1
|
Moniaux N, Geoffre N, Deshayes A, Dos Santos A, Job S, Lacoste C, Nguyen TS, Darnaud M, Friedel-Arboleas M, Guettier C, Purhonen J, Kallijärvi J, Amouyal G, Amouyal P, Bréchot C, Vivès RR, Buendia MA, Issad T, Faivre J. Tumor suppressive role of the antimicrobial lectin REG3A targeting the O -GlcNAc glycosylation pathway. Hepatology 2025; 81:1416-1432. [PMID: 38975812 PMCID: PMC11999098 DOI: 10.1097/hep.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved. APPROACH AND RESULTS This study provides evidence for a suppressive role of REG3A in HCC by reducing O -GlcNAcylation in 2 mouse models of HCC, in vitro cell studies, and clinical samples. REG3A expression in hepatocytes significantly reduced global O -GlcNAcylation and O -GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibited HCC development in REG3A-c-MYC double transgenic mice and mice exposed to diethylnitrosamine. REG3A modified O -GlcNAcylation without altering the expression or activity of O-linked N-acetylglucosaminyltransferase, O-linked N-acetylglucosaminyl hydrolase, or glutamine fructose-6-phosphate amidotransferase. Reduced O -GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in precancerous and cancerous livers. This effect was linked to the ability of REG3A to bind glucose and glucose-6 phosphate, suggested by a REG3A mutant unable to bind glucose and glucose-6 phosphate and alter O -GlcNAcylation. Importantly, patients with cirrhosis with high hepatic REG3A expression had lower levels of O -GlcNAcylation and longer cancer-free survival than REG3A-negative cirrhotic livers. CONCLUSIONS REG3A helps fight liver cancer by reducing O -GlcNAcylation. This study suggests a new paradigm for the regulation of O -GlcNAc signaling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nicolas Geoffre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvie Job
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Catherine Guettier
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, Laboratoire Anatomie Pathologique, Le Kremlin Bicêtre, France
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | - Marie Annick Buendia
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tarik Issad
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Medical-University Department (DMU) Biology Genetics, Université Paris-Saclay, Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
2
|
Li Z, Yu Y, Zhao X, Qu Y, Wang J, Zhang D. Chaperone-Mediated Autophagy Reactivation Protects Against Severe Acute Pancreatitis-Associated Liver Injury Through Upregulating Keap1/Nrf2 Signaling Pathway and Inhibiting NLRP3 Inflammasome Activation. Cell Biochem Biophys 2025:10.1007/s12013-025-01677-7. [PMID: 39998716 DOI: 10.1007/s12013-025-01677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
Acute liver injury (ALI) is a vital factor in the early progression of severe acute pancreatitis (SAP). It exacerbates systemic inflammation, impairs the liver's capacity to clear inflammatory mediators and cytokines, and contributes to systemic organ dysfunction syndrome (SODS). However, the mechanisms driving SAP-associated liver injury (SAP-ALI) are poorly understood, and effective therapeutic options remain limited. Chaperone-mediated autophagy (CMA), a selective form of autophagy, plays an essential role in reducing inflammation and oxidative stress by clearing damaged or dysfunctional proteins. This study examines the role of CMA in SAP-ALI and evaluates its therapeutic potential. In a sodium taurocholate-induced SAP-ALI rat model, CMA dysfunction was observed, characterized by reduced LAMP2A expression and the accumulation of CMA substrate proteins in pancreatic and hepatic tissues. The activator AR7 successfully restored CMA function, enhanced anti-inflammatory and antioxidant responses, and mitigated pancreatic and liver damage in SAP rat. In contrast, the CMA inhibitor PPD exacerbated liver injury, underscoring CMA's protective role in SAP-ALI. Mechanistic analyses demonstrated that CMA reactivation activated the Keap1/Nrf2 signaling pathway, leading to increased expression of antioxidant-related genes and suppression of NLRP3 inflammasome activation. Specifically, the protective effects of AR7-induced CMA activation were significantly reversed by the Nrf2 inhibitor ML385, which inhibited Nrf2 signaling and its associated protein levels. These findings show AR7-induced CMA reactivation as a promising therapeutic strategy for SAP-ALI, primarily through its enhancement of Keap1/Nrf2-regulated antioxidant pathways and inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhongbiao Li
- Qingdao Medical College, Qingdao University, Qingdao, 266073, China
- Department of Gastrointestinal Surgery, Qingdao University Affiliated to Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Yue Yu
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China
| | - Xihao Zhao
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China
| | - Yue Qu
- Imageing department, Qingdao University Affiliated Qingdao Haici Hospital, Qingdao, 266033, China
| | - Jiang Wang
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China.
| | - Dianliang Zhang
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China.
| |
Collapse
|
3
|
Jauniaux B, Burke L, Snook N, Karakantza M, Kerr M, Wilson M, Zougman A, Bellamy M, Banks RE, Moore J. Mechanistic insights from a pilot exploratory study of the dynamic proteomic changes during plasma exchange in patients with acute liver failure. Transfus Apher Sci 2025; 64:104028. [PMID: 39566347 DOI: 10.1016/j.transci.2024.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND & AIMS Therapeutic plasma exchange (PEX) has shown potential in improving transplant-free survival in acute liver failure (ALF) however the mechanism of action is not understood. This exploratory study aimed to elucidate the circulating proteomic changes associated with PEX in ALF to provide insight into mechanisms underlying the benefit of this therapy. METHODS Consecutive patients admitted with ALF between June 2019 and August 2020 were enrolled. Patients received either standard medical treatment (n = 5) or PEX (n = 5). Plasma samples were collected at multiple time points and analysed using the Olink Proximity Extension Assay. Comparative analyses included healthy controls and Octaplas batches. RESULTS Biomarker results were available for 54 samples: Octaplas batches (n = 7), healthy controls (n = 6), ALF-standard medical treatment (n = 8), and ALF-PEX (n = 33). Proteomic analysis of 177 biomarkers revealed marked baseline differences between ALF and healthy controls, with ALF patients exhibiting lower levels of proteins secreted by the liver and higher levels of inflammatory cytokines and growth factors. Longitudinal analysis showed several distinct patterns with PEX. Proteins including carboxylesterase-1, hepatocyte growth factor, fetuin B, IL-6 and IL-10 showed differential expression patterns longitudinally, indicating some of the potential underlying mechanisms and therapeutic effects of PEX. CONCLUSIONS PEX in ALF patients leads to dynamic proteomic changes, reflecting its multifaceted role in modulating inflammation, liver regeneration and replacing essential proteins. These findings provide insight into some of the changes in circulating blood proteins and underlying mechanisms of PEX.
Collapse
Affiliation(s)
| | - Laura Burke
- Leeds Liver Unit, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Nicola Snook
- Adult Intensive Care Unit, St James's University Hospital, Leeds LS9 7TF, UK
| | - Marina Karakantza
- Dept of Haematology, St James's University Hospital, Leeds LS9 7TF, UK; NHS Blood and Transplant, 500, North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Maria Kerr
- NHS Blood and Transplant, 500, North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Michelle Wilson
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Alexandre Zougman
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Mark Bellamy
- Adult Intensive Care Unit, St James's University Hospital, Leeds LS9 7TF, UK
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Joanna Moore
- Leeds Liver Unit, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK; Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK.
| |
Collapse
|
4
|
Negro F. EASL Recognition Award Recipient 2024: Prof. Christian Bréchot. J Hepatol 2024; 81:6-8. [PMID: 38906623 DOI: 10.1016/j.jhep.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Francesco Negro
- Service of Gastroenterology and Hepatology, University Hospitals, 1211 Geneva 14, Switzerland.
| |
Collapse
|
5
|
Gonzalez P, Dos Santos A, Darnaud M, Moniaux N, Rapoud D, Lacoste C, Nguyen TS, Moullé VS, Deshayes A, Amouyal G, Amouyal P, Bréchot C, Cruciani-Guglielmacci C, Andréelli F, Magnan C, Faivre J. Antimicrobial protein REG3A regulates glucose homeostasis and insulin resistance in obese diabetic mice. Commun Biol 2023; 6:269. [PMID: 36918710 PMCID: PMC10015038 DOI: 10.1038/s42003-023-04616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.
