1
|
Chen JY, Qin LJ, Long T, Wu RT, Niu SH, Liu S, Deng WK, Liao XD, Xing SC. Effortless rule: Effects of oversized microplastic management on lettuce growth and the dynamics of antibiotic resistance genes from fertilization to harvest. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138046. [PMID: 40157188 DOI: 10.1016/j.jhazmat.2025.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The complexity of soil microplastic pollution has driven deeper exploration of waste management strategies to evaluate environmental impact. This study introduced oversized microplastics (OMPs, 1-5 mm) during membrane composting to produce organic fertilizers, and conducted a 2 × 2 pot experiment: exogenous OMPs were added when normal fertilizer (no OMPs intervention) was applied, while artificial removal of OMPs was implemented when contaminated fertilizer (with OMPs) was used. The study assessed the effects of these management strategies on lettuce growth, soil environments, and potential biological safety risks related to the spread and expression of high-risk antibiotic resistance genes (ARGs) in humans. Results showed that both exogenous OMPs addition and removal negatively affected plant height and harvest index, with shifts in the rhizosphere microbial community identified as a key factor rather than soil nutrients. Exogenous OMPs altered rhizosphere and endophytic microbial communities, and plant growth-promoting bacteria were transferred to the surface of OMPs from rhizosphere soil. In contrast, bacteria such as Truepera, Pseudomonas, and Streptomyces in compost-derived OMPs supported lettuce growth, and their removal negated these effects. Some endophytic bacteria may promote growth but pose public health risks when transmitted through the food chain. OMPs in composting or planting significantly enhanced the expression of target ARGs in lettuce, particularly blaTEM. However, simulated digestion results indicated that OMPs reduced the expression of six key ARGs, including blaTEM, among the ten critical target ARGs identified in this context. Notably, the removal management strategies raised five of them posing potential risks from lettuce consumption. This study highlights that both introducing and removing OMPs may pose ecological and food safety risks, emphasizing the need for optimized organic waste management strategies to mitigate potential health hazards.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin-Jie Qin
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tiao Long
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rui-Ting Wu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Cao Z, Gao T, Bajinka O, Zhang Y, Yuan X. Fecal microbiota transplantation-current perspective on human health. Front Med (Lausanne) 2025; 12:1523870. [PMID: 40160324 PMCID: PMC11949973 DOI: 10.3389/fmed.2025.1523870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Recently, microbiome medicine has attracted the attention of researchers. While this rapidly growing medical approach for various diseases and disorders is changing the paradigm, it is imperative to weigh both its benefits and the associated risk factors. For instance, manipulation of the gut microbiota (GM) has positive effects on metabolic and neurodegenerative diseases. Notably, fecal microbiota transplantation (FMT), a complex method, has shown promise; however, many doubt its feasibility without adverse effects on human health. Given the number of human clinical trials investigating FMT for the treatment of various disorders, this review summarizes recent findings on its impact on human health. This review summarizes the metabolic responses associated with FMT and their reversal effects on gastrointestinal infections, behavioral changes, and immune responses. Additionally, this review discusses the role of FMT in antimicrobial resistance and its co-supplementation effects on human health, safety, potential risks, limitations, prospects, and recommendations. Although this review does not cover all the studies in the database, the searched terms for FMT and human health in clinical trials are sufficient to provide a summary of the current perspective.
Collapse
Affiliation(s)
- Zixuan Cao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Tingting Gao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Ousman Bajinka
- Country School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Yali Zhang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Saha S, Schnabl B. Modulating the microbiome in chronic liver diseases - current evidence on the role of fecal microbiota transplantation. Expert Rev Gastroenterol Hepatol 2025; 19:53-64. [PMID: 39760535 PMCID: PMC11882407 DOI: 10.1080/17474124.2025.2450707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/07/2025]
Abstract
INTRODUCTION The gut microbiota has a complex relationship with the human host and is key to maintaining health. Disruption of the healthy diverse gut microbial milieu plays an important role in the pathogenesis of several diseases including Clostridioides difficile infection (CDI), inflammatory bowel disease, irritable bowel syndrome, alcohol-related liver disease and metabolic-dysfunction associated steatotic liver disease (MASLD). Fecal microbiota transplantation (FMT) is highly effective in treating CDI, though its utility in other diseases is still being explored. AREAS COVERED In this narrative review, we explore the role of gut microbiota in liver diseases, focusing on key changes in the microbial composition and function. We summarize current evidence on the role of FMT, identifying gaps in current research and outlining future directions for investigation. We comprehensively searched PubMed through 15 October 2024 to identify relevant studies. EXPERT OPINION While data from available studies shows promise, more research is necessary before we can use FMT for liver diseases. Key areas that require further study are - determining the optimal FMT regimen for each disease, establishing efficacy and safety with larger clinical trials, ensuring safe and equitable access to the FMT product and mechanistic insights into the reasons for success or failure of FMT.
Collapse
Affiliation(s)
- Srishti Saha
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Diego, San Diego, CA
| | - Bernd Schnabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Diego, San Diego, CA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
4
|
Bloom PP, Chung RT. The future of clinical trials of gut microbiome therapeutics in cirrhosis. JHEP Rep 2025; 7:101234. [PMID: 39717506 PMCID: PMC11663965 DOI: 10.1016/j.jhepr.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 12/25/2024] Open
Abstract
The last two decades have witnessed an explosion of microbiome research, including in hepatology, with studies demonstrating altered microbial composition in liver disease. More recently, efforts have been made to understand the association of microbiome features with clinical outcomes and to develop therapeutics targeting the microbiome. While microbiome therapeutics hold much promise, their unique features pose certain challenges for the design and conduct of clinical trials. Herein, we will briefly review indications for microbiome therapeutics in cirrhosis, currently available microbiome therapeutics, and the biological pathways targeted by these therapies. We will then focus on the best practices and important considerations for clinical trials of gut microbiome therapeutics in cirrhosis.
Collapse
Affiliation(s)
- Patricia P. Bloom
- University of Michigan, Division of Gastroenterology, Ann Arbor, MI, USA
| | - Raymond T. Chung
- Massachusetts General Hospital, Division of Gastroenterology, Boston, MA, USA
| |
Collapse
|
5
|
Mullish BH, Thursz MR. Alcohol-associated liver disease: Emerging therapeutic strategies. Hepatology 2024; 80:1372-1389. [PMID: 38922808 DOI: 10.1097/hep.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The large and growing burden of alcohol-associated liver disease-and the considerable burden of morbidity and mortality associated with it-has been a drive toward ongoing research into novel strategies for its treatment, with a particular focus upon alcohol-associated hepatitis (AH). Management of alcohol-use disorder forms the central pillar of alcohol-associated liver disease care, with evidence-based psychological and pharmacological approaches being well established, and certain models demonstrating improved clinical outcomes when hepatology and addiction services are co-located. Corticosteroids have previously been used somewhat indiscriminately in patients with severe AH, but effective tools now exist to assess early response (and limit futile ongoing exposure). Techniques to predict risk of corticosteroid-related infection are also available, although current clinical strategies to mitigate this risk are limited. A variety of novel therapeutic approaches to AH are at different phases of trials and evidence gathering, with some of the most promising signals related to cytokine manipulation, epigenetic modulation, and targeting of the gut microbiota (ie, by means of fecal microbiota transplant). While remaining an ongoing source of debate, early liver transplant in severe AH has grown in interest and acceptability over the past decade as evidence supporting its efficacy builds, in the process challenging paradigms about mandatory pretransplant sobriety periods. However, uncertainty remains regarding the optimal selection criteria, and whether liver transplant has a role for only a highly limited proportion of patients with AH or more widespread application. This review aims to provide an overview of this fast-moving field.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
6
|
Gil-Gómez A, Muñoz-Hernández R, Martínez F, Jiménez F, Romero-Gómez M. Hepatic encephalopathy: experimental drugs in development and therapeutic potential. Expert Opin Investig Drugs 2024; 33:1219-1230. [PMID: 39588934 DOI: 10.1080/13543784.2024.2434053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Hepatic encephalopathy (HE) presents a complex pathophysiology, creating multiple potential treatment avenues. This review covers current and emerging treatments for HE. AREAS COVERED Standard therapies, including non-absorbable disaccharides and rifaximin, are widely used but show inconsistent efficacy. Alternatives such as polyethylene glycol and L-ornithine L-aspartate have been effective in certain cases. Advancements in understanding HE reveal a growing need for personalized treatments. Novel approaches targeting immune modulation and neuroinflammation are under investigation, though clinical translation is slow. Nutritional interventions and fecal microbiota transplantation show potential but lack robust evidence. Innovative therapies like gene and cell therapies, as well as extracellular vesicles from mesenchymal stem cells, present promising avenues for liver disease treatment, potentially benefiting HE. EXPERT OPINION A key challenge in HE research is the design of randomized clinical trials, which often suffer from small sample sizes, heterogeneity in patient population, and inconsistent blinding. Additionally, the multifactorial nature of HE, together with a high spontaneous response rate, complicates efforts to isolate treatment effects. Despite current limitations, ongoing research and technological advances hold promise for more effective and individualized HE treatments in the future.
