1
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
2
|
Gisina A, Novikova S, Kim Y, Sidorov D, Bykasov S, Volchenko N, Kaprin A, Zgoda V, Yarygin K, Lupatov A. CEACAM5 overexpression is a reliable characteristic of CD133-positive colorectal cancer stem cells. Cancer Biomark 2021; 32:85-98. [PMID: 34092615 DOI: 10.3233/cbm-203187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND CD133 (prominin-1) is the most commonly used molecular marker of the cancer stem cells (CSCs) that maintain tumor progression and recurrence in colorectal cancer. However, the proteome of CSCs directly isolated from colorectal tumors based on CD133 expression has never been investigated. OBJECTIVE To reveal biomarkers of CD133-positive colorectal CSCs. METHODS Thirty colorectal tumor samples were collected from patients undergoing bowel resection. CD133-positive and CD133-negative cells were isolated by FACS. Comparative proteomic profiling was performed by LC-MS/MS analysis combined with label-free quantification. Verification of differentially expressed proteins was performed by flow cytometry or ELISA. CD133-knockout Caco-2 and HT-29 cell lines were generated using CRISPR-Cas9 gene editing. RESULTS LC-MS/MS analysis identified 29 proteins with at least 2.5-fold higher expression in CD133-positive cells versus CD133-negative cells. Flow cytometry confirmed CEACAM5 overexpression in CD133-positive cells in all clinical samples analyzed. S100A8, S100A9, and DEFA1 were differentially expressed in only a proportion of the samples. CD133 knockout in the colon cancer cell lines Caco-2 and HT-29 did not affect the median level of CEACAM5 expression, but led to higher variance of the percentage of CEACAM5-positive cells. CONCLUSIONS High CEACAM5 expression in colorectal cancer cells is firmly associated with the CD133-positive colorectal CSC phenotype, but it is unlikely that CD133 directly regulates CEACAM5 expression.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Svetlana Novikova
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Dmitry Sidorov
- Department of Abdominal Surgery, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Stanislav Bykasov
- Department of Abdominal Surgery, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Nadezhda Volchenko
- Department of Oncomorphology, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Andrey Kaprin
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Nikolouzakis TK, Vakonaki E, Stivaktakis PD, Alegakis A, Berdiaki A, Razos N, Souglakos J, Tsatsakis A, Tsiaoussis J. Novel Prognostic Biomarkers in Metastatic and Locally Advanced Colorectal Cancer: Micronuclei Frequency and Telomerase Activity in Peripheral Blood Lymphocytes. Front Oncol 2021; 11:683605. [PMID: 34262868 PMCID: PMC8274420 DOI: 10.3389/fonc.2021.683605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Due to the current practice on colorectal cancer (CRC) management, chemoresistance is most often recognized at the end of the treatment. Therefore, effective and easy-to-use prognostic biomarkers are needed. EXPERIMENTAL DESIGN We evaluated the prognostic significance of two novel CRC biomarkers: a) micronuclei frequency (MNf) in 55 metastatic CRC (mCRC) and 21 locally advanced rectal cancer (laRC) patients using cytokinesis block micronucleus assay (CBMN assay) and b) telomerase activity (TA) in 23 mCRC and five laRC patients using TRAP-ELISA. Both biomarkers were evaluated in peripheral blood lymphocytes (PBLs) before, at the middle, and at the end of the therapy (approximately 0, 3, and 6 months) for mCRC patients before, at the end of the therapy, and after surgery for laRC patients. RESULTS Overall, MNf demonstrated significant prognostic value since a decrease of MNf less than 29% between middle and initial MNf measurements can discriminate between progressive and stable/responsive disease with sensitivity of 36% and specificity of 87.0% while being able to identify responsive disease with sensitivity of 72.7% and specificity of 59.3%. On the other hand, TA presented a significant trend of increase (p = 0.07) in patients with progressive disease at the middle measurement. CONCLUSIONS The findings of this study suggest that the MN frequency may serve as a promising prognostic biomarker for the monitoring of the treatment response of patients with CRC, while TA should be evaluated in a larger group of patients to further validate its significance.