Collapse
Affiliation(s)
- Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Valentine S Moullé
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | | | | | | | | | - Fabrizio Andréelli
- Sorbonne Université, INSERM, NutriOmics team, Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France.
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University Department (DMU) Biology, Genetics, Pharmacy, Paul-Brousse Hospital, Villejuif, 94800, France.
| |
Collapse
|
6
|
Le Lay A, Philippe E, Roth F, Sanchez-Archidona AR, Mehl F, Denom J, Prasad R, Asplund O, Hansson O, Ibberson M, Andreelli F, Santoro L, Amouyal P, Amouyal G, Brechot C, Jamot L, Cruciani-Guglielmacci C, Magnan C. Regenerating islet-derived protein 3α: A promising therapy for diabetes. Preliminary data in rodents and in humans. Heliyon 2022; 8:e09944. [PMID: 35874080 PMCID: PMC9304733 DOI: 10.1016/j.heliyon.2022.e09944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to test the hypothesis that administration of Regenerating islet-derived protein 3α (Reg3α), a protein described as having protective effects against oxidative stress and anti-inflammatory activity, could participate in the control of glucose homeostasis and potentially be a new target of interest in the treatment of type 2 diabetes. To that end the recombinant human Reg3α protein was administered for one month in insulin-resistant mice fed high fat diet. We performed glucose and insulin tolerance tests, assayed circulating chemokines in plasma and measured glucose uptake in insulin sensitive tissues. We evidenced an increase in insulin sensitivity during an oral glucose tolerance test in ALF-5755 treated mice vs controls and decreased the pro-inflammatory cytokine C-X-C Motif Chemokine Ligand 5 (CXCL5). We also demonstrated an increase in glucose uptake in skeletal muscle. Finally, correlation studies using human and mouse muscle biopsies showed negative correlation between intramuscular Reg3α mRNA expression (or its murine isoform Reg3γ) and insulin resistance. Thus, we have established the proof of concept that Reg3α could be a novel molecule of interest in the treatment of T2D by increasing insulin sensitivity via a skeletal muscle effect.
Collapse
Affiliation(s)
- Aurélie Le Lay
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | - Erwann Philippe
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | - Fanny Roth
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | | | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Rashmi Prasad
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olof Asplund
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | - Ola Hansson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Fabrizio Andreelli
- Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, INSERM; Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Lyse Santoro
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | - Paul Amouyal
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | - Gilles Amouyal
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | - Christian Brechot
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France.,University of South Florida, Tampa, FL 33612, USA
| | - Laure Jamot
- The Healthy Aging Company, Incubateur Paris Biotech Santé, F-75014 Paris, France
| | | | | |
Collapse
|
7
|
Wang L, Quan Y, Zhu Y, Xie X, Wang Z, Wang L, Wei X, Che F. The regenerating protein 3A: a crucial molecular with dual roles in cancer. Mol Biol Rep 2021; 49:1491-1500. [PMID: 34811636 PMCID: PMC8825409 DOI: 10.1007/s11033-021-06904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
Introduction REG3A, a member of the third subclass of the Reg family, has been found in a variety of tissues but is not detected in immune cells. In the past decade, it has been determined that REG3A expression is regulated by injury, infection, inflammatory stimuli, and pro-cytokines via different signaling pathways, and it acts as a tissue-repair, bactericidal, and anti-inflammatory molecule in human diseases. Recently, the role of REG3A in cancer has received increasing attention. The present article aims to investigate the structure, expression, regulation, function of REG3A, and to highlight the potential role of REG3A in tumors. Methods A detailed literature search and data organization were conducted to find information about the role of REG3A in variety of physiological functions and tumors. Results Contradictory roles of REG3A have been reported in different tumor models. Some studies have demonstrated that high expression of REG3A in cancers can be oncogenic. Other studies have shown decreased REG3A expression in cancer cells as well as suppressed tumor growth. Conclusions Taken together, better understanding of REG3A may lead to new insights that make it a potentially useful target for cancer therapy.
Collapse
Affiliation(s)
- Liying Wang
- Department of Clinlical Medicine, Weifang Medical College, Weifang, China.,Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Linyi, China. .,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China. .,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China.
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Long Wang
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiuhong Wei
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, China. .,Central Laboratory, Linyi People's Hospital, Linyi, China. .,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China. .,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China.
| |
Collapse
|
8
|
Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, Wang Y, Wang D, Wang H, Huang W. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol 2021; 12:724514. [PMID: 34531748 PMCID: PMC8438129 DOI: 10.3389/fphar.2021.724514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a highly fatal acute inflammation and is often accompanied by multiple organ dysfunction syndrome (MODS). The liver, one of the most vulnerable extrapancreatic organs in AP, is the major organ involved in the evolution of the disease and correlates strongly with the occurrence of MODS. However, the etiology of pancreatitis-associated liver injury (PALI) has not been clarified and currently lacks an effective treatment. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is a cell permeable nucleoside with pleiotropic effects on anti-inflammatory and antioxidant stress that binds with adenosine monophosphate protein kinase (AMPK) and induces AMPK activation. However, the role of AICAR in PALI remains elusive. Here, we show that activation of AMPK by AICAR, a direct AMPK agonist, significantly ameliorates sodium taurocholate-induced PALI in rats, whereas treatment of PALI rats with the AMPK antagonist Compound C profoundly exacerbates the degree of liver injury, suggesting that hepatic AMPK activation exerts an essential protective role in PALI. Mechanistically, AICAR induces AMPK activation, which in turn activates nuclear factor erythroid 2-related factor 2(Nrf2) -regulated hepatic antioxidant capacity and inhibits NLRP3 inflammasome-mediated pyrolysis, protecting rats from sodium taurocholate-induced PALI. In addition, Nrf2 deficiency strikingly weakens the beneficial effects of AICAR on alleviation of liver injury, oxidative stress and NLRP3 inflammasome activation in L-arginine-induced PALI mice. Thus, AICAR protects against PALI in rodents by triggering AMPK, which is mediated at least in part by Nrf2-modulated antioxidant effects and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Department of Nutrition, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Naruse M, Ochiai M, Sekine S, Taniguchi H, Yoshida T, Ichikawa H, Sakamoto H, Kubo T, Matsumoto K, Ochiai A, Imai T. Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci Rep 2021; 11:2077. [PMID: 33483567 PMCID: PMC7822883 DOI: 10.1038/s41598-021-81475-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from epithelial tumors have recently been utilized as a preclinical model in basic and translational studies. This model is considered to represent the original tumor in terms of 3D structure, genetic and cellular heterogeneity, but not tumor microenvironment. In this study, we established organoids and paired cancer-associated fibroblasts (CAFs) from surgical specimens of colorectal carcinomas (CRCs), and evaluated gene expression profiles in organoids with and without co-culture with CAFs to assess interactions between tumor cells and CAFs in tumor tissues. We found that the expression levels of several genes, which are highly expressed in original CRC tissues, were downregulated in organoids but re-expressed in organoids by co-culturing with CAFs. They comprised immune response- and external stimulus-related genes, e.g., REG family and dual oxidases (DUOXs), which are known to have malignant functions, leading tumor cells to proliferative and/or anti-apoptotic states and drug resistant phenotypes. In addition, the degree of differential induction of REG1 and DUOX2 in the co-culture system varied depending on CAFs from each CRC case. In conclusion, the co-culture system of CRC organoids with paired CAFs was able to partially reproduce the tumor microenvironment.