Collapse
Affiliation(s)
- Antonio Gil-Gómez
- SeLiver Group at Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Muñoz-Hernández
- SeLiver Group at Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Filomeno Martínez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| | - Fernando Jiménez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| | - Manuel Romero-Gómez
- SeLiver Group at Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
7
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang T, Luo Y, Kong X, Fang L, Zhu L, Yu B, Zheng P, Huang Z, Mao X, Jie Y, Luo J, Yan H, He J. Multiomics comparative analysis of feces AMRGs of Duroc pigs and Tibetan and the effect of fecal microbiota transplantation on AMRGs upon antibiotic exposure. Microbiol Spectr 2024; 13:e0198324. [PMID: 39612216 PMCID: PMC12054024 DOI: 10.1128/spectrum.01983-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Fecal matter is recognized as both a reservoir and a transmission source for various antimicrobial resistance genes (AMRGs). However, the transcriptional activity of AMRGs in swine feces is not well understood. In addition, the effect of fecal microbiota transplantation (FMT) on the excretion of AMRGs has rarely been reported. Our study explored the diversity, abundance, transcriptional activity, and bacterial hosts of AMRGs in Tibetan and Duroc pig feces using metagenomic and metatranscriptomic sequencing technologies. We discovered a significantly higher genomic abundance of AMRGs in the feces of Duroc pigs compared to Tibetan pigs (P < 0.001), although the transcript levels did not show a significant difference. The results showed that the core composition of AMRGs in pig feces varied considerably, with the most transcriptionally active AMRGs being oqxB, tetQ, Bla1, dfrA1, and amrB. Furthermore, the Firmicutes phylum is the main host of AMRGs. By transplanting fecal flora from Tibetan and Duroc pigs into the intestines of Duroc Landrace Yorkshire (DLY) piglets after acute antibiotic exposure, we found that only Tibetan pig fecal flora significantly reduced AMRGs in the feces of DLY piglets (P < 0.05). The effectiveness of Tibetan pig fecal microorganisms in removing AMRGs from DLY pig feces was mainly influenced by microbial communities, especially the Bacteroidota phylum. These findings offer valuable insights for the prevention and control of AMRG pollution. IMPORTANCE To the best of our knowledge, this study represents the first comprehensive analysis of antimicrobial resistance gene (AMRGs) expression in the fecal microbiota of Tibetan and Duroc pigs, employing an integrated metagenomic and metatranscriptomic approach. Our findings indicate a higher risk of AMRGs transmission in the feces of Duroc pigs compared to Tibetan pigs. Given the escalating antimicrobial resistance crisis, novel therapeutic interventions are imperative to mitigate gut colonization by pathogens and AMRGs. In this regard, we investigated the impact of fecal microbiota from Tibetan and Duroc pig sources on AMRGs excretion in Duroc Landrace Yorkshire (DLY) piglets' feces following acute antibiotic exposure. Remarkably, only fecal microbiota sourced from Tibetan pigs exhibited a reduction in AMRGs excretion in DLY piglets' feces. This underscores the significance of evaluating the presence of AMRGs within donor fecal microbiota for effective AMRGs decolonization strategies.
Collapse
Affiliation(s)
- Tao Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ling Fang
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, Shandong, China
| | - Liping Zhu
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, Shandong, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Yu Jie
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Scott A, Khoruts A, Freeman ML, Beilman G, Ramanathan K, Bellin MD, Trikudanathan G. Successful Use of Fecal Microbiota Transplantation in Management of Nonobstructive Recurrent Cholangitis Following Total Pancreatectomy and Islet Autotransplant. ACG Case Rep J 2024; 11:e01527. [PMID: 39399248 PMCID: PMC11469898 DOI: 10.14309/crj.0000000000001527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Alterations in the gut microbiome have been implicated in various pathologies. Fecal microbiota transplantation (FMT) has been offered as a novel treatment for conditions implicated in the disruption of the gut-microbiota axis. This case report details the successful treatment of recurrent nonobstructive cholangitis following a single FMT application in a patient who had previously undergone a hepatobiliary tract surgical diversion. Cholangitis was suspected secondary to reflux of an altered microbiome into the surgically reanastomosed biliary tract, and FMT was justified based on the history of recurrent Clostridioides difficile infections. This case supports the further evaluation of the utility of FMT as one potential treatment of post hepatobiliary surgical diversion cholangitis.
Collapse
Affiliation(s)
- Adam Scott
- University of Minnesota Medical School, Minneapolis, MN
| | | | | | - Greg Beilman
- University of Minnesota Medical Center, Minneapolis, MN
| | | | | | | |
Collapse
|
10
|
Ferguson Toll J, Solà E, Perez MA, Piano S, Cheng A, Subramanian AK, Kim WR. Infections in decompensated cirrhosis: Pathophysiology, management, and research agenda. Hepatol Commun 2024; 8:e0539. [PMID: 39365139 PMCID: PMC11458171 DOI: 10.1097/hc9.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial infections in patients with cirrhosis lead to a 4-fold increase in mortality. Immune dysfunction in cirrhosis further increases the risk of bacterial infections, in addition to alterations in the gut microbiome, which increase the risk of pathogenic bacteria. High rates of empiric antibiotic use contribute to increased incidence of multidrug-resistant organisms and further increases in mortality. Despite continous advances in the field, major unknowns regarding interactions between the immune system and the gut microbiome and strategies to reduce infection risk and improve mortality deserve further investigation. Here, we highlight the unknowns in these major research areas and make a proposal for a research agenda to move toward improving disease progression and outcomes in patients with cirrhosis and infections.
Collapse
Affiliation(s)
- Jessica Ferguson Toll
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elsa Solà
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| | | | - Salvatore Piano
- Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Alice Cheng
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Aruna K. Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - W. Ray Kim
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
11
|
Piano S, Bunchorntavakul C, Marciano S, Rajender Reddy K. Infections in cirrhosis. Lancet Gastroenterol Hepatol 2024; 9:745-757. [PMID: 38754453 DOI: 10.1016/s2468-1253(24)00078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Abstract
Cirrhosis is an immune dysfunction state, and as such, patients with cirrhosis are susceptible to bacterial, fungal, and viral infections. Because of infection, these patients have a propensity to develop multiorgan failure, which is associated with high mortality. Bacterial infections are the most prevalent type of infection in patients with cirrhosis, with the prevalence of bacterial infections in patients admitted for an acute decompensating event ranging from 24% to 29%. Together with invasive fungal infections, bacterial infections are the most severe. Multidrug-resistant organisms have been evolving at a rapid and alarming rate around the world, which presents enormous challenges. The development of effective measures for the prevention, early detection, and treatment of infections in patients with cirrhosis is challenging, given the rising incidence of infections in this patient population.
Collapse
Affiliation(s)
- Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, University and Hospital of Padova, Padova, Italy
| | | | - Sebastian Marciano
- Department of Clinical Investigation, Italian Hospital, Buenos Aires, Argentina
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Samanta A, Sen Sarma M. Fecal microbiota transplantation in the treatment of hepatic encephalopathy: A perspective. World J Hepatol 2024; 16:678-683. [PMID: 38818298 PMCID: PMC11135264 DOI: 10.4254/wjh.v16.i5.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Due to its complex pathogenesis, treatment of hepatic encephalopathy (HE) continues to be a therapeutic challenge. Of late, gut microbiome has garnered much attention for its role in the pathogenesis of various gastrointestinal and liver diseases and its potential therapeutic use. New evidence suggests that gut microbiota plays a significant role in cerebral homeostasis. Alteration in the gut microbiota has been documented in patients with HE in a number of clinical and experimental studies. Research on gut dysbiosis in patients with HE has opened newer therapeutic avenues in the form of probiotics, prebiotics and the latest fecal microbiota transplantation (FMT). Recent studies have shown that FMT is safe and could be effective in improving outcomes in advanced liver disease patients presenting with HE. However, questions over the appropriate dose, duration and route of administration for best treatment outcome remains unsettled.
