quantitative diagnostic performance measures and those comparing AI performance with human endoscopists. RESULTS Our review encompasses 42 studies that utilize a variety of DL techniques. The findings demonstrate the utility of DL in GC classification, detection, tumor invasion depth assessment, cancer margin delineation, lesion segmentation, and detection of early-stage and pre-malignant lesions. Notably, DL models frequently matched or outperformed human endoscopists in diagnostic accuracy. However, heterogeneity in DL algorithms, imaging techniques, and study designs precluded a definitive conclusion about the best algorithmic approach. CONCLUSIONS The promise of artificial intelligence in improving and standardizing gastric neoplasia detection, diagnosis, and segmentation is significant. This review is limited by predominantly single-center studies and undisclosed datasets used in AI training, impacting generalizability and demographic representation. Further, retrospective algorithm training may not reflect actual clinical performance, and a lack of model details hinders replication efforts. More research is needed to substantiate these findings, including larger-scale multi-center studies, prospective clinical trials, and comprehensive technical reporting of DL algorithms and datasets, particularly regarding the heterogeneity in DL algorithms and study designs.
Collapse
Affiliation(s)
- Eyal Klang
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (A.S.); (G.N.N.)
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- ARC Innovation Center, Sheba Medical Center, Affiliated with Tel Aviv University Medical School, Tel Hashomer, Ramat Gan 52621, Tel Aviv, Israel
| | - Ali Sourosh
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (A.S.); (G.N.N.)
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Girish N. Nadkarni
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (A.S.); (G.N.N.)
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kassem Sharif
- Department of Gastroenterology, Sheba Medical Center, Affiliated with Tel Aviv University Medical School, Tel Hashomer, Ramat Gan 52621, Tel Aviv, Israel;
| | - Adi Lahat
- Department of Gastroenterology, Sheba Medical Center, Affiliated with Tel Aviv University Medical School, Tel Hashomer, Ramat Gan 52621, Tel Aviv, Israel;
| |
Collapse
|
29
|
Masoumi J, Ghorbaninezhad F, Saeedi H, Safaei S, Khaze Shahgoli V, Ghaffari Jolfayi A, Naseri B, Baghbanzadeh A, Baghbani E, Mokhtarzadeh A, Bakhshivand M, Javan MR, Silvestris N, Baradaran B. siRNA-Mediated B7H7 Knockdown in Gastric Cancer Lysate-Loaded Dendritic Cells Amplifies Expansion and Cytokine Secretion of Autologous T Cells. Biomedicines 2023; 11:3212. [PMID: 38137433 PMCID: PMC10740599 DOI: 10.3390/biomedicines11123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Gastric cancer, ranked as the fifth most common cancer worldwide, presents multiple treatment challenges. These obstacles often arise due to cancer stem cells, which are associated with recurrence, metastasis, and drug resistance. While dendritic cell (DC)-based immunotherapy has shown promise as a therapeutic strategy, its efficacy can be limited by the tumor microenvironment and certain inhibitory immune checkpoint molecules, such as B7H7. SiRNA-medicated knockdown of B7H7 in tumor cell lysate-pulsed DCs can increase cytokine secretion and autologous T lymphocyte expansion. This study aimed to evaluate the impact of B7H7 suppression in gastric cancer cell lysate-pulsed DCs on the stimulatory potential of autologous CD3+ T lymphocytes. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated and monocytes were obtained; then, they were differentiated to immature DCs (iDCs) by GM-CSF and IL-4. Tumor cell lysates from human gastric cancer cell lines were harvested, and iDCs were transformed into mature DCs (mDCs) by stimulating iDCs with tumor cell lysate and lipopolysaccharide. B7H7-siRNA was delivered into mDCs using electroporation, and gene silencing efficiency was assessed. The phenotypic characteristics of iDCs, mDCs, and B7H7-silenced mDCs were evaluated using specific surface markers, an inverted light microscope, and flow cytometry. CD3+ T cells were isolated via magnetically activated cell sorting. They were labeled with CFSE dye and co-cultured with mDCs and B7H7-silenced mDCs to evaluate their ability to induce T-cell proliferation. T-cell proliferation was assessed using flow cytometry. The concentration of TGF-β, IL-4, and IFN-γ secreted from CD3+ T cells in the co-cultured supernatant was evaluated to investigate the cytokine secretory activity of the cells. RESULTS Transfection of B7H7 siRNA into mDCs was performed in optimal conditions, and the siRNA transfection effectively reduced B7H7 mRNA expression in a dose-dependent manner. SiRNA-mediated B7H7 knockdown in mDCs enhanced maturation and activation of the DCs, as demonstrated by an increased surface expression of CD11c, CD86, and CD40. Co-culture experiments revealed that B7H7-silenced mDCs had more capacity to induce T cell proliferation compared to non-transfected mDCs. The cytokine production patterns of T cells were also altered. Upon examining the levels of TGF-β, IL-4, and IFN-γ released by CD3+ T cells in the co-culture supernatant, we found that silencing B7H7 in mDCs resulted in a rise in IL-4 secretion and a reduction in TGF-β levels compared to mDCs that were not transfected. CONCLUSIONS The study found that suppressing B7H7 expression in DCs significantly enhances their maturation and stimulatory activity when exposed to gastric cancer cell lysate. These B7H7-silenced DCs can substantially increase cytokine production and promote co-cultured T-cell expansion. Consequently, inhibiting B7H7 in DCs may offer a practical strategy to enhance the ability of DCs to initiate T lymphocyte responses and improve the effectiveness of DC-based cell therapy for cancer patients.
