1
|
Holländer S, von Heesen M, Gäbelein G, Mercier J, Laschke MW, Menger MD, Glanemann M, Spiliotis AE. Perioperative treatment with cilostazol reverses steatosis and improves liver regeneration after major hepatectomy in a steatotic rat model. Sci Rep 2025; 15:2753. [PMID: 39843785 PMCID: PMC11754906 DOI: 10.1038/s41598-025-87135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Cilostazol has previously been shown to reduce liver steatosis and enhance hepatic perfusion. We investigated the effects of cilostazol after major hepatectomy in a steatotic rat model. Six weeks prior to surgery, Sprague-Dawley rats were fed with a high-fructose diet. The treatment group received daily 5 mg/kg cilostazol. Seven days following the cilostazol treatment, all animals underwent 70% liver resection (PHX). Analysis of hepatic blood flow and microcirculation and immunohistochemical examinations were conducted 30 min after PHX (postoperative day [POD] 0) as well as on POD 1, POD 3 and POD 7. The weight of cilostazol-treated animals was significantly reduced compared to untreated controls after completion of the 6-week high-FRC diet. Furthermore, 41% macrovesicular steatosis was found in the control group compared to 8% in the cilostazol group. Hepatic arterial and portal venous perfusion were increased in the cilostazol group on POD 7. Lower liver enzyme release was found postoperatively in cilostazol-treated animals. Moreover, apoptosis and neutrophil infiltration were reduced after cilostazol treatment. Proliferation of hepatocytes and liver regeneration after PHX were significantly increased in the cilostazol group. Consequently, cilostazol should be evaluated as a novel strategy to reduce the rate of liver failure after PHX in steatotic liver.
Collapse
Affiliation(s)
- Sebastian Holländer
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Maximilian von Heesen
- Department of General- and Visceral Surgery, University Hospital Göttingen, 37075, Göttingen, Germany
| | - Gereon Gäbelein
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Julie Mercier
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias Glanemann
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Antonios E Spiliotis
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
2
|
Zhang C, Song Y, Yuan M, Chen L, Zhang Q, Hu J, Meng Y, Li S, Zheng G, Qiu Z. Ellagitannins-Derived Intestinal Microbial Metabolite Urolithin A Ameliorates Fructose-Driven Hepatosteatosis by Suppressing Hepatic Lipid Metabolic Reprogramming and Inducing Lipophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3967-3980. [PMID: 36825491 DOI: 10.1021/acs.jafc.2c05776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive fructose consumption exacerbates the progression of nonalcoholic fatty liver disease (NAFLD) by disrupting hepatic lipid homeostasis. This study sought to evaluate the efficacy of urolithin A (UroA) in a fructose-induced NAFLD mouse model. UroA was administered in the high-fructose-fed mice to investigate the antisteatotic effects in vivo. Fructose-stimulated HepG2 cells and primary hepatocytes were established for in vitro mechanistic assessment. The results suggested that UroA ameliorated fructose-induced hepatic steatosis in mice. Mechanistically, UroA impaired lipogenesis and enhanced β-oxidation in the livers of fructose-fed mice. Notably, UroA facilitated hepatic lipophagy through the AMPK/ULK1 pathway both in vivo and in vitro, degrading lipid droplets for fueling β-oxidation. This study indicates that UroA alleviates excessive lipid accumulation and restores lipid homeostasis in the livers of fructose-fed mice by suppressing lipid metabolic reprogramming and triggering lipophagy. Therefore, dietary supplementation of UroA or ellagitannins-rich foods may be beneficial for NAFLD individuals with high fructose intake.
Collapse
Affiliation(s)
- Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yingying Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Qianyu Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| |
Collapse
|
3
|
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Foods 2023; 12:foods12050925. [PMID: 36900446 PMCID: PMC10000917 DOI: 10.3390/foods12050925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs.
Collapse
|
4
|
KENANOGLU SERCAN, GOKCE NURIYE, AKALIN HILAL, ERGOREN MAHMUTCERKEZ, BECCARI TOMMASO, BERTELLI MATTEO, DUNDAR MUNIS. Implication of the Mediterranean diet on the human epigenome. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E44-E55. [PMID: 36479488 PMCID: PMC9710399 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epigenetics, defined as "hereditary changes in gene expression that occur without any change in the DNA sequence", consists of various epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. The epigenome, which has a dynamic structure in response to intracellular and extracellular stimuli, has a key role in the control of gene activity, since it is located at the intersection of cellular information encoded in the genome and molecular/chemical information of extracellular origin. The focus shift of studies to epigenetic reprogramming has led to the formation and progressive importance of a concept called "nutriepigenetics", whose aim is to prevent diseases by intervening on nutrition style. Among the diet types adopted in the world, the renowned Mediterranean Diet (MD), being rich in unsaturated fatty acids and containing high levels of whole grain foods and large quantities of fruits, vegetables, and legumes, has shown numerous advantages in excluding chronic diseases. Additionally, the fact that this diet is rich in polyphenols with high antioxidant and anti-inflammatory properties has an undeniable effect in turning some cellular pathways against the disease. It is also apparent that the effects of polyphenols on the epigenome cause changes in mechanisms such as DNA methylation and histone acetylation/deacetylation, which have a regulatory effect on gene regulation. This review presents the effects of long-term consumption of nutrients from the MD on the epigenome and discusses the benefits of this diet in the treatment and even prevention of chronic diseases.