Collapse
Affiliation(s)
- Arghya Samanta
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
13
|
Duan R, Liu Y, Zhang Y, Shi J, Xue R, Liu R, Miao Y, Zhou X, Lv Y, Shen H, Xie X, Ai X. The impact of exercise on the gut microbiota in middle-aged amateur serious runners: a comparative study. Front Physiol 2024; 15:1343219. [PMID: 38737829 PMCID: PMC11082653 DOI: 10.3389/fphys.2024.1343219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Exercise, health, and the gut microbiota (GM) are strongly correlated. Research indicates that professional athletes, especially ultra-marathon runners, have unique GM characteristics. However, more research has focused on elite athletes, with little attention given to amateur sports enthusiasts, especially those in the middle-aged population. Therefore, this study focuses on the impact of long-term running on the composition and potential functions of the GM in middle-aged individuals. Methods We compared the GM of 25 middle-aged serious runnerswith 22 sedentary healthy controls who had minimal exercise habitsusing 16S rRNA gene sequencing. Additionally, we assessed dietary habits using a food frequency questionnaire. Results and Discussion Statistical analysis indicates that there is no significant difference in dietary patterns between the control group and serious runners. Diversity analysis results indicate that there is no significant difference in α diversity between the two groups of GM, but there is a significant difference in β diversity. Analysis of the composition of GM reveals that Ruminococcus and Coprococcus are significantly enriched in serious runners, whereas Bacteroides, Lachnoclostridium, and Lachnospira are enriched in the control group. Differential analysis of functional pathway prediction results reveals significant differences in the functional metabolism levels of GM between serious runners and the control group. Further correlation analysis results indicate that this difference may be closely related to variations in GM. In conclusion, our results suggest that long-term exercise can lead to changes in the composition of the GM. These changes have the potential to impact the overall health of the individual by influencing metabolic regulation.
Collapse
Affiliation(s)
- Rui Duan
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yu Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yonglian Zhang
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Jinrong Shi
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Rong Xue
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Ruijie Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yuanxin Miao
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei, China
| | - Xianfeng Zhou
- School of Life Sciences and Health Engineering, Hubei University of Technology, Wuhan, China
- Maintainbiotech Ltd., Wuhan, Hubei, China
| | | | - Hexiao Shen
- Maintainbiotech Ltd., Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwei Xie
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Xu Ai
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| |
Collapse
|
14
|
Zhu X, Zhou Z, Pan X. Research reviews and prospects of gut microbiota in liver cirrhosis: a bibliometric analysis (2001-2023). Front Microbiol 2024; 15:1342356. [PMID: 38550860 PMCID: PMC10972893 DOI: 10.3389/fmicb.2024.1342356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION The gut-liver axis has emerged as a focal point in chronic liver disorders, prompting more research into the role of the gut microbiota in liver cirrhosis. In individuals with liver cirrhosis, changes in the structure and function of the gut microbiota are closely tied to clinical prognosis. However, there is a scarcity of bibliometric evaluations conducted in this particular field. METHODS This study is aiming to conduct a complete analysis of the knowledge structure and centers pertaining to gut microbiota in liver cirrhosis using bibliometric methods. Publications on gut microbiota and liver cirrhosis from 2001 to 2023 are sourced from the Web of Science Core Collection. For the bibliometric analysis, we employ VOSviewer, CiteSpace, and the R package "bibliometrix". RESULTS Our study encompasses a comprehensive collection of 3109 articles originating from 96 countries, with notable contributions from leading nations such as the United States and China. The quantity of publications concerning the gut microbiota of liver cirrhosis rises annually. The University of California San Diego, Virginia Commonwealth University, Zhejiang University are the primary research institutions. World Journal of Gastroenterology publishes the most papers in this field, while hepatology is the most frequently co-cited journal. These publications come from a total of 15,965 authors, and the most prolific authors are Bajaj Jasmohan S., Schnabl Bernd and Gillevet Patrick M., while the most co-cited authors are Bajaj Jasmohan S., Younossi Zobair M., and Reiner Wiest. In addition, "dysbiosis", "gut microbiota", "intestinal barrier", "fecal microbiota transplantation", and "complement-system" are the primary keywords of research trends in recent years. DISCUSSION This study offering a comprehensive insight into the research dynamics surrounding gut microbiota in patients with liver cirrhosis. It delineates the current research frontiers and hotspots, serving as a valuable guide for scholars.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Infectious Diseases, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaxia Pan
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Bloom PP, Bajaj JS. The Current and Future State of Microbiome Therapeutics in Liver Disease. Am J Gastroenterol 2024; 119:S36-S41. [PMID: 38153225 DOI: 10.14309/ajg.0000000000002581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/29/2023]
Affiliation(s)
| | - Jasmohan S Bajaj
- Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
16
|
Mullish BH, Tohumcu E, Porcari S, Fiorani M, Di Tommaso N, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. The role of faecal microbiota transplantation in chronic noncommunicable disorders. J Autoimmun 2023; 141:103034. [PMID: 37087392 DOI: 10.1016/j.jaut.2023.103034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
The gut microbiome plays a key role in influencing several pathways and functions involved in human health, including metabolism, protection against infection, and immune regulation. Perturbation of the gut microbiome is recognised as a pathogenic factor in several gastrointestinal and extraintestinal disorders, and is increasingly considered as a therapeutic target in these conditions. Faecal microbiota transplantation (FMT) is the transfer of the microbiota from healthy screened stool donors into the gut of affected patients, and is a well-established and highly effective treatment for recurrent Clostridioides difficile infection. Despite the mechanisms of efficacy of FMT not being fully understood, it has been investigated in several chronic noncommunicable disorders, with variable results. This review aims to give an overview of mechanisms of efficacy of FMT in chronic noncommunicable disorders, and to paint the current landscape of its investigation in these medical conditions, including inflammatory bowel disease (IBD), chronic liver disorders, and also extraintestinal autoimmune conditions.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Ege Tohumcu
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marcello Fiorani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Natalia Di Tommaso
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.
| |
Collapse
|
17
|
Liakina V. Antibiotic resistance in patients with liver cirrhosis: Prevalence and current approach to tackle. World J Clin Cases 2023; 11:7530-7542. [PMID: 38078132 PMCID: PMC10698443 DOI: 10.12998/wjcc.v11.i31.7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Regardless of etiology, complications with bacterial infection in patients with cirrhosis are reported in the range of 25%-46% according to the most recent data. Due to frequent episodes of bacterial infection and repetitive antibiotic treatment, most often with broad-spectrum gram negative coverage, patients with cirrhosis are at increased risk of encountering multidrug resistant bacteria, and this raises concern. In such patients, extended-spectrum beta-lactamase and AmpC-producing Enterobacterales, methicillin- or vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, carbapenem-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii, all of which are difficult to treat, are the most common. That is why novel approaches to the prophylaxis and treatment of bacterial infections to avoid antibiotic resistance have recently been developed. At the same time, our knowledge of resistance mechanisms is constantly updated. This review summarizes the current situation regarding the burden of antibiotic resistance, including the prevalence and mechanisms of intrinsic and acquired resistance in bacterial species that most frequently cause complications in patients with liver cirrhosis and recent developments on how to deal with multidrug resistant bacteria.
Collapse
Affiliation(s)
- Valentina Liakina
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Tech, Vilnius 10223, Lithuania
| |
Collapse
|
18
|
Vasudevan D, Ramakrishnan A, Velmurugan G. Exploring the diversity of blood microbiome during liver diseases: Unveiling Novel diagnostic and therapeutic Avenues. Heliyon 2023; 9:e21662. [PMID: 37954280 PMCID: PMC10638009 DOI: 10.1016/j.heliyon.2023.e21662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Liver diseases are a group of major metabolic and immune or inflammation related diseases caused due to various reasons including infection, abnormalities in immune system, genetic defects, and lifestyle habits. However, the cause-effect relationship is not completely understood in liver disease. The role of microbiome, particularly, the role of gut and oral microbiome in liver diseases has been extensively studied in recent years. More interestingly, the presence of blood microbiome and tissue microbiome has been identified in many liver diseases. The translocation of microbes from the gut into the portal circulation has been attributed to be the major reason for the presence of blood microbial components and its clinical implications in liver disorders. Besides microbial translocation, Pathogen associated Molecular Patterns (PAMPs) derived from gut microbiota might also translocate. The presence of blood microbiome in liver disease has been reviewed earlier. However, the role of blood microbiome as a biomarker and therapeutic target in liver diseases has not been analysed earlier. In this review, we confabulate the origin and physiology of blood microbiome and blood microbial components in relation to the progression and pathogenesis of liver disease. In conclusion, we discuss the translational perspectives targeting the blood microbial components in the diagnosis and therapy of liver disease.