Collapse
Affiliation(s)
- Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Amir Ghaffari Jolfayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran;
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran; (J.M.); (F.G.); (V.K.S.); (A.G.J.); (B.N.); (A.B.); (A.M.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| |
Collapse
|
30
|
Shimada S, Yabuuchi Y, Kawata N, Maeda Y, Yoshida M, Yamamoto Y, Minamide T, Shigeta K, Takada K, Kishida Y, Ito S, Imai K, Hotta K, Ishiwatari H, Matsubayashi H, Ono H. Endoscopic causes and characteristics of missed gastric cancers after endoscopic submucosal dissection. Gastrointest Endosc 2023; 98:735-743.e2. [PMID: 36849058 DOI: 10.1016/j.gie.2023.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND AIMS Because endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) preserves the entire stomach, missed gastric cancers (MGCs) are often found in the remaining gastric mucosa. However, the endoscopic causes of MGCs remain unclear. Therefore, we aimed to elucidate the endoscopic causes and characteristics of MGCs after ESD. METHODS From January 2009 to December 2018, all patients undergoing ESD for initially detected EGC were enrolled. According to a review of EGD images before ESD, we identified the endoscopic causes (perceptual, exposure, sampling errors, and inadequate preparation) and characteristics of MGC in each endoscopic cause. RESULTS Of 2208 patients who underwent ESD for initial EGC, 82 patients (3.7%) had 100 MGCs. The breakdown of endoscopic causes of MGCs was as follows: 69 (69%) perceptual errors, 23 (23%) exposure errors, 7 (7%) sampling errors, and 1 (1%) inadequate preparation. Logistic regression analysis showed that the risk factors for perceptual error were male sex (odds ratio [OR], 2.45; 95% confidence interval [CI], 1.16-5.18), isochromatic coloration (OR, 3.17; 95% CI, 1.47-6.84), greater curvature (OR, 2.31; 95% CI, 1.121-4.40), and lesion size ≤12 mm (OR, 1.74; 95% CI, 1.07-2.84). The sites of exposure errors were around the incisura angularis (11 [48%]), posterior wall of the gastric body (6 [26%]), and antrum (5 [21%]). CONCLUSIONS We identified MGCs in 4 categories and clarified their characteristics. Quality improvements in EGD observation, with attention to the risks of perceptual and site of exposure errors, can potentially prevent missing EGCs.
Collapse
Affiliation(s)
- Seitaro Shimada
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan; Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Yohei Yabuuchi
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan; Department of Gastroenterology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Noboru Kawata
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yuki Maeda
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masao Yoshida
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoichi Yamamoto
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Kohei Shigeta
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazunori Takada
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Sayo Ito
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichiro Imai
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kinichi Hotta
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | | | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
31
|
Popovic D, Glisic T, Milosavljevic T, Panic N, Marjanovic-Haljilji M, Mijac D, Stojkovic Lalosevic M, Nestorov J, Dragasevic S, Savic P, Filipovic B. The Importance of Artificial Intelligence in Upper Gastrointestinal Endoscopy. Diagnostics (Basel) 2023; 13:2862. [PMID: 37761229 PMCID: PMC10528171 DOI: 10.3390/diagnostics13182862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Recently, there has been a growing interest in the application of artificial intelligence (AI) in medicine, especially in specialties where visualization methods are applied. AI is defined as a computer's ability to achieve human cognitive performance, which is accomplished through enabling computer "learning". This can be conducted in two ways, as machine learning and deep learning. Deep learning is a complex learning system involving the application of artificial neural networks, whose algorithms imitate the human form of learning. Upper gastrointestinal endoscopy allows examination of the esophagus, stomach and duodenum. In addition to the quality of endoscopic equipment and patient preparation, the performance of upper endoscopy depends on the experience and knowledge of the endoscopist. The application of artificial intelligence in endoscopy refers to computer-aided detection and the more complex computer-aided diagnosis. The application of AI in upper endoscopy is aimed at improving the detection of premalignant and malignant lesions, with special attention on the early detection of dysplasia in Barrett's esophagus, the early detection of esophageal and stomach cancer and the detection of H. pylori infection. Artificial intelligence reduces the workload of endoscopists, is not influenced by human factors and increases the diagnostic accuracy and quality of endoscopic methods.
