Minireviews
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Apr 8, 2015; 7(4): 696-702
Published online Apr 8, 2015. doi: 10.4254/wjh.v7.i4.696
Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication
Yoshiaki Mizuguchi, Toshihiro Takizawa, Eiji Uchida
Yoshiaki Mizuguchi, Eiji Uchida, Department of Surgery, Nippon Medical School Hospital, Bunkyo-Ku, Tokyo 113-8603, Japan
Toshihiro Takizawa, Department of Anatomy, Nippon Medical School, Bunkyo-Ku, Tokyo 113-8603, Japan
Author contributions: Takizawa T and Uchida E contributed equally to this work for generating the figures and revising the manuscript; Mizuguchi Y contributed to the writing of the manuscript.
Conflict-of-interest: The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Yoshiaki Mizuguchi, MD, PhD, Department of Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8603, Japan. yoshi1224@gmail.com
Telephone: +81-3-38222131 Fax: + 81-3-58146135
Received: September 17, 2014
Peer-review started: September 20, 2014
First decision: October 28, 2014
Revised: November 28, 2014
Accepted: January 15, 2015
Article in press: January 19, 2015
Published online: April 8, 2015
Abstract

A large number of studies have demonstrated that the synergistic collaboration of a number of microRNAs (miRNAs), their growth factors and their downstream agents is required for the initiation and completion of pathogenesis in the liver. miRNAs are thought to exert a profound effect on almost every aspect of liver biology and pathology. Accumulating evidence indicates that several miRNAs are involved in the hepatitis B virus (HBV) life cycle and infectivity, in addition to HBV-associated liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma (HCC). In turn, HBV can modulate the expression of several cellular miRNAs, thus promoting a favorable environment for its replication and survival. In this review, we focused on the involvement of host cellular miRNAs that are directly and indirectly associated with HBV RNA or HBV associated transcription factors. Exploring different facets of the interactions among miRNA, HBV and HCV infections, and the carcinogenesis and progress of HCC, could facilitate the development of novel and effective treatment approaches for liver disease.

Keywords: Hepatitis B virus, Gene expression, Gene replication, Transcription, MicroRNA

Core tip: A large number of studies have demonstrated that the synergistic collaboration of a number of microRNAs (miRNAs), their growth factors and their downstream agents is required for the initiation and completion of pathogenesis in the liver. miRNAs are thought to exert a profound effect on almost every aspect of biology and pathology. In this review, we focused on the miRNAs that play an important role in hepatitis B virus replication and gene expression, and summarized the involvement of host cellular miRNAs that are directly and indirectly associated with hepatitis B virus (HBV) RNA or HBV associated transcription factors.