Collapse
Affiliation(s)
- Dinakaran Vasudevan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641014, Tamil Nadu, India
- Gut Microbiome Division, SKAN Research Trust, Bengaluru, 560034, Karnataka, India
| | - Arulraj Ramakrishnan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641014, Tamil Nadu, India
- Liver Unit, Kovai Medical Center and Hospital, Coimbatore, 641014, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641014, Tamil Nadu, India
| |
Collapse
|
19
|
Tilg H, Zoller H. Pleiotropic prebiotic for liver disease. Nat Microbiol 2023; 8:1944-1945. [PMID: 37845317 DOI: 10.1038/s41564-023-01510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Abstract
Globally, liver disease caused by alcohol is becoming more prevalent each year. Misuse of alcohol causes a spectrum of liver diseases, such as liver steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The cornerstone of treatment is abstinence from alcohol. In spite of this, available treatment for alcohol-associated liver disease (ALD) shows limited effectiveness currently. There are numerous ways in which alcohol disrupts the gut-liver axis, including dysbiosis of the gut microbiome, disruption of mucus and epithelial cell barriers, impaired production of antimicrobial molecules, and dysfunction of the immune system, causing translocation of viable microbes and microbial products to the liver and systemic circulation. Microbial exposure results in not only inflammation and progression of liver disease but also infections in late-stage ALD. This led scientists to focus their therapeutic strategies and targets for ALD on the gut microbiome. Throughout this review, we address the role of gut microbiome-centered therapeutic approaches for ALD focusing predominantly on randomized controlled trials. We will summarize the latest clinical trials using probiotics, antibiotics, and fecal microbial transplants in modulating the gut-liver axis and for improvement of ALD.
Collapse
Affiliation(s)
- Tannaz Ranjbarian
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
21
|
Zhu R, Liu L, Zhang G, Dong J, Ren Z, Li Z. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci Rep 2023; 43:BSR20222524. [PMID: 37279097 PMCID: PMC10272964 DOI: 10.1042/bsr20222524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disease occurring in patients with hepatic insufficiency and/or portal-systemic blood shunting based on cirrhosis. The pathogenesis is not completely clear till now, but it is believed that hyperammonemia is the core of HE. Hyperammonemia caused by increased sources of ammonia and decreased metabolism further causes mental problems through the gut-liver-brain axis. The vagal pathway also plays a bidirectional role in the axis. Intestinal microorganisms play an important role in the pathogenesis of HE through the gut-liver-brain axis. With the progression of cirrhosis to HE, intestinal microbial composition changes gradually. It shows the decrease of potential beneficial taxa and the overgrowth of potential pathogenic taxa. Changes in gut microbiota may lead to a variety of effects, such as reduced production of short-chain fatty acids (SCFAs), reduced production of bile acids, increased intestinal barrier permeability, and bacterial translocation. The treatment aim of HE is to decrease intestinal ammonia production and intestinal absorption of ammonia. Prebiotics, probiotics, antibiotics, and fecal microbiota transplantation (FMT) can be used to manipulate the gut microbiome to improve hyperammonemia and endotoxemia. Especially the application of FMT, it has become a new treated approach to target microbial composition and function. Therefore, restoring intestinal microbial homeostasis can improve the cognitive impairment of HE, which is a potential treatment method.
Collapse
Affiliation(s)
- Ruirui Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liwen Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Guizhen Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Jianxia Dong
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Zhiqin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
22
|
Di Vincenzo F, Nicoletti A, Negri M, Vitale F, Zileri Dal Verme L, Gasbarrini A, Ponziani FR, Cerrito L. Gut Microbiota and Antibiotic Treatments for the Main Non-Oncologic Hepato-Biliary-Pancreatic Disorders. Antibiotics (Basel) 2023; 12:1068. [PMID: 37370387 DOI: 10.3390/antibiotics12061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota is a pivotal actor in the maintenance of the balance in the complex interconnections of hepato-biliary-pancreatic system. It has both metabolic and immunologic functions, with an influence on the homeostasis of the whole organism and on the pathogenesis of a wide range of diseases, from non-neoplastic ones to tumorigenesis. The continuous bidirectional metabolic communication between gut and hepato-pancreatic district, through bile ducts and portal vein, leads to a continuous interaction with translocated bacteria and their products. Chronic liver disease and pancreatic disorders can lead to reduced intestinal motility, decreased bile acid synthesis and intestinal immune dysfunction, determining a compositional and functional imbalance in gut microbiota (dysbiosis), with potentially harmful consequences on the host's health. The modulation of the gut microbiota by antibiotics represents a pioneering challenge with striking future therapeutic opportunities, even in non-infectious diseases. In this setting, antibiotics are aimed at harmonizing gut microbial function and, sometimes, composition. A more targeted and specific approach should be the goal to pursue in the future, tailoring the treatment according to the type of microbiota modulation to be achieved and using combined strategies.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marcantonio Negri
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Vitale
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
23
|
Badal BD, Silvey S, Dragilev L, O'Leary JG, Morgan TR, Cheung R, Patel A, Rogal S, Patton H, Nobbe A, Jakab SS, Liu J, Patel N, Bajaj JS. Primary prophylaxis for spontaneous bacterial peritonitis is linked to antibiotic resistance in the Veterans Health Administration. Hepatology 2023; 77:2030-2040. [PMID: 36645215 DOI: 10.1097/hep.0000000000000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 01/17/2023]
Abstract
Spontaneous bacterial peritonitis (SBP) is a major cause of mortality. Although SBP primary prophylaxis (SBPPr) with fluoroquinolones and trimethoprim-sulfamethoxazole (TMP-SMX) is often used, resistance could reduce its benefit. AIM Analyze peritoneal fluid resistance patterns in patients with a first SBP episode with/without SBPPr using the Veterans Health Administration corporate data warehouse and to evaluate national antibiograms. Corporate data warehouse data were extracted using validated International Classification of Disease-9/10 codes, culture, resistance data, and outcomes of 7553 patients who developed their first inpatient SBP between 2009 and 2019 and compared between those with/without SBPPr. Escherichia coli ( E. coli ) and Klebsiella pneumoniae ( K. pneumoniae ) sensitivity to ciprofloxacin and TMP-SMX was calculated using 2021 Veterans Health Administration antibiogram data from all states. The most common isolates were E. coli , K. pneumoniae , and Staphylococcus species. Veterans taking ciprofloxacin SBBPr had higher fluoroquinolone resistance (34% vs 14% no SBPPr, p <0.0001); those taking TMP-SMX had higher TMP-SMX resistance (40% vs 14%, p <0.0001). SBPPr patients showed higher culture positivity, greater length of stay, higher second SBP, and higher probability of liver transplant rates versus no SBPPr. Multivariable models showed SBBPr to be the only variable associated with gram-negative resistance, and SBPPr was associated with a trend toward longer length of stay. E. coli ciprofloxacin sensitivity rates were 50%-87% and 43%-92% for TMP-SMX. K. pneumoniae ciprofloxacin sensitivity was 76%-100% and 72%-100% for TMP-SMX. CONCLUSION Among patients who developed their first SBP episode, there was a higher prevalence of antibiotic resistance in those on SBPPr, with a high rate of fluoroquinolone resistance across the Veterans Health Administration sites.
Collapse
Affiliation(s)
- Bryan D Badal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| | - Scott Silvey
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lyuba Dragilev
- Department of Pharmacy, Captain James A Lovell Federal Health Care Center, North Chicago, Illinois, USA
| | | | - Timothy R Morgan
- Gastroenterology Service, VA Long Beach Health Care System, Long Beach, California, USA
| | - Ramsey Cheung
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Arpan Patel
- Division of Digestive Diseases, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Shari Rogal
- Center for Health Equity Research and Promotion, VA Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
- Departments of Medicine and Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heather Patton
- Gastroenterology Section, VA San Diego Health Care System, San Diego, California, USA
| | - Anna Nobbe
- Digestive Diseases Section, Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Sofia S Jakab
- Section of Digestive Diseases, VA Connecticut Health Care System, West Haven, Connecticut, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nilang Patel
- Division of Nephrology, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| |
Collapse
|
24
|
Duarte MJ, Tien PC, Somsouk M, Price JC. The human microbiome and gut-liver axis in people living with HIV. Curr HIV/AIDS Rep 2023; 20:170-180. [PMID: 37129834 PMCID: PMC10232565 DOI: 10.1007/s11904-023-00657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE OF REVIEW Chronic liver disease is a major cause of morbidity and mortality amongst people living with HIV (PLWH). Emerging data suggests that gut microbial translocation may play a role in driving and modulating liver disease, a bi-directional relationship termed the gut-liver axis. While it is recognized that PLWH have a high degree of dysbiosis and gut microbial translocation, little is known about the gut-liver axis in PLWH. RECENT FINDINGS Recent studies have shown that microbial translocation can directly lead to hepatic inflammation, and have linked gut microbial signatures, dysbiosis, and translocation to liver disease in PLWH. Additionally, multiple trials have explored interventions targeting the microbiome in PLWH. Emerging research supports the interaction between the gut microbiome and liver disease in PLWH. This offers new opportunities to expand our understanding of the pathophysiology of liver disease in this population, as well as to explore possible clinical interventions.