Collapse
Affiliation(s)
- SERCAN KENANOGLU
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - NURIYE GOKCE
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - HILAL AKALIN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - TOMMASO BECCARI
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - MATTEO BERTELLI
- MAGISNAT, Peachtree Corners (GA), USA
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
| | - MUNIS DUNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Correspondence: Munis Dundar, Department of Medical Genetics, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey. E-mail:
| |
Collapse
|
5
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
6
|
Nijhawan P, Behl T, Khullar G, Pal G, Kandhwal M, Goyal A. HDAC in obesity: A critical insight. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Ozaki M. Cellular and molecular mechanisms of liver regeneration: Proliferation, growth, death and protection of hepatocytes. Semin Cell Dev Biol 2019; 100:62-73. [PMID: 31669133 DOI: 10.1016/j.semcdb.2019.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Liver regeneration is an important and necessary process that the liver depends on for recovery from injury. The regeneration process consists of a complex network of cells and organs, including liver cells (parenchymal and non-parenchymal cells) and extrahepatic organs (thyroid, adrenal glands, pancreas, duodenum, spleen, and autonomic nervous system). The regeneration process of a normal, healthy liver depends mainly on hepatocyte proliferation, growth, and programmed cell death. Cell proliferation and growth are regulated in a cooperative manner by interleukin (IL)-6/janus kinase (Jak)/signal transducers and activators of transcription-3 (STAT3), and phosphoinositide 3-kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathways. The IL-6/Jak/STAT3 pathway regulates hepatocyte proliferation and protects against cell death and oxidative stress. The PI3-K/PDK1/Akt pathway is primarily responsible for the regulation of cell size, sending mitotic signals in addition to pro-survival, antiapoptotic and antioxidative signals. Though programmed cell death may interfere with liver regeneration in a pathological situation, it seems to play an important role during the termination phase, even in a normal, healthy liver regeneration. However, further study is needed to fully elucidate the mechanisms regulating the processes of liver regeneration with regard to cell-to-cell and organ-to-organ networks at the molecular and cellular levels.
Collapse
Affiliation(s)
- Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, N12, W5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
8
|
Kawabata K, Kanmura S, Morinaga Y, Tanaka A, Makino T, Fujita T, Arima S, Sasaki F, Nasu Y, Tanoue S, Hashimoto S, Ido A. A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. Int J Mol Med 2018; 43:1487-1496. [PMID: 30628636 DOI: 10.3892/ijmm.2018.4040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 11/06/2022] Open
Abstract
Excessive fructose intake is a risk factor for gut symptoms in patients with inflammatory bowel disease, however, its effect on the intestinal tract has not been evaluated previously. The present study investigated the impact of a high‑fructose diet (HFD) on intestinal barrier function in mice with experimental colitis. C57/BL6 mice were provided with either a HFD or control diet and either plain drinking water or water containing 1% dextran sulfate sodium (DSS) for 2 weeks. The disease activity index (DAI), pathological scores and expression of inflammatory cytokines were compared among the groups, and the proportions of fecal bacteria in the colon were analyzed. The body weight and colon length were significantly decreased, and the DAI and pathological scores were significantly increased in the DSS/HFD‑treated mice compared with the non‑DSS‑treated and control diet mice. Regarding the expression of inflammatory cytokines, the levels of interleukin (IL)‑6, IL‑1β and tumor necrosis factor‑α were significantly increased, and the expression of the tight junction protein occludin was significantly decreased in the DSS/HFD‑treated mice. The total bacterial count was increased in the HFD mice. Taken together, these results indicate that an HFD resulted in the deterioration of intestinal barrier function and increased susceptibility to DSS‑induced colitis.