Collapse
Affiliation(s)
- Dusan Popovic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| | - Tijana Glisic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | | | - Natasa Panic
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| | - Marija Marjanovic-Haljilji
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| | - Dragana Mijac
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Milica Stojkovic Lalosevic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Jelena Nestorov
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Sanja Dragasevic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Predrag Savic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Surgery, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia
| | - Branka Filipovic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| |
Collapse
|
32
|
Kawai T, Inoue H, Yao K, Kaise M, Kato M, Tanabe S, Sakata Y. Advanced diagnostic endoscopy in the upper gastrointestinal tract: Review of the Japan Gastroenterological Endoscopy Society core sessions. Dig Endosc 2023; 35:711-717. [PMID: 37183343 DOI: 10.1111/den.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
We held four upper gastrointestinal tract advanced diagnostic endoscopy sessions from the 89th to the 92nd Congress of the Japan Gastroenterological Endoscopy Society. The most common region addressed was the stomach in 25 presentations, followed by the esophagus in 23, duodenum in five, and other in one. Looking at techniques discussed, the most common image enhancement method discussed was narrowband imaging in 29 presentations, blue laser imaging, and linked color imaging (LCI) in 10 each, dual red imaging in three, and autofluorescence imaging in one. Furthermore, there were presentations of new techniques such as M-Chromo-LCI and acetic acid-indigo carmine mixture LCI. There were also six presentations regarding probe-based confocal laser endomicroscopy, and one of endocytoscopy techniques. We also saw presentations of images of gastric subepithelial tumors within the submucosa, 3D endoscopy, the development of computer-aided detection systems for early cancers, and fluorescent imaging.
Collapse
Affiliation(s)
- Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Haruhiro Inoue
- Digestive Diseases Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Mitsuru Kaise
- Department of Gastroenterology and Hepatology, Nihon Medical University, Tokyo, Japan
| | | | - Satoshi Tanabe
- Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yasuhisa Sakata
- Department of Internal Medicine and Gastroenterology, Saga Medical School, Saga, Japan
| |
Collapse
|
33
|
Quek SXZ, Lee JWJ, Feng Z, Soh MM, Tokano M, Guan YK, So JBY, Tada T, Koh CJ. Comparing artificial intelligence to humans for endoscopic diagnosis of gastric neoplasia: An external validation study. J Gastroenterol Hepatol 2023; 38:1587-1591. [PMID: 37408330 DOI: 10.1111/jgh.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES Artificial intelligence (AI) uses deep learning functionalities that may enhance the detection of early gastric cancer during endoscopy. An AI-based endoscopic system for upper endoscopy was recently developed in Japan. We aim to validate this AI-based system in a Singaporean cohort. METHODS There were 300 de-identified still images prepared from endoscopy video files obtained from subjects that underwent gastroscopy in National University Hospital (NUH). Five specialists and 6 non-specialists (trainees) from NUH were assigned to read and categorize the images into "neoplastic" or "non-neoplastic." Results were then compared with the readings performed by the endoscopic AI system. RESULTS The mean accuracy, sensitivity, and specificity for the 11 endoscopists were 0.847, 0.525, and 0.872, respectively. These values for the AI-based system were 0.777, 0.591, and 0.791, respectively. While AI in general did not perform better than endoscopists on the whole, in the subgroup of high-grade dysplastic lesions, only 29.1% were picked up by the endoscopist rating, but 80% were classified as neoplastic by AI (P = 0.0011). The average diagnostic time was also faster in AI compared with endoscopists (677.1 s vs 42.02 s (P < 0.001). CONCLUSION We demonstrated that an AI system developed in another health system was comparable in diagnostic accuracy in the evaluation of static images. AI systems are faster and not fatigable and may have a role in augmenting human diagnosis during endoscopy. With more advances in AI and larger studies to support its efficacy it would likely play a larger role in screening endoscopy in future.
Collapse
Affiliation(s)
- Sabrina Xin Zi Quek
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
| | - Jonathan W J Lee
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- iHealthtech, National University of Singapore, Singapore
| | - Zhu Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Min Min Soh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yeoh Khay Guan
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jimmy B Y So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Surgery, National University Hospital, Singapore
| | - Tomohiro Tada
- AI Medical Service Inc, Japan
- Tada Tomohiro Institute of Gastroenterology and Proctology, Japan
| | - Calvin J Koh
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The Gastroenterology Group, Gleneagles Hospital, Singapore, Singapore
| |
Collapse
|
34
|
Lin CH, Hsu PI, Tseng CD, Chao PJ, Wu IT, Ghose S, Shih CA, Lee SH, Ren JH, Shie CB, Lee TF. Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection. Sci Rep 2023; 13:13380. [PMID: 37592004 PMCID: PMC10435453 DOI: 10.1038/s41598-023-40179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a gastroenterologists' impression of endoscopic images is inaccurate and cannot be used for the management of gastrointestinal diseases. The aim of this study was to develop an artificial intelligence classification system for the diagnosis of H. pylori infection by pre-processing endoscopic images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan Hospital were obtained for the derivation and validation of an artificial intelligence classification system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network (CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with different classification models for deep learning of gastric images. The comprehensive assessment for H. pylori status by scSE-CatBoost classification models for both body and antrum images from same patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an artificial intelligence classification model using scSE-CatBoost deep learning for gastric endoscopic images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis of H. pylori infection in clinical practice.