Collapse
Affiliation(s)
- Mie Naruse
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masako Ochiai
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Taniguchi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiromi Sakamoto
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kubo
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshio Imai
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
10
|
Moniaux N, Lacaze L, Gothland A, Deshayes A, Samuel D, Faivre J. Cyclin-dependent kinase inhibitors p21 and p27 function as critical regulators of liver regeneration following 90% hepatectomy in the rat. World J Hepatol 2020; 12:1198-1210. [PMID: 33442448 PMCID: PMC7772727 DOI: 10.4254/wjh.v12.i12.1198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver reduction is the main curative treatment for primary liver cancer, but its use remains limited as liver regeneration requires a minimum of 30% functional parenchyma.
AIM To study the dynamics of the liver regeneration process and consequent behavior of cell cycle regulators in rats after extended hepatectomy (90%) and postoperative glucose infusions.
METHODS Post-hepatectomy liver failure was triggered in 84 Wistar rats by reducing their liver mass by 90%. The animals received a post-operative glucose infusion and were randomly assigned to two groups: One to investigate the survival rate and the other for biochemical analyses. Animals that underwent laparotomy or 70% hepatectomy were used as controls. Blood and liver samples were collected on postoperative days 1 to 7. Liver morphology, function, and regeneration were studied with histology, immunohistochemistry, and western blotting.
RESULTS Postoperative mortality after major resection reached 20% and 55% in the first 24 h and 48 h, respectively, with an overall total of 70% 7 d after surgery. No apparent signs of apoptotic cell death were detected in the extended hepatectomy rat livers, but hepatocytes displaying a clear cytoplasm and an accumulation of hyaline material testified to changes affecting their functional activities. Liver regeneration started properly, as early events initiating cell proliferation occurred within the first 3 h, and the G1 to S transition was detected in less than 12 h. However, a rise in p27 (Kip1) followed by p21 (Waf1/Cip1) cell cycle inhibitor levels led to a delayed S phase progression and mitosis. Overall, liver regeneration in rats with a 90% hepatectomy was delayed by 24 h and associated with a delayed onset and lower peak magnitude of hepatocellular deoxyribonucleic acid synthesis.
CONCLUSION This work highlights the critical importance of the cyclin/cyclin-dependent kinase inhibitors of the Cip/Kip family in regulating the liver regeneration timeline following extended hepatectomy.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin, Bicêtre 94270, France
| | - Laurence Lacaze
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin, Bicêtre 94270, France
| | - Adélie Gothland
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin, Bicêtre 94270, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin, Bicêtre 94270, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin, Bicêtre 94270, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin, Bicêtre 94270, France
- Department of Pôle de Biologie Médicale, Laboratoire d’Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Paul-Brousse University Hospital, Villejuif 94800, France
| |
Collapse
|
11
|
Reg3α and Reg3β Expressions Followed by JAK2/STAT3 Activation Play a Pivotal Role in the Acceleration of Liver Hypertrophy in a Rat ALPPS Model. Int J Mol Sci 2020; 21:ijms21114077. [PMID: 32517345 PMCID: PMC7312405 DOI: 10.3390/ijms21114077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
To explore the underlying mechanism of rapid liver hypertrophy by liver partition in associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), liver partition at different sites was investigated. Increased inflammatory cytokines owing to the liver partition have been reportedly responsible. If this were true, rapid liver hypertrophy should be achieved regardless of where the liver was split. A male Sprague-Dawley rat model was created, in which a liver split was placed inside the portal vein ligated lobe (PiLL), in addition to the ALPPS and portal vein ligation (PVL) models. Liver regeneration rate, inflammatory cytokine levels, activation status of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway and expressions of regenerating islet-derived (Reg)3α and Reg3β were investigated. The liver regeneration rate was significantly higher in the ALPPS group than in the PiLL group, whereas inflammatory cytokine levels were nearly equal. Additional volume increase in ALPPS group over PVL and PiLL groups was JAK2/STAT3-dependent. Reg3α and Reg3β expressions were observed only in the ALPPS group. An increase in inflammatory cytokines was not enough to describe the mechanism of rapid liver hypertrophy in ALPPS. Expressions of Reg3α and Reg3β could play an important role in conjunction with an activation of the JAK2/STAT3 pathway.
Collapse
|
12
|
Zheng X, Li Q, Tian H, Li H, Lv Y, Wang Y, He L, Huo Y, Hao Z. HIP/PAP protects against bleomycin-induced lung injury and inflammation and subsequent fibrosis in mice. J Cell Mol Med 2020; 24:6804-6821. [PMID: 32352211 PMCID: PMC7299702 DOI: 10.1111/jcmm.15334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Tian
- Research Center of Reproductive Medicine, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifei Lv
- Department of Gastroenterology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongwei Huo
- Research Center of Reproductive Medicine, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) confers protection against hepatic fibrosis through downregulation of transforming growth factor β receptor II. J Transl Med 2020; 100:466-482. [PMID: 31641222 DOI: 10.1038/s41374-019-0314-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) has antimicrobial, antioxidant, anti-inflammatory, mitogenic, and antiapoptotic effects and thus exerts important functions in the maintenance of integrity and homeostasis of several organs, such as the gastrointestinal tract, pancreas, and liver. Although the potent hepatoprotective effect of HIP/PAP has been validated, its impact on liver fibrosis has not been reported. In this study, we evaluated the role of HIP/PAP on hepatic fibrosis and explored the possible underlying mechanisms. We found that the expression of HIP/PAP and its mouse counterpart, Reg3B, was markedly upregulated in fibrotic human or mouse livers. Intraperitoneal (i.p.) interleukin (IL)-10, IL-6, and TNF-α but not TGF-β1 significantly induced hepatic overexpression of Reg3B in mice. In both CCl4 and BDL liver fibrosis models, adenovirus-mediated ectopic expression of HIP/PAP markedly alleviated liver injury, inflammation, collagen deposition, hepatic stellate cell activation, and the overexpression of profibrotic cytokines, including transforming growth factor β1 (TGF-β1), platelet-derived growth factor (PDGF)-A, B, connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1 (PAI-1), in mice. In vitro experiments demonstrated that, in addition to suppressing hepatic stellate cell proliferation and accelerating hepatocyte proliferation, HIP/PAP mitigated TGF-β1-induced hepatic stellate cell activation, hepatocyte epithelial-mesenchymal transition (EMT) and upregulated expression of profibrotic cytokines in both hepatic stellate cells and hepatocytes. Moreover, HIP/PAP attenuated the overexpression of TGF-β receptor II (TGF-βRII) in fibrotic mouse livers and decreased the basal expression of TGF-βRII in nonfibrotic mouse livers as well as in cultured hepatocytes and hepatic stellate cells, which is at least partly attributable to the TGF-β1-antagonizing function of HIP/PAP. This study indicates that increased expression of hepatic HIP/PAP serves as a countermeasure against liver injury and fibrosis. Exogenous supplementation of HIP/PAP might be a promising therapeutic agent for hepatic fibrosis as well as liver injury.