Collapse
Affiliation(s)
- Maria J Duarte
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Phyllis C Tien
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Ma Somsouk
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jennifer C Price
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Merrick B, Sergaki C, Edwards L, Moyes DL, Kertanegara M, Prossomariti D, Shawcross DL, Goldenberg SD. Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)-A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT). Infect Dis Rep 2023; 15:238-254. [PMID: 37218816 DOI: 10.3390/idr15030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Chrysi Sergaki
- Diagnostics R&D, Medicines and Healthcare Products Regulatory Agency (MHRA), Potters Bar EN6 3QG, UK
| | - Lindsey Edwards
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 1UK, UK
| | - Michael Kertanegara
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Désirée Prossomariti
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| |
Collapse
|
26
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Del Barrio M, Lavín L, Santos-Laso Á, Arias-Loste MT, Odriozola A, Rodriguez-Duque JC, Rivas C, Iruzubieta P, Crespo J. Faecal Microbiota Transplantation, Paving the Way to Treat Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24076123. [PMID: 37047094 PMCID: PMC10094628 DOI: 10.3390/ijms24076123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase in intestinal permeability seem to be key in the development and progression of NAFLD. Therefore, the manipulation of microbiota seems to provide a promising therapeutic strategy. One way to do so is through faecal microbiota transplantation (FMT). Here, we summarize the key aspects of FMT, detail its current indications and highlight the most recent advances in NAFLD.
Collapse
Affiliation(s)
- María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Lucía Lavín
- Clinical Trial Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria, Spain
| | - Álvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodriguez-Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
28
|
Terra C, de Mattos ÂZ, Chagas MS, Torres A, Wiltgen D, Souza BM, Perez RM. Impact of multidrug resistance on the management of bacterial infections in cirrhosis. World J Clin Cases 2023; 11:534-544. [PMID: 36793638 PMCID: PMC9923851 DOI: 10.12998/wjcc.v11.i3.534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/23/2023] Open
Abstract
Patients with cirrhosis have an increased risk of infection and differently from other complications, that over the years are improving in their outcomes, infections in cirrhotic patients are still a major cause of hospitalization and death (up to 50% in-hospital mortality). Infections by multidrug-resistant organisms (MDRO) have become a major challenge in the management of cirrhotic patients with significant prognostic and cost-related impact. About one third of cirrhotic patients with bacterial infections is infected with MDR bacteria and their prevalence has increased in recent years. MDR infections have a worse prognosis compared to infections by non-resistant bacteria because they are associated with lower rate of infection resolution. An adequate management of cirrhotic patients with infections caused by MDR bacteria depends on the knowledge of some epidemiological aspects, such as the type of infection (spontaneous bacterial peritonitis, pneumonia, urinary tract infection and spontaneous bacteremia), bacteriological profile of antibiotic resistance at each health care unit and site of infection acquisition (community acquired, healthcare associated or nosocomial). Furthermore, regional variations in the prevalence of MDR infections determine that the choice of empirical antibiotic therapy must be adapted to the local microbiological epidemiology. Antibiotic treatment is the most effective measure to treat infections caused by MDRO. Therefore, optimizing antibiotic prescribing is critical to effectively treat these infections. Identification of risk factors for multidrug resistance is essential to define the best antibiotic treatment strategy in each case and the choice of an effective empirical antibiotic therapy and its early administration is cardinal to reduce mortality. On the other hand, the supply of new agents to treat these infections is very limited. Thus, specific protocols that include preventive measures must be implemented in order to limit the negative impact of this severe complication in cirrhotic patients.
Collapse
Affiliation(s)
- Carlos Terra
- Gastroenterology-Liver Unit, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Liver Unit, Casa de Saúde São José-Rede Santa Catarina, Rio de Janeiro 22271-080, Rio de Janeiro, Brazil
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Liver Unit, Federal Hospital of Lagoa, Rio de Janeiro 22470-050, Rio de Janeiro, Brazil
| | - Ângelo Zambam de Mattos
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90020-090, Rio Grande do Sul, Brazil
- Gastroenterology and Hepatology Unit, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Rio Grande do Sul, Brazil
| | - Marcelo Souza Chagas
- Gastroenterology-Liver Unit, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Internal Medicine, Federal Hospital of Lagoa, Rio de Janeiro 22470-050, Rio de Janeiro, Brazil
| | - Andre Torres
- Gastroenterology-Liver Unit, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
| | - Denusa Wiltgen
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Department of Internal Medicine, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90020-090, Brazil
| | - Barbara Muniz Souza
- Gastroenterology-Liver Unit, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
| | - Renata Mello Perez
- Alliance of Brazilian Centers for Cirrhosis Car, The ABC Group, Rio de Janeiro 20551-030, Rio de Janeiro, Brazil
- Hepatology Division, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Rio de Janeiro, Brazil
- IDOR, D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Double-edged sword: impact of fecal microbiome transplants on the gut resistome. Curr Opin Gastroenterol 2023; 39:16-22. [PMID: 36504032 DOI: 10.1097/mog.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Fecal microbiome transplants (FMT) show promise in treating various diseases, such as Clostridioides difficile infections. FMT have also demonstrated the capacity to modulate the collection of antibiotic resistance genes (ARGs), termed the resistome, within the gut. The purpose of this review was to critically evaluate the literature regarding the interaction between FMT and the gut resistome and determine whether FMT could be used specifically to reduce ARG carriage in the gut. RECENT FINDINGS Several studies have demonstrated a decrease in ARG carriage post-FMT administration in various disease states, including recurrent C. difficile infection and after antibiotic usage. However, other studies have reported an expansion of the resistome following FMT. Most studies contained small patient cohorts regardless of the outcome and showed heterogeneity in responses. SUMMARY Research on resistome modulation by FMT is preliminary, and human studies currently lack consensus regarding benefits and risks. From a safety perspective, screening donor samples for ARGs in addition to antibiotic-resistant organisms may be advisable. Additional studies on the mechanisms underlying heterogeneity between studies and individuals are required before FMT is considered an efficient approach for resistome amelioration.