Collapse
Affiliation(s)
- Chih-Hsueh Lin
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Ping-I Hsu
- Division of Gastroenterology, Department of Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chin-Dar Tseng
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
| | - Pei-Ju Chao
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - I-Ting Wu
- Division of Gastroenterology, Department of Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Supratip Ghose
- Department of Education and Research, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chih-An Shih
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Donggan, Pingtung County, Taiwan
- Department of Nursing, Meiho University, Neipu, Pingtung County, Taiwan
| | - Shen-Hao Lee
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taiwan
| | - Jia-Hong Ren
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Chang-Bih Shie
- Division of Gastroenterology, Department of Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsair-Fwu Lee
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
35
|
Lee J, Lee H, Chung JW. The Role of Artificial Intelligence in Gastric Cancer: Surgical and Therapeutic Perspectives: A Comprehensive Review. J Gastric Cancer 2023; 23:375-387. [PMID: 37553126 PMCID: PMC10412973 DOI: 10.5230/jgc.2023.23.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Stomach cancer has a high annual mortality rate worldwide necessitating early detection and accurate treatment. Even experienced specialists can make erroneous judgments based on several factors. Artificial intelligence (AI) technologies are being developed rapidly to assist in this field. Here, we aimed to determine how AI technology is used in gastric cancer diagnosis and analyze how it helps patients and surgeons. Early detection and correct treatment of early gastric cancer (EGC) can greatly increase survival rates. To determine this, it is important to accurately determine the diagnosis and depth of the lesion and the presence or absence of metastasis to the lymph nodes, and suggest an appropriate treatment method. The deep learning algorithm, which has learned gastric lesion endoscopyimages, morphological characteristics, and patient clinical information, detects gastric lesions with high accuracy, sensitivity, and specificity, and predicts morphological characteristics. Through this, AI assists the judgment of specialists to help select the correct treatment method among endoscopic procedures and radical resections and helps to predict the resection margins of lesions. Additionally, AI technology has increased the diagnostic rate of both relatively inexperienced and skilled endoscopic diagnosticians. However, there were limitations in the data used for learning, such as the amount of quantitatively insufficient data, retrospective study design, single-center design, and cases of non-various lesions. Nevertheless, this assisted endoscopic diagnosis technology that incorporates deep learning technology is sufficiently practical and future-oriented and can play an important role in suggesting accurate treatment plans to surgeons for resection of lesions in the treatment of EGC.
Collapse
Affiliation(s)
- JunHo Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Corp. CAIMI, Incheon, Korea
| | - Hanna Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Corp. CAIMI, Incheon, Korea.
| |
Collapse
|
36
|
Du RC, Ouyang YB, Hu Y. Research trends on artificial intelligence and endoscopy in digestive diseases: A bibliometric analysis from 1990 to 2022. World J Gastroenterol 2023; 29:3561-3573. [PMID: 37389238 PMCID: PMC10303508 DOI: 10.3748/wjg.v29.i22.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Recently, artificial intelligence (AI) has been widely used in gastrointestinal endoscopy examinations.
AIM To comprehensively evaluate the application of AI-assisted endoscopy in detecting different digestive diseases using bibliometric analysis.
METHODS Relevant publications from the Web of Science published from 1990 to 2022 were extracted using a combination of the search terms “AI” and “endoscopy”. The following information was recorded from the included publications: Title, author, institution, country, endoscopy type, disease type, performance of AI, publication, citation, journal and H-index.
RESULTS A total of 446 studies were included. The number of articles reached its peak in 2021, and the annual citation numbers increased after 2006. China, the United States and Japan were dominant countries in this field, accounting for 28.7%, 16.8%, and 15.7% of publications, respectively. The Tada Tomohiro Institute of Gastroenterology and Proctology was the most influential institution. “Cancer” and “polyps” were the hotspots in this field. Colorectal polyps were the most concerning and researched disease, followed by gastric cancer and gastrointestinal bleeding. Conventional endoscopy was the most common type of examination. The accuracy of AI in detecting Barrett’s esophagus, colorectal polyps and gastric cancer from 2018 to 2022 is 87.6%, 93.7% and 88.3%, respectively. The detection rates of adenoma and gastrointestinal bleeding from 2018 to 2022 are 31.3% and 96.2%, respectively.
CONCLUSION AI could improve the detection rate of digestive tract diseases and a convolutional neural network-based diagnosis program for endoscopic images shows promising results.
Collapse
Affiliation(s)
- Ren-Chun Du
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yao-Bin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
37
|
Zha Y, Xue C, Liu Y, Ni J, De La Fuente JM, Cui D. Artificial intelligence in theranostics of gastric cancer, a review. MEDICAL REVIEW (2021) 2023; 3:214-229. [PMID: 37789960 PMCID: PMC10542883 DOI: 10.1515/mr-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/26/2023] [Indexed: 10/05/2023]
Abstract
Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma. Herein, we review recent advance of AI in early screening, diagnosis, therapy and prognosis of stomach carcinoma. Especially AI combined with breath screening early GC system improved 97.4 % of early GC diagnosis ratio, AI model on stomach cancer diagnosis system of saliva biomarkers obtained an overall accuracy of 97.18 %, specificity of 97.44 %, and sensitivity of 96.88 %. We also discuss concept, issues, approaches and challenges of AI applied in stomach cancer. This review provides a comprehensive view and roadmap for readers working in this field, with the aim of pushing application of AI in theranostics of stomach cancer to increase the early discovery ratio and curative ratio of GC patients.