Collapse
|
14
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
15
|
Vong LB, Ibayashi Y, Lee Y, Ngo DN, Nishikawa Y, Nagasaki Y. Poly(ornithine)-based self-assembling drug for recovery of hyperammonemia and damage in acute liver injury. J Control Release 2019; 310:74-81. [DOI: 10.1016/j.jconrel.2019.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 01/25/2023]
|
16
|
Abstract
C-type lectins of the Reg3 family belong to antimicrobial peptides (AMPs), which function as a barrier to protect body surfaces against microorganisms. Reg3 mainly expressed throughout the small intestine modulate host defense process via bactericidal activity. A wide range of studies indicate that Reg3 family plays an important role in the physical segregation of microbiota from host as well as the immune response induced by enteric pathogens. In this review, we review a growing literature on the potential metabolic functions of Reg3 proteins and their potential to act as important gut hormones.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, Internal Medicine and Nutritional Sciences, University of Michigan, Ann Arbor, Michigan
- Correspondence: Randy J. Seeley, PhD, Department of Surgery, Internal Medicine and Nutritional Science, University of Michigan, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
17
|
Comparative Analysis of Expression Profiles of Reg Signaling Pathways-Related Genes Between AHF and HCC. Biochem Genet 2019; 57:382-402. [PMID: 30600408 DOI: 10.1007/s10528-018-9900-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Regenerating islet-derived protein (Reg) could participate in the occurrence of diabetes mellitus, inflammation, tumors, and other diseased or damaged tissues. However, the correlation of Reg with acute hepatic failure (AHF) and hepatocellular carcinoma (HCC) is poorly defined. To reveal the expression profiles of Reg family and their possible regulatory roles in AHF and HCC, rat models of HCC and AHF were separately established, and Rat Genome 230 2.0 was used to detect expression profiles of Reg-mediated signaling pathways-associated genes from liver tissues in AHF and HCC. The results showed that a total of 79 genes were significantly changed. Among these genes, 67 genes were the AHF-specific genes, 45 genes were the HCC-specific genes, and 33 genes were the common genes. Then, K-means clustering classified these genes into 4 clusters based on the gene expression similarity, and DAVID analysis showed that the above altered genes were mainly associated with stress response, inflammatory response, and cell cycle regulation. Thereafter, IPA software was used to analyze potential effects of these genes, and the predicted results suggested that the Reg-mediated JAK/STAT, NF-κB, MAPK (ERK1/2, P38 and JNK), PLC, and PI3K/AKT signaling pathways may account for the activated inflammation and cell proliferation, and the attenuated apoptosis and cell death during the occurrence of AHF and HCC.
Collapse
|
18
|
Ding H, Wen Z. Overexpression of C‑sis inhibits H2O2‑induced Buffalo rat liver cell apoptosis in vitro and alleviates liver injury in a rat model of fulminant hepatic failure. Int J Mol Med 2018; 42:873-882. [PMID: 29786113 PMCID: PMC6034937 DOI: 10.3892/ijmm.2018.3684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/04/2018] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of the C‑sis gene in the apoptosis of hepatocytes in vitro and in the liver function of a rat model of fulminant hepatic failure (FHF). Buffalo rat liver (BRL) cells were treated with hydrogen peroxide (H2O2) to induce apoptosis and then transfected with a C‑sis overexpression vector. A rat model of FHF was established, and C‑sis was overexpressed. The mRNA and protein expression of C‑sis were examined using reverse transcription‑polymerase chain reaction and western blot analyses, respectively. Cell viability was assessed by CCK8, and a TUNEL assay was used to examine cell apoptosis. Flow cytometry was used for cell cycle detection. Hematoxylin and eosin staining was used for histological examination. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also examined in the rats. The results showed that C‑sis was successfully overexpressed in the cells and rat model. Compared with H2O2‑treated BRL cells, the overexpression of C‑sis significantly inhibited cell apoptosis, promoted cell viability, and decreased the expression of cleaved caspase-3. Similar results were observed in the FHF rats treated with the C‑sis overexpression plasmid, compared with those treated with empty plasmids. In addition, in the FHF rats overexpressing C‑sis, histological examination showed that liver injury was alleviated, the levels of ALT and AST were significantly decreased, and mortality rate was significantly decreased, compared with those observed in the rats treated with empty plasmids. In conclusion, the overexpression of C‑sis inhibited the H2O2‑induced apoptosis of BRL cells in vitro, and alleviated liver injury, improved liver function, and decreased mortality rates in rat models of FHF.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Dubuquoy L, Chiappini F, Samuel D, Lepage P, Guerrieri F, Doré J, Bréchot C, Moniaux N, Faivre J. Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis. Gastroenterology 2018; 154:1009-1023.e14. [PMID: 29133078 DOI: 10.1053/j.gastro.2017.11.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.
Collapse
Affiliation(s)
- Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Sandrine Augui
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Christophe Desterke
- University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Gert De Hertogh
- Department of Imaging and Pathology, Unit of Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | - Emma Valentino
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Emilie Braun
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Jinzi Zheng
- CEA, DSV, Institut d'Imagerie Biomédicale, Orsay, France; INSERM, U1023, Université Paris-Sud, Orsay, France
| | - Raphael Boisgard
- CEA, DSV, Institut d'Imagerie Biomédicale, Orsay, France; INSERM, U1023, Université Paris-Sud, Orsay, France
| | - Christel Neut
- LIRIC-U995, University Lille, Inserm, CHU Lille, Lille, France
| | | | - Franck Chiappini
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Patricia Lepage
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Francesca Guerrieri
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Roma, Italy
| | - Joel Doré
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Christian Bréchot
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Pasteur Institute, Paris, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France.
| |
Collapse
|
20
|
Xu J, Li C, Li Z, Yang C, Lei L, Ren W, Su Y, Chen C. Protective effects of oxymatrine against lipopolysaccharide/D‑galactosamine‑induced acute liver failure through oxidative damage, via activation of Nrf2/HO‑1 and modulation of inflammatory TLR4‑signaling pathways. Mol Med Rep 2017; 17:1907-1912. [PMID: 29138821 DOI: 10.3892/mmr.2017.8060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Oxymatrine has a variety of pharmacological functions, including anti-viral, anti-liver fibrotic, anti-cancer, anti‑bacterial, anti‑epidemic, analgesic, anti‑allergy and anti‑inflammatory properties. The present study aimed to investigate the protective effects of oxymatrine against lipopolysaccharide (LPS)/D‑galactosamine (D‑GalN)‑induced acute liver failure and the associated underlying mechanisms. Mice were administrated 4 mg/kg LPS and 600 mg/kg D‑GalN. Then, mice in the Oxymatrine group were treated with 120 mg/kg of oxymatrine for 4 weeks. Oxymatrine treatment increased survival rate, decreased plasma aspartate transaminase and alanine aminotransferase activity, increased superoxide dismutase and glutathione peroxidase and decreased malondialdehyde, tumor necrosis factor‑ and myeloperoxidase activities in mice with LPS/D‑GalN‑induced liver failure. Furthermore, Oxymatrine activated nuclear factor erythroid 2‑related factor (Nrf) 2 and heme oxygenase (HO)‑1 protein expression, and suppressed Toll like receptor (TLR)4, myeloid differentiation primary response 88 and nuclear factor‑κB protein expression in mice LPS/D‑GalN mice. Overall, the present study suggests that oxymatrine effectively attenuates LPS/D‑GalN‑induced acute liver failure by oxidative damage via activation of Nrf2/HO‑1 and modulation of TLR4‑dependent inflammatory signaling pathways.