Collapse
Affiliation(s)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
| | | | - Athanasios Alegakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, The University of Crete, Heraklion, Greece
| | - Nikolaos Razos
- Department of Anatomy, Medical School, University of Crete, Heraklion, Greece
| | - John Souglakos
- Department of Medical Oncology, University General Hospital of Heraklion, and Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
4
|
Gupta S, Kumar P, Das BC. HPV +ve/-ve oral-tongue cancer stem cells: A potential target for relapse-free therapy. Transl Oncol 2021; 14:100919. [PMID: 33129107 PMCID: PMC7590584 DOI: 10.1016/j.tranon.2020.100919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
The tongue squamous cell carcinoma (TSCC) is a highly prevalent head and neck cancer often associated with tobacco and/or alcohol abuse or high-risk human papillomavirus (HR-HPV) infection. HPV positive TSCCs present a unique mechanism of tumorigenesis as compared to tobacco and alcohol-induced TSCCs and show a better prognosis when treated. The poor prognosis and/or recurrence of TSCC is due to presence of a small subpopulation of tumor-initiating tongue cancer stem cells (TCSCs) that are intrinsically resistant to conventional chemoradio-therapies enabling cancer to relapse. Therefore, targeting TCSCs may provide efficient therapeutic strategy for relapse-free survival of TSCC patients. Indeed, the development of new TCSC targeting therapeutic approaches for the successful elimination of HPV+ve/-ve TCSCs could be achieved either by targeting the self-renewal pathways, epithelial mesenchymal transition, vascular niche, nanoparticles-based therapy, induction of differentiation, chemoradio-sensitization of TCSCs or TCSC-derived exosome-based drug delivery and inhibition of HPV oncogenes or by regulating epigenetic pathways. In this review, we have discussed all these potential approaches and highlighted several important signaling pathways/networks involved in the formation and maintenance of TCSCs, which are targetable as novel therapeutic targets to sensitize/eliminate TCSCs and to improve survival of TSCC patients.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India; National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida 201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
5
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
6
|
Wahab SR, Islam F, Gopalan V, Lam AKY. The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clin Colorectal Cancer 2017; 16:93-102. [DOI: 10.1016/j.clcc.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|
7
|
Corbo C, Cevenini A, Salvatore F. Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 2017; 11. [PMID: 28019089 DOI: 10.1002/prca.201600072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5-year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large-scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.
Collapse
Affiliation(s)
- Claudia Corbo
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Armando Cevenini
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy
| |
Collapse
|
8
|
Nataraj SM, Prema CL, Vimalambike MG, Shivalingaiah SC, Sundaram S, Kumar AP, Math AK, Prashant A. Major Protein of Carcinoembryonic Antigen Gene Family - CD66c, A Novel Marker in Colon Carcinoma. J Clin Diagn Res 2016; 10:XC01-XC04. [PMID: 27042567 PMCID: PMC4800633 DOI: 10.7860/jcdr/2016/17180.7286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In view of rising trend of the incidence of colorectal carcinoma in the Indian population due to adoption of western lifestyles and behaviours, we investigated the expression of the new emerging stem cell biomarker, CD66c in colorectal carcinoma of Indian origin. AIM To study the expression of CD66c in human colorectal carcinoma and to correlate level of marker expression with tumour staging. MATERIALS AND METHODS This hospital based prospective study was conducted on 26 colorectal carcinoma patients in the age group of 20 years to 70 years. Surgically resected tumour specimens along with adjacent normal tissue were collected taking necessary precautions, paraffin embedded sections were prepared and used for histological and immunohistochemical analysis of CD66c. STATISTICAL ANALYSIS Descriptive statistical measures like mean, standard deviation, percentage was applied. Other inferential statistical tests like Chi-square, Fisher's-exact test and one-way ANOVA was applied to find out the association of CD66c with different stages. The difference were interpreted as statistically significant when p <0.05. RESULTS CD66c showed differential expression with membrane positivity in normal colorectal epithelial cells and cytoplasmic expression in tumour cells. There was significant correlation between CD66c expression and tumour site (p=0.02) with colon carcinoma showing positive expression compared to the rectal carcinoma. There was no significant correlation between CD66c staining and tumour stage (p=0.947). No significant relationship was observed between CD66c expression and other clinicopathologic variables studied such as sex (p=0.552), age (p=0.713) and tumour grade (p=0.263). CONCLUSION CD66c can be specifically used for colon carcinoma and may be a novel marker in colon carcinoma stem cell isolation. The quantification of CD66c can be further verified by flow cytometry and RT-PCR. Further studies can be carried out using CD66c alone or in combination with other markers to develop cancer stem cell directed therapy.