Collapse
Affiliation(s)
- Katsuto Kawabata
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Yuko Morinaga
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Akihito Tanaka
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Tomoaki Makino
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Toshihiro Fujita
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shiho Arima
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Yuichirou Nasu
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| |
Collapse
|
9
|
Cook D, Achanta S, Hoek JB, Ogunnaike BA, Vadigepalli R. Cellular network modeling and single cell gene expression analysis reveals novel hepatic stellate cell phenotypes controlling liver regeneration dynamics. BMC SYSTEMS BIOLOGY 2018; 12:86. [PMID: 30285726 PMCID: PMC6171157 DOI: 10.1186/s12918-018-0605-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
Abstract
Background Recent results from single cell gene and protein regulation studies are starting to uncover the previously underappreciated fact that individual cells within a population exhibit high variability in the expression of mRNA and proteins (i.e., molecular variability). By combining cellular network modeling, and high-throughput gene expression measurements in single cells, we seek to reconcile the high molecular variability in single cells with the relatively low variability in tissue-scale gene and protein expression and the highly coordinated functional responses of tissues to physiological challenges. In this study, we focus on relating the dynamic changes in distributions of hepatic stellate cell (HSC) functional phenotypes to the tightly regulated physiological response of liver regeneration. Results We develop a mathematical model describing contributions of HSC functional phenotype populations to liver regeneration and test model predictions through isolation and transcriptional characterization of single HSCs. We identify and characterize four HSC transcriptional states contributing to liver regeneration, two of which are described for the first time in this work. We show that HSC state populations change in vivo in response to acute challenges (in this case, 70% partial hepatectomy) and chronic challenges (chronic ethanol consumption). Our results indicate that HSCs influence the dynamics of liver regeneration through steady-state tissue preconditioning prior to an acute insult and through dynamic control of cell state balances. Furthermore, our modeling approach provides a framework to understand how balances among cell states influence tissue dynamics. Conclusions Taken together, our combined modeling and experimental studies reveal novel HSC transcriptional states and indicate that baseline differences in HSC phenotypes as well as a dynamic balance of transitions between these phenotypes control liver regeneration responses. Electronic supplementary material The online version of this article (10.1186/s12918-018-0605-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Cook
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.,Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirisha Achanta
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B Hoek
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA. .,Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Abstract
Liver resection is an important clinical intervention to treat liver disease. Following liver resection, patients exhibit a wide range of outcomes including normal recovery, suppressed recovery, or liver failure, depending on the regenerative capacity of the remnant liver. The objective of this work is to study the distinct patient outcomes post hepatectomy and determine the processes that are accountable for liver failure. Our model based approach shows that cell death is one of the important processes but not the sole controlling process responsible for liver failure. Additionally, our simulations showed wide variation in the timescale of liver failure that is consistent with the clinically observed timescales of post hepatectomy liver failure scenarios. Liver failure can take place either instantaneously or after a certain delay. We analyzed a virtual patient cohort and concluded that remnant liver fraction is a key regulator of the timescale of liver failure, with higher remnant liver fraction leading to longer time delay prior to failure. Our results suggest that, for a given remnant liver fraction, modulating a combination of cell death controlling parameters and metabolic load may help shift the clinical outcome away from post hepatectomy liver failure towards normal recovery.
Collapse
|
11
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Haldrup D, Heebøll S, Thomsen KL, Andersen KJ, Meier M, Mortensen FV, Nyengaard JR, Hamilton-Dutoit S, Grønbæk H. Preserved liver regeneration capacity after partial hepatectomy in rats with non-alcoholic steatohepatitis. World J Hepatol 2018; 10:8-21. [PMID: 29399274 PMCID: PMC5787687 DOI: 10.4254/wjh.v10.i1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the liver regeneration capacity (LRC) after partial hepatectomy (PH) in experimental non-alcoholic steatohepatitis (NASH).
METHODS Fifty-four female rats were fed a high-fat, high-cholesterol diet (HFCD, 65% fat, 1% cholesterol) or standard diet (STD) for 16 wk. A 70% PH was performed and the animals were euthanised before PH or 2 or 5 d post-PH. LRC was evaluated using: The total number of Ki-67 positive hepatocytes in the caudate lobe, N(Ki-67, lobe) evaluated in a stereology-based design, the regenerated protein ratio (RPR), prothrombin-proconvertin ratio (PP), and mRNA expression of genes related to regeneration.
RESULTS The HFCD NASH model showed significant steatosis with ballooning and inflammation, while no fibrosis was present. Mortality was similar in HFCD and STD animals following PH. HFCD groups were compared to respective STD groups and HFCD animals had a significantly elevated alanine transaminase at baseline (P < 0.001), as well as a significantly elevated bilirubin at day 2 after PH (P < 0.05). HFCD animals had a higher N(Ki-67, lobe) at baseline, (P < 0.0001), day 2 after PH (P = 0.06) and day 5 after PH (P < 0.025). We found no significant difference in RPR or PP neither 2 or 5 d post-PH. Expression of liver regeneration genes (e.g., hepatic growth factor) was higher at both day 2 and 5 post-PH in HFCD groups (P < 0.05).
CONCLUSION NASH rats had a preserved LRC after hepatectomy when compared to STD rats. The methods and models of NASH are essential in understanding and evaluating LRC.