Collapse
|
30
|
Hamamah S, Gheorghita R, Lobiuc A, Sirbu IO, Covasa M. Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Front Med (Lausanne) 2022; 9:1060581. [PMID: 36569149 PMCID: PMC9773399 DOI: 10.3389/fmed.2022.1060581] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplant (FMT) is a therapeutic method that aims to restore normal gut microbial composition in recipients. Currently, FMT is approved in the USA to treat recurrent and refractory Clostridioides difficile infection and has been shown to have great efficacy. As such, significant research has been directed toward understanding the potential role of FMT in other conditions associated with gut microbiota dysbiosis such as obesity, type 2 diabetes mellitus, metabolic syndrome, neuropsychiatric disorders, inflammatory bowel disease, irritable bowel syndrome, decompensated cirrhosis, cancers and graft-versus-host disease. This review examines current updates and efficacy of FMT in treating conditions other than Clostridioides difficile infection. Further, protocols for administration of FMT are also discussed including storage of fecal samples in stool banks, inclusion/exclusion criteria for donors, fecal sample preparation and methods of treatment administration. Overall, understanding the mechanisms by which FMT can manipulate gut microbiota to provide therapeutic benefit as well as identifying potential adverse effects is an important step in clarifying its long-term safety and efficacy in treating multiple conditions in the future.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Gheorghita
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania,Center for Complex Network Science, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States,Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,*Correspondence: Mihai Covasa,
| |
Collapse
|
31
|
Xu Z, Jiang N, Xiao Y, Yuan K, Wang Z. The role of gut microbiota in liver regeneration. Front Immunol 2022; 13:1003376. [PMID: 36389782 PMCID: PMC9647006 DOI: 10.3389/fimmu.2022.1003376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The liver has unique regeneration potential, which ensures the continuous dependence of the human body on hepatic functions. As the composition and function of gut microbiota has been gradually elucidated, the vital role of gut microbiota in liver regeneration through gut-liver axis has recently been accepted. In the process of liver regeneration, gut microbiota composition is changed. Moreover, gut microbiota can contribute to the regulation of the liver immune microenvironment, thereby modulating the release of inflammatory factors including IL-6, TNF-α, HGF, IFN-γ and TGF-β, which involve in different phases of liver regeneration. And previous research have demonstrated that through enterohepatic circulation, bile acids (BAs), lipopolysaccharide, short-chain fatty acids and other metabolites of gut microbiota associate with liver and may promote liver regeneration through various pathways. In this perspective, by summarizing gut microbiota-derived signaling pathways that promote liver regeneration, we unveil the role of gut microbiota in liver regeneration and provide feasible strategies to promote liver regeneration by altering gut microbiota composition.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Nan Jiang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| |
Collapse
|
32
|
Pan X, Zhou Z, Liu B, Wu Z. A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Front Microbiol 2022; 13:1037389. [PMID: 36386682 PMCID: PMC9648192 DOI: 10.3389/fmicb.2022.1037389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 04/24/2025] Open
Abstract
Infections caused by multidrug-resistant bacteria carrying antibiotic resistance genes pose a severe threat to global public health and human health. In clinical practice, it has been found that human gut microbiota act as a "reservoir" of antibiotic resistance genes (ARGs) since gut microbiota contain a wide variety of ARGs, and that the structure of the gut microbiome is influenced by the profile of the drug resistance genes present. In addition, ARGs can spread within and between species of the gut microbiome in multiple ways. To better understand gut microbiota ARGs and their effects on patients with chronic diseases, this article reviews the generation of ARGs, common vectors that transmit ARGs, the characteristics of gut microbiota ARGs in common chronic diseases, their impact on prognosis, the current state of treatment for ARGs, and what should be addressed in future research.
Collapse
Affiliation(s)
| | | | | | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Dai Z, Fu J, Peng X, Tang D, Song J. Intestinal Microbiota: The Driving Force behind Advances in Cancer Immunotherapy. Cancers (Basel) 2022; 14:4796. [PMID: 36230724 PMCID: PMC9564057 DOI: 10.3390/cancers14194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, cancer immunotherapy has become a breakthrough method to solve solid tumors. It uses immune checkpoint inhibitors to interfere with tumor immune escape to coordinate anti-tumor therapy. However, immunotherapy has an individualized response rate. Moreover, immune-related adverse events and drug resistance are still urgent issues that need to be resolved, which may be attributed to the immune imbalance caused by immune checkpoint inhibitors. Microbiome research has fully revealed the metabolic-immune interaction relationship between the microbiome and the host. Surprisingly, sequencing technology further proved that intestinal microbiota could effectively intervene in tumor immunotherapy and reduce the incidence of adverse events. Therefore, cancer immunotherapy under the intervention of intestinal microbiota has innovatively broadened the anti-tumor landscape and is expected to become an active strategy to enhance individualized responses.
Collapse
Affiliation(s)
- Zhujiang Dai
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Jihong Fu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Xiang Peng
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jinglue Song
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| |
Collapse
|
34
|
Philips CA, Schnabl B, Bajaj JS. Gut Microbiome and Alcohol-associated Liver Disease. J Clin Exp Hepatol 2022; 12:1349-1359. [PMID: 36157139 PMCID: PMC9499847 DOI: 10.1016/j.jceh.2021.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in gut microbiota (GM) may be associated with the causation and progression of multiple liver diseases such as metabolic-associated liver disease, alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), primary biliary cholangitis, primary sclerosing cholangitis, autoimmune liver disease, and most importantly, complications of cirrhosis and portal hypertension such as hepatic encephalopathy (HE), infection, and hepatocellular carcinoma. ALD includes simple steatosis, steatohepatitis, AH, cirrhosis, and acute-on-chronic liver failure. Alcohol consumption is associated with GM changes even before ALD development, and continued alcohol intake results in progressive dysbiosis and development of clinical events such as AH, infection, and HE. The composition and function of GM, specific changes in bacterial communities, and the functional metabolism of GM are affected in the spectrum of ALD, as revealed using high-throughput sequencing. It was reported in preliminary studies that modulation of disrupted GM improves adverse clinical events and ameliorates disease progression in ALD. In this review, we exhaustively discuss the preclinical and clinical studies on GM in ALD and critically discuss GM modulation and its effects based on various human and animal models of ALD.
Collapse
Key Words
- ACLF
- ACLF, acute on chronic liver failure
- AH, alcohol-associated hepatitis
- ALD
- ALD, alcohol-associated liver disease
- AUD, alcohol use disorder
- FMT
- FMT, fecal microbiota transplantation
- GM, gut microbiota
- HE, hepatic encephalopathy
- IL, interleukin
- MAFLD, metabolic-associated fatty liver disease
- SCFA, short chain fatty acids
- cirrhosis
- microbiome
Collapse
Affiliation(s)
- Cyriac A. Philips
- Department of Clinical and Translational Hepatology and The Monarch Liver Laboratory, The Liver Institute, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA, USA
| |
Collapse
|
35
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
36
|
Bloom PP, Donlan J, Torres Soto M, Daidone M, Hohmann E, Chung RT. Fecal microbiota transplant improves cognition in hepatic encephalopathy and its effect varies by donor and recipient. Hepatol Commun 2022; 6:2079-2089. [PMID: 35384391 PMCID: PMC9315114 DOI: 10.1002/hep4.1950] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023] Open
Abstract
Early data suggest fecal microbiota transplant (FMT) may treat hepatic encephalopathy (HE). Optimal FMT donor and recipient characteristics are unknown. We assessed the safety and efficacy of FMT in patients with prior overt HE, comparing five FMT donors. We performed an open-label study of FMT capsules, administered 5 times over 3 weeks. Primary outcomes were change in psychometric HE score (PHES) and serious adverse events (SAEs). Serial stool samples underwent shallow shotgun metagenomic sequencing. Ten patients completed FMT administration and 6-month follow-up. Model for End-Stage Liver Disease (MELD) score did not change after FMT (14 versus 14, p = 0.51). Thirteen minor adverse events and three serious adverse events (two unrelated to FMT) were reported. One SAE was extended-spectrum beta-lactamase Escherichia coli bacteremia. The PHES improved after three doses of FMT (+2.1, p < 0.05), after five doses of FMT (+2.9, p = 0.007), and 4 weeks after the fifth dose of FMT (+3.1, p = 0.02). Mean change in the PHES ranged from -1 to +6 by donor. Two taxa were identified by random forest analysis and confirmed by linear regression to predict the PHES- Bifidobacterium adolescentis (adjusted R2 = 0.27) and B. angulatum (adjusted R2 = 0.25)-both short-chain fatty acid (SCFA) producers. Patients who responded to FMT had higher levels of Bifidobacterium as well as other known beneficial taxa at baseline and throughout the study. The FMT donor with poorest cognitive outcomes in recipients had the lowest fecal SCFA levels. Conclusion: FMT capsules improved cognition in HE, with an effect varying by donor and recipient factors (NCT03420482).
Collapse
Affiliation(s)
- Patricia P. Bloom
- Division of GastroenterologyUniversity of MichiganAnn ArborMichiganUSA
| | - John Donlan
- Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Michael Daidone
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elizabeth Hohmann
- Division of Infectious DiseaseMassachusetts General HospitalBostonMassachusettsUSA
| | - Raymond T. Chung
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
37
|
Kulkarni AV, Premkumar M, Arab JP, Kumar K, Sharma M, Reddy ND, Padaki NR, Reddy RK. Early Diagnosis and Prevention of Infections in Cirrhosis. Semin Liver Dis 2022; 42:293-312. [PMID: 35672014 DOI: 10.1055/a-1869-7607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strategies to prevent infection and improve outcomes in patients with cirrhosis. HAV, hepatitis A virus; HBV, hepatitis B virus; COVID-19, novel coronavirus disease 2019; NSBB, nonselective β-blocker; PPI, proton pump inhibitors.Cirrhosis is a risk factor for infections. Majority of hospital admissions in patients with cirrhosis are due to infections. Sepsis is an immunological response to an infectious process that leads to end-organ dysfunction and death. Preventing infections may avoid the downstream complications, and early diagnosis of infections may improve the outcomes. In this review, we discuss the pathogenesis, diagnosis, and biomarkers of infection; the incremental preventive strategies for infections and sepsi; and the consequent organ failures in cirrhosis. Strategies for primary prevention include reducing gut translocation by selective intestinal decontamination, avoiding unnecessary proton pump inhibitors' use, appropriate use of β-blockers, and vaccinations for viral diseases including novel coronavirus disease 2019. Secondary prevention includes early diagnosis and a timely and judicious use of antibiotics to prevent organ dysfunction. Organ failure support constitutes tertiary intervention in cirrhosis. In conclusion, infections in cirrhosis are potentially preventable with appropriate care strategies to then enable improved outcomes.