Collapse
Affiliation(s)
- Jian Xu
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Chengmin Li
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Ziwei Li
- Department of Clinical Laboratory, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Chan Yang
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Lan Lei
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Wei Ren
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Yan Su
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| | - Chunping Chen
- Department of Infectious Disease, Fuling Center Hospital of Chongqing, Chongqing 408008, P.R. China
| |
Collapse
|
21
|
Alonso EM, Horslen SP, Behrens EM, Doo E. Pediatric acute liver failure of undetermined cause: A research workshop. Hepatology 2017; 65:1026-1037. [PMID: 27862115 PMCID: PMC5372202 DOI: 10.1002/hep.28944] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Pediatric acute liver failure (PALF) is a potentially devastating condition that occurs in previously healthy children of all ages and frequently leads to a rapid clinical deterioration. An identified cause for liver injury is lacking in approximately 30% of cases. Children with undetermined diagnosis have lower spontaneous survival and higher rates of transplantation and death than other diagnostic groups. A single-day workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases brought together clinicians and basic scientists to integrate aligned research findings and develop a foundation for new mechanistic studies and future treatment trials. The clinical phenotype of indeterminate PALF shares important similarities to the hyperinflammatory state characteristic of hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS). A failure of cytotoxic T cells to limit or contract inflammatory responses may propagate injury and lead to a local and systemic milieu that does not support normal hepatic regeneration. Evidence was presented that bone marrow (BM)-derived Sinusoidal endothelial cell PROgenitor Cells (sprocs) play a vital role in hepatic regeneration. Overwhelming systemic inflammatory responses may suppress mobilization of BM sprocs and dampen hepatic recovery. CONCLUSION Experience gained through treatment trials of HLH and MAS in childhood may inform study design for therapy of PALF. Successful approaches to limiting neuroinflammation through reduction of systemic inflammation and standardized neuroprotection protocols that limit glial injury could significantly improve intact survival. Finally, given that PALF is a rare disease, investigative efforts must include broad multicenter collaboration and careful stewardship of biorepository specimens. (Hepatology 2017;65:1026-1037).
Collapse
Affiliation(s)
- Estella M Alonso
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Chicago, IL
| | - Simon P Horslen
- Seattle Children’s Hospital, Department of Pediatrics at the University of Washington School of Medicine, Seattle, WA
| | - Edward M Behrens
- Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| | - Edward Doo
- Liver Diseases Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Nalpas B, Ichaï P, Jamot L, Carbonell N, Rudler M, Mathurin P, Durand F, Gerken G, Manns M, Trautwein C, Larrey D, Radenne S, Duvoux C, Leroy V, Bernuau J, Faivre J, Moniaux N, Bréchot C, Amouyal G, Amouyal P, Samuel D. A Proof of Concept, Phase II Randomized European Trial, on the Efficacy of ALF-5755, a Novel Extracellular Matrix-Targeted Antioxidant in Patients with Acute Liver Diseases. PLoS One 2016; 11:e0150733. [PMID: 26983031 PMCID: PMC4794150 DOI: 10.1371/journal.pone.0150733] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Objective No efficient medical treatment is available for severe acute hepatitis (SAH) except N-acetylcysteine for acetaminophen-induced acute liver failure. The human C-type lectin Reg3α, referred to as ALF-5755, improved survival in an animal model of acute liver failure and was well tolerated in a phase 1 trial in humans. We performed a phase 2a trial of ALF5755 in non-acetaminophen induced SAH. Design double-blind, randomized, placebo-controlled study. The primary end-point was the improvement in the coagulation protein synthesis assessed by the change of Prothrombin (PR) during the 72 hours following treatment initiation calculated as PRH0 minus PRH72 divided by 72 (PR slope H0H72). Intention to treat (ITT) and per-protocol (PP) analysis of the entire group and the Hepatitis B virus (HBV)/AIH (auto-immune hepatitis) sub-group were done separately. Results 57 patients were included. Twenty-eight received ALF-5755, 29 the placebo. Etiologies were: Hepatitis A (n = 10), HBV (n = 13), AIH (n = 9), drug-induced (n = 8), other (n = 17). On the whole group, nor the PR slope H0H72 (0.18±0.31 vs 0.25±0.32), nor the transplant-free survival rate at day 21 (75 vs 86%) differed between groups. Conversely, in the HBV-AIH subgroup, in which ALF was more severe, PR slope H0-H72 was higher in the ALF-5755 arm, the difference being significant in PP analysis (0.048±0.066 vs -0.040±0.099, p = 0.04); the median length of hospitalization was lower in the ALF-5755 group (8 vs 14 days, p = 0.02). Conclusion ALF-5755 was not efficient in a ITT analysis performed on the whole sample; however it led to a significant, although moderate, clinical benefit in a PP analysis of the sub-group of patients with HBV or AIH related SAH. As HBV is the major cause of SAH in Asia and Africa and AIH a growing cause, this study emphasizes the need to pursuit the evaluation of this novel medical treatment of SAH. Trial Registration ClinicalTrials.gov NCT01318525
Collapse
Affiliation(s)
- Bertrand Nalpas
- Inserm, Département de l’Information Scientifique et de la Communication, Paris, France
- * E-mail:
| | - Philippe Ichaï
- Centre Hépatobiliaire Paul Brousse and Inserm U 1193, Villejuif, France
- Hôpital Universitaire Paul Brousse, Villejuif, France
| | | | - Nicolas Carbonell
- Service Hépato-gastro-entérologie, Hôpital Saint Antoine, Paris, France
| | - Marika Rudler
- Service Hépatologie et de Gastroentérologie, Hôpital La Pitié Salpétrière, Paris, France
| | - Philippe Mathurin
- Service des maladies de l'appareil digestif, Hôpital Claude Huriez, Lille, France
| | | | - Guido Gerken
- Gastroenterology and Hepatology Unit, University of Essen, Essen, Germany
| | - Michael Manns
- Gastroenterology and Hepatology Unit, University of Hanover, Hanover, Germany
| | | | - Dominique Larrey
- Service Hépato-Gastro-Entérologie, Hôpital Saint-Eloi, Montpellier, France
| | - Sylvie Radenne
- Service Hépatologie et Gastro-Entérologie, Hôpital Croix-Rousse, Lyon, France
| | - Christophe Duvoux
- Service d'Hépato-Gastro-Entérologie, Hôpital Henri MondorCréteil, France
| | - Vincent Leroy
- Département d’Hépato-Gastroentérologie, Hôpital de Grenoble, Grenoble, France
| | | | - Jamila Faivre
- Centre Hépatobiliaire Paul Brousse and Inserm U 1193, Villejuif, France
- Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Nicolas Moniaux
- Centre Hépatobiliaire Paul Brousse and Inserm U 1193, Villejuif, France
| | | | | | | | - Didier Samuel
- Centre Hépatobiliaire Paul Brousse and Inserm U 1193, Villejuif, France
- Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
23
|
Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev 2015; 90:55-68. [PMID: 25895618 DOI: 10.1016/j.addr.2015.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Ammonia is a neurotoxic agent that is primarily generated in the intestine and detoxified in the liver. Toxic increases in systemic ammonia levels predominantly result from an inherited or acquired impairment in hepatic detoxification and lead to potentially life-threatening neuropsychiatric symptoms. Inborn deficiencies in ammonia detoxification mainly affect the urea cycle, an endogenous metabolic removal system in the liver. Hepatic encephalopathy, on the other hand, is a hyperammonemia-related complication secondary to acquired liver function impairment. A range of therapeutic options is available to target either ammonia generation and absorption or ammonia removal. Therapies for hepatic encephalopathy decrease intestinal ammonia production and uptake. Treatments for urea cycle disorders eliminate ammoniagenic amino acids through metabolic transformation, preventing ammonia generation. Therapeutic approaches removing ammonia activate the urea cycle or the second essential endogenous ammonia detoxification system, glutamine synthesis. Recent advances in treating hyperammonemia include using synergistic combination treatments, broadening the indication of orphan drugs, and developing novel approaches to regenerate functional liver tissue. This manuscript reviews the various pharmacological treatments of hyperammonemia and focuses on biopharmaceutical and drug delivery issues.