Collapse
Affiliation(s)
- David Haldrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
- Department of Internal Medicine, Randers Regional Hospital, Randers NØ DK-8930, Denmark
| | - Sara Heebøll
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | | | - Michelle Meier
- Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | - Frank Viborg Mortensen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | | | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| |
Collapse
|
13
|
Molla NW, Hassanain MM, Fadel Z, Boucher LM, Madkhali A, Altahan RM, Alrijraji EA, Simoneau EB, Alamri H, Salman A, Gao Z, Metrakos PP. Effect of non-alcoholic liver disease on recurrence rate and liver regeneration after liver resection for colorectal liver metastases. ACTA ACUST UNITED AC 2017; 24:e233-e243. [PMID: 28680292 DOI: 10.3747/co.24.3133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Resection of metastases is the only potential cure for patients with liver metastasis from colorectal cancer (crc-lm). But despite an improved overall 5-year survival, the recurrence rate is still as high as 60%. Non-alcoholic fatty liver disease (nafld) can decrease the liver's capacity to regenerate after resection and might also affect cancer recurrence, potentially by elevating transforming growth factor β, levels of specific metalloproteinases, and oxidative stress. The objective of the present work was to determine the effect of the histologic features of nafld on cancer recurrence and liver regeneration. METHODS This retrospective analysis considered 60 patients who underwent an R0 hepatectomy for crc-lm. Volumetric analysis of the liver was calculated using axial view, portovenous phase, 2.5 mm thickness, multiphasic computed tomography images taken before and after surgery. The histologic features of nafld (steatosis, inflammation, and ballooning) were scored using the nafld activity score, and the degree of fibrosis was determined. RESULTS The hepatic recurrence rate was 38.33%. Median overall survival duration was 56 months. Median disease-free survival duration was 14 months, and median hepatic disease-free survival duration was 56 months. Multivariate analysis revealed significant correlations of hepatic disease-free survival with hepatocyte ballooning (p = 0.0009), lesion diameter (p = 0.014), and synchronous disease (p = 0.006). Univariate and multivariate analyses did not reveal any correlation with degree of steatosis or recurrence rate. CONCLUSIONS This study reveals an important potential negative effect of hepatocyte ballooning on hepatic disease-free survival.
Collapse
Affiliation(s)
- N W Molla
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Radiology, McGill University Health Centre, Montreal, QC.,Department of Radiology and
| | - M M Hassanain
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Z Fadel
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - L M Boucher
- Department of Radiology, McGill University Health Centre, Montreal, QC
| | - A Madkhali
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - R M Altahan
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - E A Alrijraji
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - E B Simoneau
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - H Alamri
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - A Salman
- Department of Surgery, Section of Hepatopancreatobiliary, and
| | - Z Gao
- Department of Pathology, McGill University Health Centre, Montreal, QC
| | - P P Metrakos
- Department of Surgery, Section of Hepatopancreatobiliary, and.,Department of Pathology, McGill University Health Centre, Montreal, QC
| |
Collapse
|
14
|
Choi HK, Shin EJ, Park SJ, Hur HJ, Park JH, Chung MY, Kim MS, Hwang JT. Ethanol Extract of Capsella bursa-pastoris Improves Hepatic Steatosis Through Inhibition of Histone Acetyltransferase Activity. J Med Food 2017; 20:251-257. [DOI: 10.1089/jmf.2016.3877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Eun Ju Shin
- Korea Food Research Institute, Seongnam-si, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| | - Su Jin Park
- Korea Food Research Institute, Seongnam-si, Korea
| | | | - Jae Ho Park
- Korea Food Research Institute, Seongnam-si, Korea
| | - Min-Yu Chung
- Korea Food Research Institute, Seongnam-si, Korea
| | - Myung Sunny Kim
- Korea Food Research Institute, Seongnam-si, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, Seongnam-si, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
15
|
Ezquer F, Bahamonde J, Huang YL, Ezquer M. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Res Ther 2017; 8:20. [PMID: 28129776 PMCID: PMC5273822 DOI: 10.1186/s13287-016-0469-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 12/31/2016] [Indexed: 02/06/2023] Open
Abstract
Background The liver has the remarkable capacity to regenerate in order to compensate for lost or damaged hepatic tissue. However, pre-existing pathological abnormalities, such as hepatic steatosis (HS), inhibits the endogenous regenerative process, becoming an obstacle for liver surgery and living donor transplantation. Recent evidence indicates that multipotent mesenchymal stromal cells (MSCs) administration can improve hepatic function and increase the potential for liver regeneration in patients with liver damage. Since HS is the most common form of chronic hepatic illness, in this study we evaluated the role of MSCs in liver regeneration in an animal model of severe HS with impaired liver regeneration. Methods C57BL/6 mice were fed with a regular diet (normal mice) or with a high-fat diet (obese mice) to induce HS. After 30 weeks of diet exposure, 70% hepatectomy (Hpx) was performed and normal and obese mice were divided into two groups that received 5 × 105 MSCs or vehicle via the tail vein immediately after Hpx. Results We confirmed a significant inhibition of hepatic regeneration when liver steatosis was present, while the hepatic regenerative response was promoted by infusion of MSCs. Specifically, MSC administration improved the hepatocyte proliferative response, PCNA-labeling index, DNA synthesis, liver function, and also reduced the number of apoptotic hepatocytes. These effects may be associated to the paracrine secretion of trophic factors by MSCs and the hepatic upregulation of key cytokines and growth factors relevant for cell proliferation, which ultimately improves the survival rate of the mice. Conclusions MSCs represent a promising therapeutic strategy to improve liver regeneration in patients with HS as well as for increasing the number of donor organs available for transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0469-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile
| | - Javiera Bahamonde
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile.,Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile.
