Systematic Reviews
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Aug 26, 2021; 13(8): 1134-1150
Published online Aug 26, 2021. doi: 10.4252/wjsc.v13.i8.1134
Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome
María B Monzón-Nomdedeu, Karl J Morten, Elisa Oltra
María B Monzón-Nomdedeu, School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
Karl J Morten, Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford OX3 9DU, United Kingdom
Elisa Oltra, Department of Pathology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
Elisa Oltra, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
Author contributions: Monzón-Nondedeu MB and Oltra E wrote the first draft; All authors critically reviewed and edited this manuscript.
Conflict-of-interest statement: The authors declare that they have no competing interests.
PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Elisa Oltra, PhD, Full Professor, Department of Pathology, Universidad Católica de Valencia San Vicente Mártir, C/Quevedo 2, Valencia 46001, Spain. elisa.oltra@ucv.es
Received: February 18, 2021
Peer-review started: February 18, 2021
First decision: March 30, 2021
Revised: April 19, 2021
Accepted: July 5, 2021
Article in press: July 5, 2021
Published online: August 26, 2021
Abstract
BACKGROUND

Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.

AIM

To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.

METHODS

A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.

RESULTS

Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.

CONCLUSION

This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.

Keywords: Myalgic encephalomyelitis/chronic fatigue syndrome, Fibromyalgia, Induced pluripotent stem cells, Plasma factor, Conditioned medium, Sensor system

Core Tip: Because of the special ability to sense environmental cues we propose that induced pluripotent stem cells (iPSCs) are suitable for use as a sensor system for metabolic disease. As fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome body-fluids have unique metabolic profiles, the applicability of iPSC-based bioassays for those conditions are worth investigating. We envisage the development of iPSC platforms that allow differential diagnosis and disease-specific high-throughput drug-screening platforms. Using healthy iPSCs and patient body fluids has significant advantages over using cell lines, primary culture of patient cells or iPSCs derived from patients. A consistent iPSC control-cell line platform will provide a robust metabolic/phenotypic model allowing faster, cost-effective, large cohort screenings.