Collapse
Affiliation(s)
- Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | | | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| |
Collapse
|
38
|
Cheema HI, Tharian B, Inamdar S, Garcia-Saenz-de-Sicilia M, Cengiz C. Recent advances in endoscopic management of gastric neoplasms. World J Gastrointest Endosc 2023; 15:319-337. [PMID: 37274561 PMCID: PMC10236974 DOI: 10.4253/wjge.v15.i5.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The development and clinical application of new diagnostic endoscopic technologies such as endoscopic ultrasonography with biopsy, magnification endoscopy, and narrow-band imaging, more recently supplemented by artificial intelligence, have enabled wider recognition and detection of various gastric neoplasms including early gastric cancer (EGC) and subepithelial tumors, such as gastrointestinal stromal tumors and neuroendocrine tumors. Over the last decade, the evolution of novel advanced therapeutic endoscopic techniques, such as endoscopic mucosal resection, endoscopic submucosal dissection, endoscopic full-thickness resection, and submucosal tunneling endoscopic resection, along with the advent of a broad array of endoscopic accessories, has provided a promising and yet less invasive strategy for treating gastric neoplasms with the advantage of a reduced need for gastric surgery. Thus, the management algorithms of various gastric tumors in a defined subset of the patient population at low risk of lymph node metastasis and amenable to endoscopic resection, may require revision considering upcoming data given the high success rate of en bloc resection by experienced endoscopists. Moreover, endoscopic surveillance protocols for precancerous gastric lesions will continue to be refined by systematic reviews and meta-analyses of further research. However, the lack of familiarity with subtle endoscopic changes associated with EGC, as well as longer procedural time, evolving resection techniques and tools, a steep learning curve of such high-risk procedures, and lack of coding are issues that do not appeal to many gastroenterologists in the field. This review summarizes recent advances in the endoscopic management of gastric neoplasms, with special emphasis on diagnostic and therapeutic methods and their future prospects.
Collapse
Affiliation(s)
- Hira Imad Cheema
- Department of Internal Medicine, Baptist Health Medical Center, Little Rock, AR 72205, United States
| | - Benjamin Tharian
- Department of Interventional Endoscopy/Gastroenterology, Bayfront Health, Digestive Health Institute, St. Petersberg, FL 33701, United States
| | - Sumant Inamdar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Mauricio Garcia-Saenz-de-Sicilia
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Cem Cengiz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, John L. McClellan Memorial Veterans Hospital, Little Rock, AR 72205, United States
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, TOBB University of Economics and Technology, Ankara 06510, Turkey
| |
Collapse
|
39
|
Dong Z, Wang J, Li Y, Deng Y, Zhou W, Zeng X, Gong D, Liu J, Pan J, Shang R, Xu Y, Xu M, Zhang L, Zhang M, Tao X, Zhu Y, Du H, Lu Z, Yao L, Wu L, Yu H. Explainable artificial intelligence incorporated with domain knowledge diagnosing early gastric neoplasms under white light endoscopy. NPJ Digit Med 2023; 6:64. [PMID: 37045949 PMCID: PMC10097818 DOI: 10.1038/s41746-023-00813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
White light endoscopy is the most pivotal tool for detecting early gastric neoplasms. Previous artificial intelligence (AI) systems were primarily unexplainable, affecting their clinical credibility and acceptability. We aimed to develop an explainable AI named ENDOANGEL-ED (explainable diagnosis) to solve this problem. A total of 4482 images and 296 videos with focal lesions from 3279 patients from eight hospitals were used for training, validating, and testing ENDOANGEL-ED. A traditional sole deep learning (DL) model was trained using the same dataset. The performance of ENDOANGEL-ED and sole DL was evaluated on six levels: internal and external images, internal and external videos, consecutive videos, and man-machine comparison with 77 endoscopists in videos. Furthermore, a multi-reader, multi-case study was conducted to evaluate the ENDOANGEL-ED's effectiveness. A scale was used to compare the overall acceptance of endoscopists to traditional and explainable AI systems. The ENDOANGEL-ED showed high performance in the image and video tests. In man-machine comparison, the accuracy of ENDOANGEL-ED was significantly higher than that of all endoscopists in internal (81.10% vs. 70.61%, p < 0.001) and external videos (88.24% vs. 78.49%, p < 0.001). With ENDOANGEL-ED's assistance, the accuracy of endoscopists significantly improved (70.61% vs. 79.63%, p < 0.001). Compared with the traditional AI, the explainable AI increased the endoscopists' trust and acceptance (4.42 vs. 3.74, p < 0.001; 4.52 vs. 4.00, p < 0.001). In conclusion, we developed a real-time explainable AI that showed high performance, higher clinical credibility, and acceptance than traditional DL models and greatly improved the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Zehua Dong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junxiao Wang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoquan Zeng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dexin Gong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Liu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
| | - Renduo Shang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihui Zhang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Tao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliu Du
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihua Lu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liwen Yao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Honggang Yu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Schulz D, Heilmaier M, Phillip V, Treiber M, Mayr U, Lahmer T, Mueller J, Demir IE, Friess H, Reichert M, Schmid RM, Abdelhafez M. Accurate prediction of histological grading of intraductal papillary mucinous neoplasia using deep learning. Endoscopy 2023; 55:415-422. [PMID: 36323331 DOI: 10.1055/a-1971-1274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images. METHODS For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to fine-tune a convolutional neural network and to classify "low grade IPMN" from "high grade IPMN/invasive carcinoma." Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines. RESULTS Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6 % (95 %CI 99.5 %-99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8 % (95 %CI 31.9 %-71.3 %) and 70.4 % (95 %CI 49.8-86.2). CONCLUSION This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy.