| |
Collapse
|
16
|
Haga S, Yimin, Ozaki M. Relevance of FXR-p62/SQSTM1 pathway for survival and protection of mouse hepatocytes and liver, especially with steatosis. BMC Gastroenterol 2017; 17:9. [PMID: 28086800 PMCID: PMC5237313 DOI: 10.1186/s12876-016-0568-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background Liver injury and regeneration involve complicated processes and are affected by various physio-pathological conditions. Surgically, severe liver injury after surgical resection often leads to fatal liver failure, especially with some underlying pathological conditions such as steatosis. Therefore, protection from the injury of hepatocytes and liver is a serious concern in various clinical settings. Methods We studied the effects of the farnesoid X receptor (FXR) on cell survival and steatosis in mouse hepatocytes (AML12 mouse liver cells) and investigated their molecular mechanisms. We next studied whether or not FXR improves liver injury, regeneration and steatosis in a mouse model of partial hepatectomy (PH) with steatosis. Results An FXR-specific agonist, GW4064, induced expressions of the p62/SQSTM1 gene and protein in AML12 mouse liver cells. Because we previously reported p62/SQSTM1 as a key molecule for antioxidation and cell survival in hepatocytes, we next examined the activation of nuclear factor erythroid 2-related factor-2 (Nrf2) and induction of the antioxidant molecules by GW4064. GW4064 activated Nrf2 and subsequently induced antioxidant molecules (Nrf2, catalase, HO-1, and thioredoxin). We also examined expressions of pro-survival and cell protective molecules associated with p62/SQSTM1. Expectedly, GW4064 induced phosphorylation of Akt, expression of the anti-apoptotic
molecules (Bcl-xL and Bcl-2), and reduced harmful hepatic molecules (Fas ligand and Fas). GW4064 promoted
hepatocyte survival, which was cancelled by p62/SQSTM1 siRNA. These findings suggest the potential relevance of the FXR-p62/SQSTM1 pathway for the survival and protection of hepatocytes. Furthermore, GW4064 induced the expression of small heterodimer partners (SHP) and suppressed liver X receptor (LXR)-induced steatosis in hepatocytes, expecting the in vivo protective effect of FXR on liver injury especially with steatosis. In the hepatectomy model of db/db mice with fatty liver, pre-treatment by GW4064 significantly reduced post-PH liver injury (serum levels of LDH, AST & ALT and histological study) and improved steatosis. The key molecules, p62/SQSTM1, Nrf2 and SHP were upregulated in fatty liver tissue by GW4064 treatment. Conclusions The present study is the first to demonstrate the relevance of FXR-p62/SQSTM1 and -SHP in the protection against injury of hepatocytes and post-PH liver, especially with steatosis. Electronic supplementary material The online version of this article (doi:10.1186/s12876-016-0568-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yimin
- Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
17
|
Kuo SC, Liu YW, Tsai CH, Sheen-Chen SM. Ischemic preconditioning in hepatic ischemic–reperfusion injury. FORMOSAN JOURNAL OF SURGERY 2016. [DOI: 10.1016/j.fjs.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Young LH, Periwal V. Metabolic scaling predicts posthepatectomy liver regeneration after accounting for hepatocyte hypertrophy. Liver Transpl 2016; 22:476-84. [PMID: 26709233 PMCID: PMC4809762 DOI: 10.1002/lt.24392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/28/2015] [Accepted: 12/14/2015] [Indexed: 01/28/2023]
Abstract
We adapted a mathematical model of posthepatectomy liver regeneration using data from a subset of patients in the Adult-to-Adult Living Donor Liver Transplantation Cohort Study. The original model addressed changes in the number of quiescent, primed, and proliferating cells. Our adapted model takes into account hypertrophy of primed and replicating cells, and it is better able to predict liver volume. In addition, by building off the hypothesis that cell cycle parameters are approximately the same across all mammals, we found that changing only a single parameter characterizing metabolic load could model liver regeneration in 5 species of mammals. In conclusion, we improved a mathematical model of liver regeneration, predicted mammalian liver regeneration based on metabolism, and found correlations between model parameters and physiological measurements from liver donors.