Collapse
Affiliation(s)
- Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Juan P Arab
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Karan Kumar
- Department of Hepatology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nageshwar D Reddy
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nagaraja R Padaki
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rajender K Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
39
|
Philips CA, Ahamed R, Rajesh S, Abduljaleel JK, Augustine P. Long-term Outcomes of Stool Transplant in Alcohol-associated Hepatitis-Analysis of Clinical Outcomes, Relapse, Gut Microbiota and Comparisons with Standard Care. J Clin Exp Hepatol 2022; 12:1124-1132. [PMID: 35814513 PMCID: PMC9257856 DOI: 10.1016/j.jceh.2022.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Healthy donor fecal microbiota transplantation (FMT) was preliminarily shown to have clinical benefits in hepatic encephalopathy (HE), severe alcohol-associated hepatitis (SAH), and alcohol use disorder. However, the long-term outcomes of FMT and the gut microbiota (GM) changes in patients with SAH are unknown. METHODS Patients with SAH who underwent FMT (N = 35) or standard of care (SoC, N = 26) from May 2017 to June 2018 were included, and their stored stool samples were analyzed prospectively. Clinical outcomes, including infections, hospitalizations, critical illness, alcohol relapse, and survival, were evaluated. Metagenomic analysis was undertaken to identify the relative abundances (Ras) and significant taxa at baseline and post-therapy (up to three years) among survivors between the two groups. RESULTS At follow-up, the incidences of ascites, HE, infections, and major hospitalizations were significantly higher in the SoC than in the FMT group (P < 0.05). Alcohol relapse was lower (28.6% versus 53.8%), and the time to relapse was higher in the FMT than in the SoC group (P = 0.04). Three-year survival was higher in the FMT than in the SoC group (65.7% versus 38.5%, P = 0.052). Death due to sepsis was significantly higher in the SoC group (N = 13/16, 81.2%; P = 0.008). GM analysis showed a significant increase in the RA of Bifidobacterium and a reduction in the RA of Acinetobacter in the FMT group. Beyond one to two years, the RA of Porphyromonas was significantly higher and that of Bifidobacterium was lower in the SoC than in the FMT group. CONCLUSIONS In terms of treatment for patients with SAH, healthy donor FMT is associated with significantly lesser ascites, infections, encephalopathy, and alcohol relapse (with a trend toward higher survival rates) than SoC, associated with beneficial GM modulation. Larger controlled studies on FMT are an unmet need.
Collapse
Affiliation(s)
- Cyriac A. Philips
- Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
- Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Rizwan Ahamed
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Sasidharan Rajesh
- Diagnostic and Interventional Radiology, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Jinsha K.P. Abduljaleel
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Philip Augustine
- Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| |
Collapse
|
40
|
Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 2022; 14:2055944. [PMID: 35332832 PMCID: PMC8959533 DOI: 10.1080/19490976.2022.2055944] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.
Collapse
Affiliation(s)
- Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Haley Anne Hallowell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kalia Koutouvalis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA,CONTACT Jotham Suez Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, Maryland, USA, 21205
| |
Collapse
|
41
|
Tun KM, Hong AS, Batra K, Naga Y, Ohning G. A Systematic Review of the Efficacy and Safety of Fecal Microbiota Transplantation in the Treatment of Hepatic Encephalopathy and Clostridioides difficile Infection in Patients With Cirrhosis. Cureus 2022; 14:e25537. [PMID: 35800791 PMCID: PMC9246246 DOI: 10.7759/cureus.25537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/17/2022] Open
Abstract
The microbiome of the human gut and liver coexists by influencing the health and disease state of each system. Fecal microbiota transplantation (FMT) has recently emerged as a potential treatment for conditions associated with cirrhosis, such as hepatic encephalopathy and recurrent/refractory Clostridioides difficile infection (rCDI). We have conducted a systematic review of the safety and efficacy of FMT in treating hepatic encephalopathy and rCDI. A literature search was performed using variations of the keywords "fecal microbiota transplant" and "cirrhosis" on PubMed/MEDLINE from inception to October 3, 2021. The resulting 116 articles were independently reviewed by two authors. Eight qualifying studies were included in the systematic review. A total of 127 cirrhotic patients received FMT. Hepatic encephalopathy was evaluated by cognitive tests, such as the Psychometric Hepatic Encephalopathy Score (PHES) and EncephalApp Stroop test. Not only was there an improvement in the cognitive performance in the FMT cohort, but the improvement was also maintained throughout long-term follow-up. In the treatment of rCDI, the FMT success rate is similar between cirrhotic patients and the general population, although more than one dose may be needed in the former. The rate of serious adverse events and adverse events in the cirrhotic cohort was slightly higher than that in the general population but was low overall. We found evidence that supports the therapeutic potential and safety profile of FMT to treat hepatic encephalopathy and rCDI in cirrhotic patients. Further research will be beneficial to better understand the role of FMT in cirrhosis.
Collapse
Affiliation(s)
- Kyaw Min Tun
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, USA
| | - Annie S Hong
- Department of Gastroenterology and Hepatology, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, USA
| | - Kavita Batra
- Department of Research, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, USA
| | - Yassin Naga
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, USA
| | - Gordon Ohning
- Department of Gastroenterology and Hepatology, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Las Vegas, USA
| |
Collapse
|
42
|
Chiang D, Dingle TC, Belga S, Kabbani D, Bhanji RA, Walter J, Abraldes JG, Cervera C. Association between Gut Colonization of Vancomycin-resistant Enterococci and Liver Transplant Outcomes. Transpl Infect Dis 2022; 24:e13821. [PMID: 35247208 DOI: 10.1111/tid.13821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) colonization is common in liver transplant recipients and has been associated with worse post-transplant outcomes. METHODS We conducted a retrospective cohort study at the University of Alberta Hospital including patients who underwent a liver transplant between September 2014 and December 2017. RESULTS Of 343 patients, 68 (19.8%) had pre-transplant VRE colonization and 27 (27/275, 9.8%) acquired VRE post-transplant, 67% were males and the median age was 56.5 years. VRE colonized patients at baseline had higher MELD scores and required longer post-transplant hospitalization. VRE colonization was associated with increased risk of early acute kidney injury (AKI) (64% vs 52%, p = 0. 044), clinically significant bacterial/fungal infection (29% vs 17%, p = 0. 012) and invasive VRE infection (5% vs 1%, p = 0. 017). Mortality at 2-years was 13% in VRE-colonized versus 7% in non-colonized (p = 0.085). On multivariate analysis, VRE colonization increased the risk of post-transplant AKI (HR 1.504, 95% CI: 1.077-2.100, p = 0.017) and clinically significant bacterial or fungal infection at 6 months (HR 2.038, 95%CI: 1.222-3.399, p = 0.006), and was associated with non-significant trend towards increased risk of mortality at 2-years post-transplant (HR 1.974 95% CI 0.890-4.378; p = 0.094). CONCLUSIONS VRE colonization in liver transplant patients is associated with increased risk of early AKI, clinically significant infections, and a trend towards increased mortality at 2-years. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diana Chiang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tanis C Dingle
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Sara Belga
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dima Kabbani
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Rahima A Bhanji
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine and APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Juan G Abraldes
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Cervera
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Philips CA, Augustine P. Gut Barrier and Microbiota in Cirrhosis. J Clin Exp Hepatol 2022; 12:625-638. [PMID: 35535069 PMCID: PMC9077238 DOI: 10.1016/j.jceh.2021.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota and their homeostatic functions are central to the maintenance of the intestinal mucosal barrier. The gut barrier functions as a structural, biological, and immunological barrier, preventing local and systemic invasion and inflammation of pathogenic taxa, resulting in the propagation or causation of organ-specific (liver disease) or systemic diseases (sepsis) in the host. In health, commensal bacteria are involved in regulating pathogenic bacteria, sinister bacterial products, and antigens; and help control and kill pathogenic organisms by secreting antimicrobial metabolites. Gut microbiota also participates in the extraction, synthesis, and absorption of nutrient metabolites, maintains intestinal epithelial integrity and regulates the development, homeostasis, and function of innate and adaptive immune cells. Cirrhosis is associated with local and systemic immune, vascular, and inflammatory changes directly or indirectly linked to perturbations in quality and quantity of intestinal microbiota and intestinal mucosal integrity. Dysbiosis and gut barrier dysfunction are directly involved in the pathogenesis of compensated cirrhosis and the type and severity of complications in decompensated cirrhosis, such as bacterial infections, encephalopathy, extrahepatic organ failure, and progression to acute on chronic liver failure. This paper reviews the normal gut barrier, gut barrier dysfunction, and dysbiosis-associated clinical events in patients with cirrhosis. The role of dietary interventions, antibiotics, prebiotics, probiotics, synbiotics, and healthy donor fecal microbiota transplantation (FMT) to modulate the gut microbiota for improving patient outcomes is further discussed.