Collapse
|
24
|
Fan K, Jiang J, Wang Z, Yin W, Sun Y, Li H. Expression and purification of the recombinant murine REG3α protein in Pichia pastorisand characterization of its antimicrobial and antitumour efficacy. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1037794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Gonzalez P, Moniaux N, Bréchot C, Faivre J. Is the Reg3α (HIP/PAP) Protein Really an Obesogenic Factor? J Cell Physiol 2015; 231:1. [PMID: 26096764 DOI: 10.1002/jcp.25046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/13/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick Gonzalez
- INSERM UMR-1193, Paul-Brousse University Hospital, University Paris Saclay, Villejuif, France
| | - Nicolas Moniaux
- INSERM UMR-1193, Paul-Brousse University Hospital, University Paris Saclay, Villejuif, France
| | - Christian Bréchot
- INSERM UMR-1193, Paul-Brousse University Hospital, University Paris Saclay, Villejuif, France
| | - Jamila Faivre
- INSERM UMR-1193, Paul-Brousse University Hospital, University Paris Saclay, Villejuif, France
| |
Collapse
|
26
|
Schaller S, Michaud M, Latyszenok V, Robert F, Hocine M, Arnoux T, Gabriac M, Codoul H, Bourhane A, de Bellefois IC, Afxantidis J, Pruss RM. TRO40303, a mitochondrial-targeted cytoprotective compound, provides protection in hepatitis models. Pharmacol Res Perspect 2015; 3:e00144. [PMID: 26236486 PMCID: PMC4492760 DOI: 10.1002/prp2.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/17/2015] [Indexed: 01/05/2023] Open
Abstract
TRO40303 is cytoprotective compound that was shown to reduce infarct size in preclinical models of myocardial infarction. It targets mitochondria, delays mitochondrial permeability transition pore (mPTP) opening and reduces oxidative stress in cardiomyocytes submitted to ischemia/reperfusion in vitro. Because the involvement of the mitochondria and the mPTP has been demonstrated in chronic as well as acute hepatitis, we investigated the potential of TRO40303 to prevent hepatocyte injury. A first set of in vitro studies showed that TRO40303 (from 0.3 to 3 μmol/L) protected HepG2 cells and primary mouse embryonic hepatocytes (PMEH) from palmitate intoxication, a model mimicking steatohepatitis. In PMEH, TRO40303 provided similar protection against cell death due to Jo2 anti-Fas antibody intoxication. Further studies were then preformed in a mouse model of Fas-induced fulminant hepatitis induced by injecting Jo2 anti-Fas antibody. When mice received a sublethal dose of Jo2 at 125 μg/kg, TRO40303 pretreatment prevented liver enzyme elevation in plasma in parallel with a decrease in cytochrome C release from mitochondria and caspase 3 and 7 activation in hepatic tissue. When higher, lethal doses of Jo2 were administered, TRO40303 (10 and 30 mg/kg) significantly reduced mortality by 65–90% when administered intraperitoneally (i.p.) 1 h before Jo2 injection, a time when TRO40303 plasma concentrations reached their peak. TRO40303 (30 mg/kg, i.p.) was also able to reduce mortality by 30–50% when administered 1 h postlethal Jo2 intoxication. These results suggest that TRO40303 could be a promising new therapy for the treatment or prevention of hepatitis.
Collapse
Affiliation(s)
| | - Magali Michaud
- Trophos S. A., Luminy Biotech Entreprise Marseille, France
| | | | - Fabrice Robert
- Trophos S. A., Luminy Biotech Entreprise Marseille, France
| | - Mélanie Hocine
- Trophos S. A., Luminy Biotech Entreprise Marseille, France
| | - Thomas Arnoux
- Trophos S. A., Luminy Biotech Entreprise Marseille, France
| | | | - Hélène Codoul
- Trophos S. A., Luminy Biotech Entreprise Marseille, France
| | - Ahmed Bourhane
- Trophos S. A., Luminy Biotech Entreprise Marseille, France
| | | | | | | |
Collapse
|
27
|
Moniaux N, Darnaud M, Garbin K, Dos Santos A, Guettier C, Samuel D, Amouyal G, Amouyal P, Bréchot C, Faivre J. The Reg3α (HIP/PAP) Lectin Suppresses Extracellular Oxidative Stress in a Murine Model of Acute Liver Failure. PLoS One 2015; 10:e0125584. [PMID: 25938566 PMCID: PMC4418718 DOI: 10.1371/journal.pone.0125584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a rapidly progressive heterogeneous illness with high mortality rate and no widely accessible cure. A promising drug candidate according to previous preclinical studies is the Reg3α (or HIP/PAP) lectin, which alleviates ALF through its free-radical scavenging activity. Here we study the therapeutic targets of Reg3α in order to gain information on the nature of the oxidative stress associated with ALF. METHODS Primary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF. RESULTS Fibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α. CONCLUSIONS Reg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
| | - Marion Darnaud
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
| | - Kévin Garbin
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
| | - Alexandre Dos Santos
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
| | - Catherine Guettier
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
- Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Universitaire Paul Brousse, Villejuif, F-94800, France
| | - Didier Samuel
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
- Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Universitaire Paul Brousse, Villejuif, F-94800, France
| | | | | | - Christian Bréchot
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
| | - Jamila Faivre
- INSERM, U1193, Centre Hépatobiliaire, Villejuif, F-94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, F-94800, France
- Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Universitaire Paul Brousse, Villejuif, F-94800, France
| |
Collapse
|
28
|
Figaro S, Pereira U, Dumé AS, Rada H, Capone S, Bengrine A, Baze A, Rabenirina E, Semenzato N, Herpe YE, Faivre J, Dufresne M, Richert L, Duverlie G, Daujat-Chavanieu M, Saliba F, Pouchoulin D, Legallais C. SUPPLIVER: Bioartificial supply for liver failure. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Patent Highlights. Pharm Pat Anal 2015. [DOI: 10.4155/ppa.14.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development
Collapse
|
30
|
|
31
|
Haldipur P, Dupuis N, Degos V, Moniaux N, Chhor V, Rasika S, Schwendimann L, le Charpentier T, Rougier E, Amouyal P, Amouyal G, Dournaud P, Bréchot C, El Ghouzzi V, Faivre J, Fleiss B, Mani S, Gressens P. HIP/PAP prevents excitotoxic neuronal death and promotes plasticity. Ann Clin Transl Neurol 2014; 1:739-54. [PMID: 25493266 PMCID: PMC4241802 DOI: 10.1002/acn3.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 12/31/2022] Open
Abstract
Objectives Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. Methods We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. Results HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. Interpretation HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.