Collapse
Affiliation(s)
- Dominik Schulz
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Heilmaier
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Veit Phillip
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Treiber
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ulrich Mayr
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Lahmer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julius Mueller
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Ihsan Ekin Demir
- Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mohamed Abdelhafez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
41
|
Abe S. Computer-aided endoscopic diagnosis of early gastric cancer on white light endoscopy: No detection, no characterization. Dig Endosc 2023; 35:492-493. [PMID: 36808148 DOI: 10.1111/den.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Zhou B, Rao X, Xing H, Ma Y, Wang F, Rong L. A convolutional neural network-based system for detecting early gastric cancer in white-light endoscopy. Scand J Gastroenterol 2023; 58:157-162. [PMID: 36000979 DOI: 10.1080/00365521.2022.2113427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND White-light endoscopy (WLE) is a main and standard modality for detection of early gastric cancer (EGC). The detection rate of EGC is not satisfactory so far. In this single-center retrospective study we developed a convolutional neural network (CNN)-based system to automatically detect EGC in WLE images. METHODS An EGC detecting system was constructed based on the CNN architecture EfficientDet. We trained our system with a data set including 4527 images from 130 cases (cancerous images, 1737; noncancerous images, 2790). Then we tested its performance with a data set including 1243 images from 64 cases (cancerous images, 445; noncancerous images, 798). RESULTS For case-based analysis, our system successfully detected EGC in 63 of 64 cases and the sensitivity was 98.4%. For image-based analysis, the accuracy was 88.3%. The sensitivity, specificity, positive predictive value and negative predictive value were 84.5%, 90.5%, 83.2% and 91.3%, respectively. The most common cause for false positives was gastritis (57.9%). The most common cause for false negatives was that the lesion was too small with a diameter of 10 mm or less (44.9%). CONCLUSION Our CNN-based EGC detecting system was able to achieve satisfactory sensitivity for detecting EGC in WLE images and shows great potential in assisting endoscopists with the detection of EGC.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Xiaolong Rao
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Haoqiang Xing
- Thunder Software Technology Co., Ltd, Beijing, China
| | - Yongchen Ma
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Feng Wang
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
43
|
Liu L, Dong Z, Cheng J, Bu X, Qiu K, Yang C, Wang J, Niu W, Wu X, Xu J, Mao T, Lu L, Wan X, Zhou H. Diagnosis and segmentation effect of the ME-NBI-based deep learning model on gastric neoplasms in patients with suspected superficial lesions - a multicenter study. Front Oncol 2023; 12:1075578. [PMID: 36727062 PMCID: PMC9885211 DOI: 10.3389/fonc.2022.1075578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Endoscopically visible gastric neoplastic lesions (GNLs), including early gastric cancer and intraepithelial neoplasia, should be accurately diagnosed and promptly treated. However, a high rate of missed diagnosis of GNLs contributes to the potential risk of the progression of gastric cancer. The aim of this study was to develop a deep learning-based computer-aided diagnosis (CAD) system for the diagnosis and segmentation of GNLs under magnifying endoscopy with narrow-band imaging (ME-NBI) in patients with suspected superficial lesions. Methods ME-NBI images of patients with GNLs in two centers were retrospectively analysed. Two convolutional neural network (CNN) modules were developed and trained on these images. CNN1 was trained to diagnose GNLs, and CNN2 was trained for segmentation. An additional internal test set and an external test set from another center were used to evaluate the diagnosis and segmentation performance. Results CNN1 showed a diagnostic performance with an accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 90.8%, 92.5%, 89.0%, 89.4% and 92.2%, respectively, and an area under the curve (AUC) of 0.928 in the internal test set. With CNN1 assistance, all endoscopists had a higher accuracy than for an independent diagnosis. The average intersection over union (IOU) between CNN2 and the ground truth was 0.5837, with a precision, recall and the Dice coefficient of 0.776, 0.983 and 0.867, respectively. Conclusions This CAD system can be used as an auxiliary tool to diagnose and segment GNLs, assisting endoscopists in more accurately diagnosing GNLs and delineating their extent to improve the positive rate of lesion biopsy and ensure the integrity of endoscopic resection.