Collapse
Affiliation(s)
- Cyriac A. Philips
- Department of Translational Hepatology, Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Philip Augustine
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| |
Collapse
|
44
|
Abstract
OPINION STATEMENT Immunotherapy is revolutionizing tumor treatment by activating the immune response to tumors. Among them, immunotherapy represented by immune checkpoint inhibitors is considered to be a milestone in tumor treatment. It has revolutionized the management of advanced malignant tumors by activating T cells, promoting cytotoxic signaling pathways, and killing tumor cells, effectively improving the overall survival of patients. However, resistance to immunotherapy and immune-related adverse events remain challenges for immunotherapy. It has been demonstrated in previous studies that modulating intestinal microbiota can enhance immunotherapy response and reduce complications. Currently, the more mature method for microbiota regulation is fecal microbiota transplantation, which involves transfering a donor's microbiome to the recipient in the form of capsules or fecal microbiota suspension to restore the richness of the recipient's intestinal microbiota. In terms of cancer immunotherapy, fecal microbiota transplantation in patients who fail to respond to immune checkpoint inhibitors is expected to produce better prognosis for patients.
Collapse
|
45
|
Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 2022; 14:2038856. [PMID: 35230889 PMCID: PMC8890388 DOI: 10.1080/19490976.2022.2038856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major 'whole microbiome' therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, the potential use of FMT in treating other infectious diseases is an area of active research. In this review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren A. Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Frances J. Davies
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
46
|
Hepatic Encephalopathy-Related Hospitalizations in Cirrhosis: Transition of Care and Closing the Revolving Door. Dig Dis Sci 2022; 67:1994-2004. [PMID: 34169435 PMCID: PMC9167177 DOI: 10.1007/s10620-021-07075-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022]
Abstract
Cirrhosis is associated with substantial morbidity and mortality. Development of complications of cirrhosis, including hepatic encephalopathy (HE), portends poorer outcomes. HE is associated with hospital readmission, impaired patient and caregiver quality of life, risk of falls, and mortality. Guidelines recommend lactulose as first-line therapy for HE and rifaximin in combination with lactulose for reducing the risk of HE recurrence. Improving post-discharge outcomes, including readmissions, is an important aspect in the management of patients with HE. Approaches focused on improving management and prevention of HE, including properly titrating lactulose dosing, overcoming medication-related nonadherence, and incorporating rifaximin as therapy to reduce the risk of recurrence, as well as incorporating supportive care initiatives, may ease the transition from hospital to home. Strategies to decrease readmission rates include using hospital navigators, who can offer patient/caregiver education, post-discharge planning, and medication review; and involving pharmacists in post-discharge planning. Similarly, telemedicine offers providers the opportunity to monitor patients with HE remotely and improves outcomes. Providers offering transitional care management may be reimbursed when establishing contact with patients within 2 days post-discharge and conducting an outpatient visit within 7 days or 14 days. Several approaches have been shown to improve outcomes broadly in patients post-discharge and may also be effective for improving outcomes specifically in patients hospitalized with cirrhosis and HE, thus closing the revolving door on rehospitalizations in this population.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Although gut dysbiosis can hasten disease progression in end-stage liver disease and contribute to disease severity, morbidity and mortality, its impact during and after transplant needs further study. RECENT FINDINGS Changes in the microbiome are associated with hepatic decompensation. Immune homeostasis is further disrupted during transplant and with immunosuppressants required after transplant. There is increasing evidence of the role of microbiota in peri and posttransplant complications. SUMMARY Although transplant is highly successful with acceptable survival rates, infections, rejection, disease recurrence and death remain important complications. Prognostication and interventions involving the gut microbiome could be beneficial.
Collapse
Affiliation(s)
- Nikki Duong
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
48
|
Shamsaddini A, Gillevet PM, Acharya C, Fagan A, Gavis E, Sikaroodi M, McGeorge S, Khoruts A, Albhaisi S, Fuchs M, Sterling RK, Bajaj JS. Impact of Antibiotic Resistance Genes in Gut Microbiome of Patients With Cirrhosis. Gastroenterology 2021; 161:508-521.e7. [PMID: 33857456 PMCID: PMC9069394 DOI: 10.1053/j.gastro.2021.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Cirrhosis is associated with changes in intestinal microbiota that can lead to hepatic encephalopathy (HE) and infections, especially with antibiotic-resistant organisms. However, the impact of gut microbial antibiotic resistance gene (ARG) burden on clinical outcomes is unclear. The aims of the study were to determine the impact of ARGs in cirrhosis-related gut metagenome on outcomes and disease progression, study the effect of rifaximin on ARG burden, and compare ARGs in cirrhosis with chronic kidney disease (CKD) and diabetes. METHODS In outpatients with cirrhosis who underwent metagenomics, we evaluated change in ARG abundances with progression and their multivariable impact on 90-day hospitalizations and deaths over 1 year. We also studied ARGs pre- and 8 weeks post-rifaximin in patients with compensated cirrhosis in an open-label trial. Finally, ARGs from CKD and diabetes studies were compared with cirrhosis on machine learning. RESULTS A total of 163 patients with cirrhosis (43 compensated, 20 ascites-only, 30 HE-only, 70 both) and 40 controls were included. ARG abundances were higher in cirrhosis versus controls and worsened with advancing cirrhosis severity; 44 patients were hospitalized and 14 died. ARG abundances were associated with hospitalizations and mortality while controlling for cirrhosis complications, medications, and demographics. Rifaximin trial: ARG abundance patterns were minimally affected in 19 patients post-rifaximin. CKD/diabetes comparison: ARG abundance patterns in cirrhosis are distinguishable on machine learning and include more gram-positive ARGs. CONCLUSIONS Cirrhosis is associated with high gut microbial ARG gene burden compared with controls, which worsens with disease progression and may be different from CKD and diabetes. ARGs are not affected by rifaximin and are associated with hospitalizations and death.
Collapse
Affiliation(s)
| | | | - Chathur Acharya
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Edith Gavis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | | | - Sara McGeorge
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Alexander Khoruts
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Somaya Albhaisi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Richard K. Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| |
Collapse
|
49
|
Hassouneh R, Bajaj JS. Gut Microbiota Modulation and Fecal Transplantation: An Overview on Innovative Strategies for Hepatic Encephalopathy Treatment. J Clin Med 2021; 10:330. [PMID: 33477417 PMCID: PMC7830387 DOI: 10.3390/jcm10020330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a major complication of cirrhosis, which is associated with gut microbial composition and functional alterations. Current treatments largely focus on gut microbiota using lactulose, rifaximin and other agents. However, despite these treatments, patients with HE have a high rate of readmission, morbidity and cognitive impairment. Fecal microbiota transplant (FMT) involves introduction of a donor microbiota into a recipient and is currently mainly used for recurrent C. difficile infection (rCDI). The role of FMT in cirrhosis and HE is evolving. There have been two randomized clinical trials (RCT) and several case reports/series in cirrhosis. Both RCTs were safety-focused phase 1 trials. One involved pre-FMT antibiotics and FMT enema versus standard of care, while the other involved 15 FMT capsules versus placebo without pre-FMT antibiotics. There was evidence of safety in both trials and the FMT group demonstrated reduction in hospitalizations compared to the non-FMT group. Changes in microbial function centered around short-chain fatty acids, bile acids and brain function showed improvement in the FMT groups. Long-term follow-up demonstrated continued safety and reduction in the antibiotic-resistance gene carriage. However, larger trials of FMT in HE are needed that can refine the dose, duration and route of FMT administration.
Collapse
Affiliation(s)
- Ramzi Hassouneh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA;
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology and Nutrition Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
| |
Collapse
|