Collapse
Affiliation(s)
- LeAnne H. Young
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Department of Health and Human Services; Bethesda MD
| | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Department of Health and Human Services; Bethesda MD
| |
Collapse
|
19
|
Cook D, Ogunnaike BA, Vadigepalli R. Systems analysis of non-parenchymal cell modulation of liver repair across multiple regeneration modes. BMC SYSTEMS BIOLOGY 2015; 9:71. [PMID: 26493454 PMCID: PMC4618752 DOI: 10.1186/s12918-015-0220-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/10/2015] [Indexed: 12/27/2022]
Abstract
Background A hallmark of chronic liver disease is the impairment of the liver’s innate regenerative ability. In this work we use a computational approach to unravel the principles underlying control of liver repair following an acute physiological challenge. Methods We used a mathematical model of inter- and intra-cellular interactions during liver regeneration to infer key molecular factors underlying the dysregulation of multiple regeneration modes, including delayed, suppressed, and enhanced regeneration. We used model analysis techniques to identify organizational principles governing the cellular regulation of liver regeneration. We fit our model to several published data sets of deficient regeneration in rats and healthy regeneration in humans, rats, and mice to predict differences in molecular regulation in disease states and across species. Results Analysis of the computational model pointed to an important balance involving inflammatory signals and growth factors, largely produced by Kupffer cells and hepatic stellate cells, respectively. Our model analysis results also indicated an organizational principle of molecular regulation whereby production rate of molecules acted to induce coarse-grained control of signaling levels while degradation rate acted to induce fine-tuning control. We used this computational framework to investigate hypotheses concerning molecular regulation of regeneration across species and in several chronic disease states in rats, including fructose-induced steatohepatitis, alcoholic steatohepatitis, toxin-induced cirrhosis, and toxin-induced diabetes. Our results indicate that altered non-parenchymal cell activation is sufficient to explain deficient regeneration caused by multiple disease states. We also investigated liver regeneration across mammalian species. Our results suggest that non-invasive measures of liver regeneration taken at 30 days following resection could differentiate between several hypotheses about how human liver regeneration differs from rat regeneration. Conclusions Overall, our results provide a new computational platform integrating a wide range of experimental information, with broader utility in exploring the dynamic patterns of liver regeneration across species and over multiple chronic diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0220-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Cook
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA. .,Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA. .,Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Chiaradonna F, Cirulli C, Palorini R, Votta G, Alberghina L. New Insights into the Connection Between Histone Deacetylases, Cell Metabolism, and Cancer. Antioxid Redox Signal 2015; 23:30-50. [PMID: 24483782 DOI: 10.1089/ars.2014.5854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Histone deacetylases (HDACs) activity and cell metabolism are considered important targets for cancer therapy, as both are deregulated and associated with the onset and maintenance of tumors. RECENT ADVANCES Besides the classical function of HDACs as HDAC enzymes controlling the transcription, it is becoming increasingly evident that these proteins are involved in the regulation of several other cellular processes by their ability to deacetylate hundreds of proteins with different functions in both the cytoplasm and the nucleus. Importantly, recent high-throughput studies have identified as important target proteins several enzymes involved in different metabolic pathways. Conversely, it has been also shown that metabolic intermediates may control HDACs activity. Consequently, the acetylation/deacetylation of metabolic enzymes and the ability of metabolic intermediates to modulate HDACs may represent a cross-talk connecting cell metabolism, transcription, and other HDACs-controlled processes in physiological and pathological conditions. CRITICAL ISSUES Since metabolic alterations and HDACs deregulation are important cancer hallmarks, disclosing connections among them may improve our understanding on cancer mechanisms and reveal novel therapeutic protocols against this disease. FUTURE DIRECTIONS High-throughput metabolic studies performed by using more sophisticated technologies applied to the available models of conditional deletion of HDACs in cell lines or in mice will fill the gap in the current understanding and open directions for future research.
Collapse
Affiliation(s)
- Ferdinando Chiaradonna
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Claudia Cirulli
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Roberta Palorini
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Giuseppina Votta
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Lilia Alberghina
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| |
Collapse
|
21
|
Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 2015; 562:8-15. [PMID: 25701602 DOI: 10.1016/j.gene.2015.02.045] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/25/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022]
Abstract
Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.
Collapse
Affiliation(s)
- F Vahid
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - H Zand
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Science and Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Nosrat-Mirshekarlou
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - R Najafi
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Hekmatdoost
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Haga S, Ozawa T, Yamada Y, Morita N, Nagashima I, Inoue H, Inaba Y, Noda N, Abe R, Umezawa K, Ozaki M. p62/SQSTM1 plays a protective role in oxidative injury of steatotic liver in a mouse hepatectomy model. Antioxid Redox Signal 2014; 21:2515-30. [PMID: 24925527 PMCID: PMC4245881 DOI: 10.1089/ars.2013.5391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Liver injury and regeneration involve complicated processes and are affected by various physio-pathological factors. We investigated the mechanisms of steatosis-associated liver injury and delayed regeneration in a mouse model of partial hepatectomy. RESULTS Initial regeneration of the steatotic liver was significantly delayed after hepatectomy. Although hepatocyte proliferation was not significantly suppressed, severe liver injury with oxidative stress (OS) occurred immediately after hepatectomy in the steatotic liver. Fas-ligand (FasL)/Fas expression was upregulated in the steatotic liver, whereas the expression of antioxidant and anti-apoptotic molecules (catalase/MnSOD/Ref-1 and Bcl-2/Bcl-xL/FLIP, respectively) and p62/SQSTM1, a steatosis-associated protein, was downregulated. Interestingly, pro-survival Akt was not activated in response to hepatectomy, although it was sufficiently expressed even before hepatectomy. Suppression of p62/SQSTM1 increased FasL/Fas expression and reduced nuclear factor erythroid 2-related factor-2 (Nrf-2)-dependent antioxidant response elements activity and antioxidant responses in steatotic and nonsteatotic hepatocytes. Exogenously added FasL induced severe cellular OS and necrosis/apoptosis in steatotic hepatocytes, with only the necrosis being inhibited by pretreatment with antioxidants, suggesting that FasL/Fas-induced OS mainly leads to necrosis. Furthermore, p62/SQSTM1 re-expression in the steatotic liver markedly reduced liver injury and improved liver regeneration. INNOVATION This study is the first which demonstrates that reduced expression of p62/SQSTM1 plays a crucial role in posthepatectomy acute injury and delayed regeneration of steatotic liver, mainly via redox-dependent mechanisms. CONCLUSION In the steatotic liver, reduced expression of p62/SQSTM1 induced FasL/Fas overexpression and suppressed antioxidant genes, mainly through Nrf-2 inactivation, which, along with the hypo-responsiveness of Akt, caused posthepatectomy necrotic/apoptotic liver injury and delayed regeneration, both mainly via a redox-dependent mechanism.