Collapse
Affiliation(s)
- Leheng Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixia Dong
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinnian Cheng
- Department of Gastroenterology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongzhu Bu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kaili Qiu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chuan Yang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Wang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenlu Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowan Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiancheng Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,*Correspondence: Hui Zhou, ; Xinjian Wan,
| | - Hui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Hui Zhou, ; Xinjian Wan,
| |
Collapse
|
44
|
Ge Z, Wang B, Chang J, Yu Z, Zhou Z, Zhang J, Duan Z. Using deep learning and explainable artificial intelligence to assess the severity of gastroesophageal reflux disease according to the Los Angeles Classification System. Scand J Gastroenterol 2023; 58:596-604. [PMID: 36625026 DOI: 10.1080/00365521.2022.2163185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Gastroesophageal reflux disease (GERD) is a complex disease with a high worldwide prevalence. The Los Angeles classification (LA-grade) system is meaningful for assessing the endoscopic severity of GERD. Deep learning (DL) methods have been widely used in the field of endoscopy. However, few DL-assisted researches have concentrated on the diagnosis of GERD. This study is the first to develop a five-category classification DL model based on the LA-grade using explainable artificial intelligence (XAI). MATERIALS AND METHODS A total of 2081 endoscopic images were used for the development of a DL model, and the classification accuracy of the models and endoscopists with different levels of experience was compared. RESULTS Some mainstream DL models were utilized, of which DenseNet-121 outperformed. The area under the curve (AUC) of the DenseNet-121 was 0.968, and its classification accuracy (86.7%) was significantly higher than that of junior (71.5%) and experienced (77.4%) endoscopists. An XAI evaluation was also performed to explore the perception consistency between the DL model and endoscopists, which showed meaningful results for real-world applications. CONCLUSIONS The DL model showed a potential in improving the accuracy of endoscopists in LA-grading of GERD, and it has noticeable clinical application prospects and is worthy of further promotion.
Collapse
Affiliation(s)
- Zhenyang Ge
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Digestive Endoscopy, Dalian Municipal Central Hospital, Dalian, China
| | - Bowen Wang
- Science and Technology, Graduate School of Information, Osaka University, Yamadaoka, Osaka, Japan
| | - Jiuyang Chang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Yamadaoka, Osaka, Japan
| | - Zequn Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenyuan Zhou
- Information Management Department, Dalian Municipal Central Hospital, Dalian, China
| | - Jing Zhang
- Department of Digestive Endoscopy, Dalian Municipal Central Hospital, Dalian, China
| | - Zhijun Duan
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
45
|
Panarese A, Saito Y, Zagari RM. Kyoto classification of gastritis, virtual chromoendoscopy and artificial intelligence: Where are we going? What do we need? Artif Intell Gastrointest Endosc 2023; 4:1-11. [DOI: 10.37126/aige.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Chronic gastritis (CG) is a widespread and frequent disease, mainly caused by Helicobacter pylori infection, which is associated with an increased risk of gastric cancer. Virtual chromoendoscopy improves the endoscopic diagnostic efficacy, which is essential to establish the most appropriate therapy and to enable cancer prevention. Artificial intelligence provides algorithms for the diagnosis of gastritis and, in particular, early gastric cancer, but it is not yet used in practice. Thus, technological innovation, through image resolution and processing, optimizes the diagnosis and management of CG and gastric cancer. The endoscopic Kyoto classification of gastritis improves the diagnosis and management of this disease, but through the analysis of the most recent literature, new algorithms can be proposed.
Collapse
Affiliation(s)
- Alba Panarese
- Division of Gastroenterology and Digestive Endoscopy, Department of Medical Sciences, Central Hospital - Azienda Ospedaliera, Taranto 74123, Italy
| | - Yutaka Saito
- Division of Endoscopy, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Rocco Maurizio Zagari
- Gastroenterology Unit and Department of Surgical and Medical Sciences, IRCCS Azienda Ospedaliero-Universitaria and University of Bologna, Bologna 40121, Italy
| |
Collapse
|
46
|
Ma L, Su X, Ma L, Gao X, Sun M. Deep learning for classification and localization of early gastric cancer in endoscopic images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Yashima K, Onoyama T, Kurumi H, Takeda Y, Yoshida A, Kawaguchi K, Yamaguchi N, Isomoto H. Current status and future perspective of linked color imaging for gastric cancer screening: a literature review. J Gastroenterol 2023; 58:1-13. [PMID: 36287268 PMCID: PMC9825522 DOI: 10.1007/s00535-022-01934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
Screening endoscopy has advanced to facilitate improvements in the detection and prognosis of gastric cancer. However, most early gastric cancers (EGCs) have subtle morphological or color features that are difficult to detect by white-light imaging (WLI); thus, even well-trained endoscopists can miss EGC when using this conventional endoscopic approach. This review summarizes the current and future status of linked color imaging (LCI), a new image-enhancing endoscopy (IEE) method, for gastric screening. LCI has been shown to produce bright images even at a distant view and provide excellent visibility of gastric cancer due to high color contrast relative to the surrounding tissue. LCI delineates EGC as orange-red and intestinal metaplasia as purple, regardless of a history of Helicobacter pylori (Hp) eradication, and contributes to the detection of superficial EGC. Moreover, LCI assists in the determination of Hp infection status, which is closely related to the risk of developing gastric cancer. Transnasal endoscopy (ultra-thin) using LCI is also useful for identifying gastric neoplastic lesions. Recently, several prospective studies have demonstrated that LCI has a higher detection ratio for gastric cancer than WLI. We believe that LCI should be used in routine upper gastrointestinal endoscopies.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan.