Collapse
Affiliation(s)
- Parthiv Haldipur
- National Brain Research Centre Manesar, India ; Centre for Neuroscience, IISC Bangalore, India
| | - Nina Dupuis
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Vincent Degos
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Nicolas Moniaux
- Inserm U785, Centre Hépatobiliaire Villejuif, France ; Faculté de Médecine, Université Paris-Sud Villejuif, France
| | - Vibol Chhor
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France ; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital London, United Kingdom
| | - Sowmyalakshmi Rasika
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Leslie Schwendimann
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Tifenn le Charpentier
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Elodie Rougier
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | | | | | - Pascal Dournaud
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Christian Bréchot
- Inserm U785, Centre Hépatobiliaire Villejuif, France ; Faculté de Médecine, Université Paris-Sud Villejuif, France
| | - Vincent El Ghouzzi
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Jamila Faivre
- Inserm U785, Centre Hépatobiliaire Villejuif, France ; Faculté de Médecine, Université Paris-Sud Villejuif, France
| | - Bobbi Fleiss
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France ; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital London, United Kingdom
| | - Shyamala Mani
- National Brain Research Centre Manesar, India ; Centre for Neuroscience, IISC Bangalore, India
| | - Pierre Gressens
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France ; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital London, United Kingdom
| |
Collapse
|
32
|
Zhang Y, Cai W, Huang Q, Gu Y, Shi Y, Huang J, Zhao F, Liu Q, Wei X, Jin M, Wu C, Xie Q, Zhang Y, Wan B, Zhang Y. Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology 2014; 59:671-82. [PMID: 23929707 PMCID: PMC4298763 DOI: 10.1002/hep.26670] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/30/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Fulminant hepatic failure (FHF) is a clinical syndrome characterized by sudden and severe impairment of liver function. Mesenchymal stem cells (MSCs) have been proposed as a promising therapeutic approach for FHF. In this study we used Propionibacterium acnes (P. acnes)-primed, lipopolysaccharide (LPS)-induced liver injury in mice as an animal model of human FHF. We demonstrated that administration of MSCs significantly ameliorated liver injury and improved the survival rates of mice subjected to P. acnes plus LPS-induced FHF. Allogeneic MSCs showed similar treatment efficacy as autologous MSCs did in FHF. Treatment efficacy of MSCs could be attributed to decreased infiltration and activation of CD4(+) T cells in the liver, inhibition of T helper 1 cells, and induction of regulatory T cells (Tregs). Moreover, decreased DNA copies of P. acnes were detected in the liver of MSC-treated mice. Intriguingly, a distinct liver population of CD11c(+) MHCII(hi) CD80(lo) CD86(lo) regulatory dendritic cells (DCs) was induced by MSCs. Moreover, these DCs induced Treg differentiation through transforming growth factor-β production. Further mechanistic studies demonstrated that MSC-derived prostaglandin E2 and one of its receptors, EP4, played essential roles in the differentiation of CD11c(+) B220(-) DC precursors into regulatory DCs in a phosphoinositide 3-kinase-dependent manner. CONCLUSION MSCs induce regulatory DCs from CD11c(+) B220(-) DC precursors. This study elucidates an immunoregulatory mechanism of MSCs and lays a foundation for application of MSCs in FHF therapy.
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSMShanghai, China
| | - Wei Cai
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSMShanghai, China,Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Qingrong Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yuting Gu
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSMShanghai, China
| | - Yufang Shi
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jiefang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Fang Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Qiang Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Min Jin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Changping Wu
- Department of Oncology, Third Affiliated Hospital, Soochow UniversityChangzhou, Jiangsu Province, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yi Zhang
- Department of Internal Medicine, University of MichiganAnn Arbor, MI, USA
| | - Bing Wan
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSMShanghai, China
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSMShanghai, China
| |
Collapse
|
33
|
Nunes T, Etchevers MJ, Sandi MJ, Pinó Donnay S, Grandjean T, Pellisé M, Panés J, Ricart E, Iovanna JL, Dagorn JC, Chamaillard M, Sans M. Pancreatitis-associated protein does not predict disease relapse in inflammatory bowel disease patients. PLoS One 2014; 9:e84957. [PMID: 24416322 PMCID: PMC3886999 DOI: 10.1371/journal.pone.0084957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022] Open
Abstract
Background The pancreatitis-associated protein (PAP) is increased in the serum of active inflammatory bowel disease (IBD) patients and its levels seem to be correlated with disease activity. Our aim was to evaluate the usefulness of serum and fecal PAP measurements to predict relapse in patients with inactive IBD. Materials and Methods We undertook a 12-month prospective study that included 66 Crohn's disease (CD) and 74 ulcerative colitis (UC) patients. At inclusion, patients were in clinical remission, defined by a Harvey-Bradshaw (HB) Index≤4 (CD) or a partial Mayo Score (MS)<3 (UC), along with a normal serum C reactive protein (CRP) and fecal calprotectin. Patients were followed every 3 months. Blood and stool samples were collected and a clinical evaluation was performed at each visit. Serum PAP and CRP levels as well as fecal concentrations of PAP and calprotectin were assessed. Results Active CD patients had an increased mean serum PAP at the diagnosis of the flare (104.1 ng/ml) and 3 months prior to activity (22.68 ng/ml) compared with patients in remission (13.26 ng/ml), p<0.05. No significant change in serum PAP levels in UC and fecal PAP levels in CD and UC were detected during disease activity. In CD, serum PAP was a poor diagnostic predictor of disease activity, with an AUC of 0.69. In patients in remission, fecal PAP was barely detectable in UC compared with CD patients. Conclusion Serum PAP is increased only in active CD patients, but this marker does not predict disease activity. Inactive UC patients have marked low levels of PAP in fecal samples compared with CD patients.
Collapse
Affiliation(s)
- Tiago Nunes
- Department of Gastroenterology, Hospital Clinic of Barcelona (IDIBAPS/Centro de Investigació Bioméica en Red de Enfermedades Hepáicas y Digestivas [CIBEREHD]), Barcelona, Catalonia, Spain
| | - Maria Josefina Etchevers
- Department of Gastroenterology, Hospital Clinic of Barcelona (IDIBAPS/Centro de Investigació Bioméica en Red de Enfermedades Hepáicas y Digestivas [CIBEREHD]), Barcelona, Catalonia, Spain
| | - Maria Jose Sandi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Susana Pinó Donnay
- Department of Gastroenterology, Hospital Clinic of Barcelona (IDIBAPS/Centro de Investigació Bioméica en Red de Enfermedades Hepáicas y Digestivas [CIBEREHD]), Barcelona, Catalonia, Spain
| | - Teddy Grandjean
- University Lille Nord de France, F-59000, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- Centre National de la Recherche Scientifique, UMR8204, F-59021, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Team 7, Equipe FRM, F-59019, Lille, France
| | - Maria Pellisé
- Department of Gastroenterology, Hospital Clinic of Barcelona (IDIBAPS/Centro de Investigació Bioméica en Red de Enfermedades Hepáicas y Digestivas [CIBEREHD]), Barcelona, Catalonia, Spain
| | - Julián Panés
- Department of Gastroenterology, Hospital Clinic of Barcelona (IDIBAPS/Centro de Investigació Bioméica en Red de Enfermedades Hepáicas y Digestivas [CIBEREHD]), Barcelona, Catalonia, Spain
| | - Elena Ricart
- Department of Gastroenterology, Hospital Clinic of Barcelona (IDIBAPS/Centro de Investigació Bioméica en Red de Enfermedades Hepáicas y Digestivas [CIBEREHD]), Barcelona, Catalonia, Spain
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jean-Charles Dagorn
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Mathias Chamaillard
- University Lille Nord de France, F-59000, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- Centre National de la Recherche Scientifique, UMR8204, F-59021, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Team 7, Equipe FRM, F-59019, Lille, France
| | - Miquel Sans
- Department of Digestive Diseases, Centro Medico Teknon, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
34
|
Nojima A, Yamashita M, Yoshida Y, Shimizu I, Ichimiya H, Kamimura N, Kobayashi Y, Ohta S, Ishii N, Minamino T. Haploinsufficiency of akt1 prolongs the lifespan of mice. PLoS One 2013; 8:e69178. [PMID: 23935948 PMCID: PMC3728301 DOI: 10.1371/journal.pone.0069178] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/05/2013] [Indexed: 11/24/2022] Open
Abstract
There is increasing evidence that nutrient-sensing machinery is critically involved in the regulation of aging. The insulin/insulin-like growth factor-1 signaling pathway is the best-characterized pathway with an influence on longevity in a variety of organisms, ranging from yeast to rodents. Reduced expression of the receptor for this pathway has been reported to prolong the lifespan; however, the underlying mechanisms are largely unknown. Here we show that haploinsufficiency of Akt1 leads to an increase of the lifespan in mice. Akt1+/– mice had a lower body weight than their littermates with less fat mass and normal glucose metabolism. Ribosomal biogenesis and the mitochondrial DNA content were significantly reduced in these mice, along with a decrease of oxidative stress. Consistent with the results obtained in mice, inhibition of Akt-1 promoted longevity in nematodes (Caenorhabditis elegans), whereas activation of Akt-1 shortened the lifespan. Inhibition of Akt-1 led to a decrease of ribosomal gene expression and the mitochondrial DNA content in both human cells and nematodes. Moreover, deletion of ribosomal gene expression resulted in a decrease of the mitochondrial DNA content and normalized the lifespan shortened by Akt-1 activation in nematodes. These results suggest that an increase of mitochondrial amount and energy expenditure associated with enhanced protein synthesis accelerates both aging and the onset of age-associated diseases.