Collapse
Affiliation(s)
- Sanae Haga
- 1 Laboratory of Molecular and Functional Bio-imaging, Faculty of Health Sciences, Hokkaido University , Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Collin de l'Hortet A, Zerrad-Saadi A, Prip-Buus C, Fauveau V, Helmy N, Ziol M, Vons C, Billot K, Baud V, Gilgenkrantz H, Guidotti JE. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency. Endocrinology 2014; 155:2545-54. [PMID: 24708244 DOI: 10.1210/en.2014-1010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GH pathway has been shown to play a major role in liver regeneration through the control of epidermal growth factor receptor (EGFR) activation. This pathway is down-regulated in nonalcoholic fatty liver disease. Because regeneration is known to be impaired in fatty livers, we wondered whether a deregulation of the GH/EGFR pathway could explain this deficiency. Hepatic EGFR expression and triglyceride levels were quantified in liver biopsies of 32 obese patients with different degrees of steatosis. We showed a significant inverse correlation between liver EGFR expression and the level of hepatic steatosis. GH/EGFR down-regulation was also demonstrated in 2 steatosis mouse models, a genetic (ob/ob) and a methionine and choline-deficient diet mouse model, in correlation with liver regeneration defect. ob/ob mice exhibited a more severe liver regeneration defect after partial hepatectomy (PH) than methionine and choline-deficient diet-fed mice, a difference that could be explained by a decrease in signal transducer and activator of transcription 3 phosphorylation 32 hours after PH. Having checked that GH deficiency accounted for the GH signaling pathway down-regulation in the liver of ob/ob mice, we showed that GH administration in these mice led to a partial rescue in hepatocyte proliferation after PH associated with a concomitant restoration of liver EGFR expression and signal transducer and activator of trnascription 3 activation. In conclusion, we propose that the GH/EGFR pathway down-regulation is a general mechanism responsible for liver regeneration deficiency associated with steatosis, which could be partially rescued by GH administration.
Collapse
Affiliation(s)
- A Collin de l'Hortet
- Inserm (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), U1016, Institut Cochin, 75014, Paris, France; CNRS (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), UMR8104, 75014, Paris, France; Université Paris Descartes (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), Sorbonne Paris Cité, Faculté de Médecine 75006, Paris, France; and Service de Chirurgie Digestive et Métabolique (N.H., M.Z., C.V.), Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Seine-St-Denis, Hôpital Jean Verdier, 93140, Bondy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lipid overloading during liver regeneration causes delayed hepatocyte DNA replication by increasing ER stress in mice with simple hepatic steatosis. J Gastroenterol 2014; 49:305-16. [PMID: 23512345 PMCID: PMC3925298 DOI: 10.1007/s00535-013-0780-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Impaired fatty liver regeneration has already been reported in many genetic modification models. However, in diet-induced simple hepatic steatosis, which showed similar phenotype with clinical pathology, whether liver regeneration is impaired or not remains unclear. In this study, we evaluated liver regeneration in mice with diet-induced simple hepatic steatosis, and focused on excess lipid accumulation occurring during liver regeneration. METHODS Mice were fed high fat diet (HFD) or control diet for 9-10 weeks. We analyzed intrahepatic lipid accumulation, DNA replication, and various signaling pathways including cell proliferation and ER stress during liver regeneration after partial hepatectomy. In addition, some of mice were pretreated with tauroursodeoxycholic acid (TUDCA), a chemical chaperone which alleviates ER stress, and then we estimated TUDCA effects on liver regeneration. RESULTS The peak of hepatocyte BrdU incorporation, the expression of proliferation cell nuclear antigen (PCNA) protein, and the expressions of cell cycle-related genes were observed in delayed time in HFD mice. The expression of phosphorylated Erk1/2 was also delayed in HFD mice. The amounts of liver triglyceride were at least twofold higher in HFD mice at each time point. Intrahepatic palmitic acid was increased especially in HFD mice. ER stress induced during liver regeneration was significantly higher in HFD mice. In HFD mice, pretreatment with TUDCA reduced ER stress and resulted in improvement of delayed liver regeneration. CONCLUSION In simple hepatic steatosis, lipid overloading occurring during liver regeneration might be caused ER stress and results in delayed hepatocyte DNA replication.