Collapse
Affiliation(s)
- Suma M Nataraj
- Professor and Head, Department of Biochemistry, Centre of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, Karnataka, India
| | - Chaitra Linganna Prema
- Student, Department of Biochemistry, JSS Medical College, JSS University, Mysore, Karnataka, India
| | | | | | - Shivakumar Sundaram
- Professor and Head, Department of Pathology, Mandya Institute Of Medical Sciences, Mandya, Karnataka, India
| | - Anjali Pradeep Kumar
- Student, Department of Biochemistry, JSS Medical College, JSS University, Mysore, Karnataka, India
| | - Ananda Kuruvatti Math
- Student, Department of Biochemistry, JSS Medical College, JSS University, Mysore, Karnataka, India
| | - Akila Prashant
- Professor, Department of Biochemistry, Centre of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, Karnataka, India
| |
Collapse
|
9
|
Helwa R, Ramadan M, Abdel-Wahab AHA, Knappskog S, Bauer AS. Promoter SNPs rs116896264 and rs73933062 form a distinct haplotype and are associated with galectin-4 overexpression in colorectal cancer. Mutagenesis 2015; 31:401-8. [PMID: 26681582 DOI: 10.1093/mutage/gev086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galectin-4 is a member of the galectin family which consists of 15 galactoside-binding proteins. Previously, galectin-4 has been shown to have a role in cancer progression and metastasis and it is found upregulated in many solid tumours, including colorectal cancer (CRC). Recently, the role in the metastatic process was suggested to be via promoting cancer cells to adhere to blood vascular endothelium. In the present study, the regulatory region of LGALS4 (galectin-4) in seven colon cell lines was investigated with respect to genetic variation that could be linked to expression levels and therefore a tumourigenic effect. Interestingly, qRT-PCR and sequencing results revealed that galectin-4 upregulation is associated with SNPs rs116896264 and rs73933062. By use of luciferase reporter- and pull-down assays, we confirmed the association between the gene upregulation and the two SNPs. Also, using pull-down assay followed by mass spectrometry, we found that the presence rs116896264 and rs73933062 is changing transcription factors binding sites. In order to assess the frequencies of the two SNPs among colon cancer patients and healthy individuals, we genotyped 75 colon cancer patients, 12 patients with adenomatous polyposis and 17 patients with ulcerative colitis and we performed data mining in the 1000 genomes databank. We found the two SNPs co-occuring in 21% of 75 CRC patients, 0 out of 12 patients of adenomatous polyposis, and 6 out of 17 patients (35%) with ulcerative colitis. Both in the patient samples and in the 1000 genomes project, the two SNPs were found to co-occur whenever present (D' = 1).
Collapse
Affiliation(s)
- Reham Helwa
- Molecular Cell Biology Lab, Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt, Division of Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Heidelberg, Germany,
| | | | | | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway and Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Andrea S Bauer
- Division of Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Katsila T, Juliachs M, Gregori J, Macarulla T, Villarreal L, Bardelli A, Torrance C, Elez E, Tabernero J, Villanueva J. Circulating pEGFR Is a Candidate Response Biomarker of Cetuximab Therapy in Colorectal Cancer. Clin Cancer Res 2014; 20:6346-56. [DOI: 10.1158/1078-0432.ccr-14-0361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Yu D, Shin HS, Choi G, Lee YC. Proteomic analysis of CD44(+) and CD44(−) gastric cancer cells. Mol Cell Biochem 2014; 396:213-20. [DOI: 10.1007/s11010-014-2156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
|
12
|
Elsobky S, Crane AM, Margolis M, Carreon TA, Bhattacharya SK. Review of application of mass spectrometry for analyses of anterior eye proteome. World J Biol Chem 2014; 5:106-114. [PMID: 24921002 PMCID: PMC4050106 DOI: 10.4331/wjbc.v5.i2.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 02/05/2023] Open
Abstract
Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a “mass analyzer” which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article we present the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye.