Collapse
Affiliation(s)
- Aika Nojima
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Yohko Yoshida
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Harumi Ichimiya
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan
| | - Naoaki Ishii
- Department of Molecular Life Science, Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
35
|
Shi HY, Li YH, Li CP, Kang M, Zhong XL. Role of NF-κB and Bcl-2 in hepatocyte apoptosis in rats with NAFLD. Shijie Huaren Xiaohua Zazhi 2013; 21:1955-1960. [DOI: 10.11569/wcjd.v21.i20.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of nuclear factor κB (NF-κB) and Bcl-2 in non-alcoholic fatty liver disease (NAFLD) in rats and to investigate the role of the mitochondrial injury pathway in hepatocyte apoptosis and the pathogenesis of NAFLD.
METHODS: Thirty-six rats were randomly and equally divided into two groups: a control group and an experimental group. The rats were killed at weeks 6, 10, and 14, and histopathological features of the liver were observed by microscopy. Plasma levels of tumor necrosis factor-α (TNF-α) were measured by radioimmunoassay, hepatocyte apoptosis was assessed by TUNNEL assay, and expression of Bcl-2 and NF-κB proteins in hepatocytes was measured by immunohistochemistry.
RESULTS: Histopathological staining showed the liver structure was normal in the control group. However, lobular steatosis was observed in the model group. Portal and periportal inflammation and lobular inflammation were noted at week 10, and liver fibrosis was visible at week 14. Compared to the control group, apoptosis was increased in the model group, and this process was time-dependent. A time-dependent increase in the expression of Bcl-2 and NF-κB in liver tissue and serum levels of TNF-α was also found in the model group compared to the control group.
CONCLUSION: Apoptosis is a critical step for the development of NAFLD, and NF-κB and Bcl-2 play an important role in hepatocyte apoptosis in NAFLD.
Collapse
|
36
|
Shigekawa M, Hikita H, Kodama T, Shimizu S, Li W, Uemura A, Miyagi T, Hosui A, Kanto T, Hiramatsu N, Tatsumi T, Takeda K, Akira S, Takehara T. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2105-13. [PMID: 23064197 DOI: 10.1016/j.ajpath.2012.08.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that controls expressions of several genes involved in cell survival, proliferation and differentiation, and tissue inflammation. However, the significance of pancreatic STAT3 in acute pancreatitis remains unclear. We generated conditional STAT3 knockout (stat3(Δ/Δ)) mice by crossing stat3(flox/flox) mice with Pdx1-promoter Cre transgenic mice. Caerulein administration activated pancreatic STAT3 and induced acute pancreatitis as early as 3 hours in wild-type mice, and full recovery from the induced pancreatic injury was observed within 7 days. The levels of serum amylase and lipase and histologic scores of pancreatic necrosis and inflammatory cell infiltration were significantly higher at 3 hours in stat3(Δ/Δ) mice than in stat3(flox/flox) mice. Pancreatic recovery after pancreatitis was significantly delayed in stat3(Δ/Δ) mice compared with stat3(flox/flox) mice. Although stat3(flox/flox) mice had marked production in the pancreas of pancreatitis-associated protein 1 (PAP1), a serum acute phase protein, this induction was completely abrogated in stat3(Δ/Δ) mice. Enforced production of PAP1 by a hydrodynamic procedure in the liver significantly suppressed pancreatic necrosis and inflammation and also promoted pancreatic regeneration and recovery in stat3(Δ/Δ) mice to levels similar to those observed in stat3(flox/flox) mice. In conclusion, pancreatic STAT3 is indispensable for PAP1 production, and this STAT3/PAP1 pathway plays a protective role in caerulein-induced pancreatitis.
Collapse
Affiliation(s)
- Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moniaux N, Darnaud M, Dos Santos A, Jamot L, Samuel D, Amouyal P, Amouyal G, Bréchot C, Faivre J. [HIP/PAP, a new drug for acute liver failure]. Med Sci (Paris) 2012; 28:239-41. [PMID: 22480640 DOI: 10.1051/medsci/2012283004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
MESH Headings
- Acetaminophen/toxicity
- Acute Disease
- Animals
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/physiology
- Antigens, Neoplasm/therapeutic use
- Biomarkers, Tumor/adverse effects
- Biomarkers, Tumor/physiology
- Biomarkers, Tumor/therapeutic use
- Chemical and Drug Induced Liver Injury/drug therapy
- Chemical and Drug Induced Liver Injury/etiology
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Hepatitis/drug therapy
- Hepatitis/etiology
- Humans
- Lectins, C-Type/physiology
- Lectins, C-Type/therapeutic use
- Liver Failure/drug therapy
- Liver Regeneration
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multicenter Studies as Topic
- Pancreatitis-Associated Proteins
- Reactive Oxygen Species/metabolism
- Recombinant Proteins/adverse effects
- Recombinant Proteins/therapeutic use
- fas Receptor/agonists
Collapse
|
38
|
Miron N, Cristea V. Enterocytes: active cells in tolerance to food and microbial antigens in the gut. Clin Exp Immunol 2012; 167:405-12. [PMID: 22288583 DOI: 10.1111/j.1365-2249.2011.04523.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterocytes used to be studied particularly in terms of digestion protagonists. However, as the immune functions of the intestinal tract were better understood, it became clear that enterocytes are not mere bystanders concerning the induction of immune tolerance to dietary peptides and gut microbiota. In fact, enterocytes are involved actively in shaping the intestinal immune environment, designed for maintaining a non-belligerent state. This tolerant milieu of the gut immune system is achieved by keeping a balance between suppression and stimulation of the inflammatory responses. Our review presents the current state of knowledge concerning the relationship between enterocytes and immune cells (dendritic cells, lymphocytes), with emphasis on the enterocytes' impact on the mechanisms leading to the induction of oral tolerance.
Collapse
Affiliation(s)
- N Miron
- Department of Immunology, University of Medicine and Pharmacy, Iuliu Haţieganu Cluj-Napoca, Romania.
| | | |
Collapse
|
39
|
Continuous stress-induced dopamine dysregulation augments PAP-I and PAP-II expression in melanotrophs of the pituitary gland. Biochem Biophys Res Commun 2011; 407:7-12. [DOI: 10.1016/j.bbrc.2011.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/20/2022]
|