Collapse
|
25
|
Kumamoto R, Uto H, Oda K, Ibusuki R, Tanoue S, Arima S, Mawatari S, Kumagai K, Numata M, Tamai T, Moriuchi A, Fujita H, Oketani M, Ido A, Tsubouchi H. Dietary fructose enhances the incidence of precancerous hepatocytes induced by administration of diethylnitrosamine in rat. Eur J Med Res 2013; 18:54. [PMID: 24321741 PMCID: PMC4029300 DOI: 10.1186/2047-783x-18-54] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a risk for hepatocellular carcinoma (HCC), but the association between a high-fructose diet and HCC is not fully understood. In this study, we investigated whether a high-fructose diet affects hepatocarcinogenesis induced by administration of diethylnitrosamine (DEN). Methods Seven-week-old male Sprague–Dawley rats were fed standard chow (controls), a high-fat diet (54% fat), or a high-fructose diet (66% fructose) for 8 weeks. All rats were given DEN at 50 μg/L in drinking water during the same period. Precancerous hepatocytes were detected by immunostaining of the placental form of glutathione-S-transferase (GST-P). The number of GST-P-positive hepatocytes was assessed in liver specimens. Results Serum levels of total cholesterol were similar among the three groups, but serum triglyceride, fasting blood glucose, and insulin levels were higher in the high-fructose group compared to the high-fat group. In contrast, hepatic steatosis was more severe in the high-fat group compared with the high-fructose and control groups, but the incidence of GST-P-positive specimens was significantly higher in the high-fructose group compared to the other two groups. The average number of GST-P-positive hepatocytes in GST-P positive specimens in the high-fructose group was also higher than those in the other two groups. This high prevalence of GST-P-positive hepatocytes was accompanied by higher levels of 8-hydroxydeoxyguanosine in serum and liver tissue. Conclusions These results indicate that dietary fructose, rather than dietary fat, increases the incidence of precancerous hepatocytes induced by administration of DEN via insulin resistance and oxidative stress in rat. Thus, excessive fructose intake may be a potential risk factor for hepatocarcinogenesis.
Collapse
Affiliation(s)
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ischemia/reperfusion in clamped lobes facilitates liver regeneration of non-clamped lobes after selective portal vein ligation. Dig Dis Sci 2012; 57:3178-83. [PMID: 22752666 DOI: 10.1007/s10620-012-2298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hypertrophy of non-clamped liver lobes and the atrophy of clamped lobes have been shown to be interactive. Here, a rat model of selective lobe occlusion was established to study the effect of contralateral ischemia/reperfusion (I/R) on regeneration of non-clamped lobes. METHODS Left lateral and middle liver lobes were pretreated with I/R. In the experimental (IR + PVL) group, portal veins of the left and middle lobes were ligated. A group given similar portal vein ligation but no I/R (PVL) was the positive control. RESULTS Compared with the PVL group, the IR + PVL had higher, but not remarkable, levels of serum transaminases; weights of non-clamped lobes in the IR + PVL group comparatively increased much more notably. At 24-h post-surgery, the IR + PVL group's PCNA mRNA was up-regulated compared with the PVL group. At 72-h post-surgery, PCNA protein was up-regulated significantly, while TGF-β1 was down-regulated in the IR + PVL group notably, compared with the PVL group. CONCLUSION The I/R pretreatment given to the clamped lobes facilitates liver regeneration of non-clamped lobes after selective portal vein ligation, which may result from down-regulated TGF-β1 expression in non-clamped lobes.
Collapse
|
27
|
Pham TX, Lee J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients 2012; 4:1868-86. [PMID: 23363995 PMCID: PMC3546612 DOI: 10.3390/nu4121868] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/12/2012] [Accepted: 11/22/2012] [Indexed: 01/14/2023] Open
Abstract
Age-related diseases such as type 2 diabetes, cardiovascular disease, and cancer involve epigenetic modifications, where accumulation of minute changes in the epigenome over time leads to disease manifestation. Epigenetic changes are influenced by life style and diets. This represents an avenue whereby dietary components could accelerate or prevent age-related diseases through their effects on epigenetic modifications. Histone acetylation is an epigenetic modification that is regulated through the opposing action of histone acetylases (HATs) and deacetylases (HDACs). These two families of enzymes play critical roles in metabolic processes and their dysregulation is associated with pathogenesis of several diseases. Dietary components, such as butyrate, sulforaphane, and curcumin, have been shown to affect HAT and HDAC activity, and their health benefits are attributed, at least in part, to epigenetic modifications. Given the decades that it takes to accumulate epigenetic changes, it is unlikely that pharmaceuticals could undo epigenetic changes without side effects. Therefore, long term consumption of dietary components that can alter the epigenome could be an attractive means of disease prevention. The goal of this review is to highlight the roles of diets and food components in epigenetic modifications through the regulation of HATs and HDACs for disease prevention.
Collapse
Affiliation(s)
- Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
28
|
Silva S, Carbonel A, Taha M, Simões M, Montero E. Proliferative Activity in Ischemia/Reperfusion Injury in Hepatectomized Mice: Effect of N-Acetylcysteine. Transplant Proc 2012; 44:2321-5. [DOI: 10.1016/j.transproceed.2012.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Functional Relationships between Lipid Metabolism and Liver Regeneration. Int J Hepatol 2012; 2012:549241. [PMID: 22319652 PMCID: PMC3272806 DOI: 10.1155/2012/549241] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022] Open
Abstract
The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.
Collapse
|