| | - Takumi Onoyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Yohei Takeda
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Akira Yoshida
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Koichiro Kawaguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| |
Collapse
|
48
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
49
|
Feng J, Yu SR, Zhang YP, Qu L, Wei L, Wang PF, Zhu LJ, Bao Y, Lei XG, Gao LL, Feng YH, Yu Y, Huang XJ. A system based on deep convolutional neural network improves the detection of early gastric cancer. Front Oncol 2022; 12:1021625. [PMID: 36620563 PMCID: PMC9815521 DOI: 10.3389/fonc.2022.1021625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Early gastric cancer (EGC) has a high survival rate, but it is difficult to diagnosis. Recently, artificial intelligence (AI) based on deep convolutional neural network (DCNN) has made significant progress in the field of gastroenterology. The purpose of this study was to establish a DCNN assist system to improve the detection of EGC. Methods 3400 EGC and 8600 benign images were collected to train the DCNN to detect EGC. Subsequently, its diagnostic ability was compared to that of endoscopists using an independent internal test set (ITS, including 1289 images) and an external test set (ETS, including 542 images) come from three digestive center. Results The diagnostic time of DCNN and endoscopists were 0.028s, 8.05 ± 0.21s, 7.69 ± 0.25s in ITS, and 0.028s, 7.98 ± 0.19s, 7.50 ± 0.23s in ETS, respectively. In ITS, the diagnostic sensitivity and accuracy of DCNN are 88.08%(95% confidence interval,95%CI,85.24%-90.44%), 88.60% (95%CI,86.74%-90.22%), respectively. In ETS, the diagnostic sensitivity and accuracy are 92.08% (95%CI, 87.91%- 94.94%),92.07%(95%CI, 89.46%-94.08%),respectively. DCNN outperformed all endoscopists in ETS, and had a significantly higher sensitivity than the junior endoscopists(JE)(by18.54% (95%CI, 15.64%-21.84%) in ITS, also higher than JE (by21.67%,95%CI, 16.90%-27.32%) and senior endoscopists (SE) (by2.08%, 95%CI, 0.75%-4.92%)in ETS. The accuracy of DCNN model was higher (by10.47%,95%CI, 8.91%-12.27%) than that of JE in ITS, and also higher (by14.58%,95%CI, 11.84%-17.81%; by 1.94%,95%CI,1.25%-2.96%, respectively) than JE and SE in ETS. Conclusion The DCNN can detected more EGC images in a shorter time than the endoscopists. It will become an effective tool to assist in the detection of EGC in the near future.
Collapse
Affiliation(s)
- Jie Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China,Technology Research and Development Department, Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu, China
| | - Shang rui Yu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao ping Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China,Technology Research and Development Department, Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu, China
| | - Lina Qu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China,Technology Research and Development Department, Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng fei Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Li juan Zhu
- Department of Sciences and Technology, Beijing Huag gen Anbang Technology Technology Company Limited, Beijing, China
| | - Yanfeng Bao
- Department of Sciences and Technology, Beijing Huag gen Anbang Technology Technology Company Limited, Beijing, China
| | - Xiao gang Lei
- Department of Gastroenterology, Lanzhou Cheng guan District People’s Hospital, Lanzhou, Gansu, China
| | - Liang liang Gao
- Department of Gastroenterology, Min County People’s Hospital, Ding Xi, Gansu, China
| | - Yan hu Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yi Yu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao jun Huang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China,Technology Research and Development Department, Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu, China,*Correspondence: Xiao jun Huang,
| |
Collapse
|
50
|
Ochiai K, Ozawa T, Shibata J, Ishihara S, Tada T. Current Status of Artificial Intelligence-Based Computer-Assisted Diagnosis Systems for Gastric Cancer in Endoscopy. Diagnostics (Basel) 2022; 12:diagnostics12123153. [PMID: 36553160 PMCID: PMC9777622 DOI: 10.3390/diagnostics12123153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is gradually being utilized in various fields as its performance has been improving with the development of deep learning methods, availability of big data, and the progression of computer processing units. In the field of medicine, AI is mainly implemented in image recognition, such as in radiographic and pathologic diagnoses. In the realm of gastrointestinal endoscopy, although AI-based computer-assisted detection/diagnosis (CAD) systems have been applied in some areas, such as colorectal polyp detection and diagnosis, so far, their implementation in real-world clinical settings is limited. The accurate detection or diagnosis of gastric cancer (GC) is one of the challenges in which performance varies greatly depending on the endoscopist's skill. The diagnosis of early GC is especially challenging, partly because early GC mimics atrophic gastritis in the background mucosa. Therefore, several CAD systems for GC are being actively developed. The development of a CAD system for GC is considered challenging because it requires a large number of GC images. In particular, early stage GC images are rarely available, partly because it is difficult to diagnose gastric cancer during the early stages. Additionally, the training image data should be of a sufficiently high quality to conduct proper CAD training. Recently, several AI systems for GC that exhibit a robust performance, owing to being trained on a large number of high-quality images, have been reported. This review outlines the current status and prospects of AI use in esophagogastroduodenoscopy (EGDS), focusing on the diagnosis of GC.
Collapse
Affiliation(s)
- Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| |
Collapse
|