Review
Copyright ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Feb 27, 2018; 10(2): 186-212
Published online Feb 27, 2018. doi: 10.4254/wjh.v10.i2.186
Hepatitis C virus: Morphogenesis, infection and therapy
Vladimir Alexei Morozov, Sylvie Lagaye
Vladimir Alexei Morozov, Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
Sylvie Lagaye, Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
Author contributions: Morozov VA and Lagaye S equally contributed to this review.
Conflict-of-interest statement: The authors have no conflict of interest to declare.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Sylvie Lagaye, DSc, PhD, Academic Research, Senior Scientist, Department of Immunology, Institut Pasteur, INSERM U1223, 25-28 rue du Dr Roux, Paris 75015, France. sylvie.lagaye@inserm.fr
Telephone: +33-1-40613424 Fax: +33-1-45688548
Received: December 4, 2017
Peer-review started: December 5, 2017
First decision: December 11, 2017
Revised: January 11, 2018
Accepted: February 7, 2018
Article in press: February 7, 2018
Published online: February 27, 2018
Core Tip

Core tip: Brief overviews on epidemiology of hepatitis C virus (HCV), virus morphology and the virus life cycle are presented. A special attention was focused on in vitro and in vivo models that are currently used to study the HCV infection. In fact, extensive use of existing models and creating a new ones is a way to reveal important events in the virus-cell interaction. In particular, the models might shed light on the mechanisms behind virus induced pathogenesis and chronicity, and by that contribute to the development of new drugs and prophylactic vaccine. Recently, multiple therapies with a pan-genotypic activity appeared on the market. The new agents (third generation) and new inhibitors (entry inhibitors, release inhibitors) being studied, should allow to cure most of the patients in the mid-term, if they will have equal access to the therapy.