Collapse
|
13
|
Zhang Y, Sun B, Zhao X, Liu Z, Wang X, Yao X, Dong X, Chi J. Clinical significances and prognostic value of cancer stem-like cells markers and vasculogenic mimicry in renal cell carcinoma. J Surg Oncol 2013; 108:414-9. [PMID: 23996537 DOI: 10.1002/jso.23402] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/12/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
| | - Baocun Sun
- Department of Pathology, Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
- Department of Pathology; Tianjin Medical University; Tianjin China
- Department of Pathology; Tianjin General Hospital; Tianjin Medical University; Tianjin China
| | - Xiulan Zhao
- Department of Pathology; Tianjin Medical University; Tianjin China
- Department of Pathology; Tianjin General Hospital; Tianjin Medical University; Tianjin China
| | - Zhiyong Liu
- Department of Pathology, Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
| | - Xudong Wang
- Department of Pathology, Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
| | - Xin Yao
- Department of Pathology, Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
| | - Xueyi Dong
- Department of Pathology; Tianjin Medical University; Tianjin China
- Department of Pathology; Tianjin General Hospital; Tianjin Medical University; Tianjin China
| | - Jiadong Chi
- Department of Pathology; Tianjin Medical University; Tianjin China
| |
Collapse
|
14
|
Ko CH, Cheng CF, Lai CP, Tzu TH, Chiu CW, Lin MW, Wu SY, Sun CY, Tseng HW, Wang CC, Kuo ZK, Wang LM, Chen SF. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry. J Proteome Res 2013; 12:3573-85. [PMID: 23782096 DOI: 10.1021/pr4004294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.
Collapse
Affiliation(s)
- Ching-Huai Ko
- Strategic Business and Innovation Technology Development Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 195 Sec.4 Chung Hsing Road, Chutung, 31040 Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zou J, Mi L, Yu XF, Dong J. Interaction of 14-3-3σ with KCMF1 suppresses the proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol 2013; 19:3770-3780. [PMID: 23840115 PMCID: PMC3703518 DOI: 10.3748/wjg.v19.i24.3770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/01/2013] [Accepted: 03/23/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological function of 14-3-3σ protein and to look for proteins that interact with 14-3-3σ protein in colon cancer stem cells.
METHODS: Reverse transcription polymerase chain reaction was performed to amplify the 14-3-3σ gene from the mRNA of colon cancer stem cells. The gene was then cloned into the pGEM-T vector. After being sequenced, the target gene 14-3-3σ was cut from the pGEM-T vector and cloned into the pGBKT7 yeast expression plasmid. Then, the bait plasmid pGBKT7-14-3-3σ was transformed into the yeast strain AH109. After the expression of the pGBKT7-14-3-3σ fusion protein in the AH109 yeast strain was accomplished, a yeast two-hybrid screening assay was performed by mating AH109 with Y187 that contained a HeLa cDNA library plasmid. The interaction between the 14-3-3σ protein and the proteins obtained from positive colonies was further confirmed by repeating the yeast two-hybrid screen. After extracting and sequencing the plasmids from the positive colonies, we performed a bioinformatics analysis. A coimmunoprecipitation assay was performed to confirm the interaction between 14-3-3σ and the proteins obtained from the positive colonies. Finally, we constructed 14-3-3σ and potassium channel modulatory factor 1 (KCMF1) siRNA expression plasmids and transfected them into colon cancer stem cells.
RESULTS: The bait plasmid pGBKT7-14-3-3σ was constructed successfully, and the 14-3-3σ protein had no toxic or autonomous activation effect on the yeast. Nineteen true-positive colonies were selected and sequenced, and their full-length sequences were obtained. We searched for homologous DNA sequences for these sequences from GenBank. Among the positive colonies, four coding genes with known functions were obtained, including KCMF1, quinone oxidoreductase (NQO2), hydroxyisobutyrate dehydrogenase (HIBADH) and 14-3-3σ. For the subsequent coimmunoprecipitation assay, the plasmids PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH were successfully constructed, and the sequences were further confirmed by DNA sequencing. The Fugene 6 reagent was used to transfect the plasmids, and fluorescence-activated cell sorting analysis showed the transfection efficiency was 97.8% after 48 h. The HEK 293FT cells showed the stable expression of the PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH plasmids. After anti-Myc antibody immunoprecipitation with Myc-KCMF1, Myc-NQO2 and Myc-HIBADH from cell lysates, the presence of Flag-14-3-3σ protein in the immunoprecipitated complex was determined by western blot analysis. The knock-down expression of the 14-3-3σ and KCMF1 proteins significantly inhibited cell proliferation and colony formation of SW1116csc.
CONCLUSION: Genes of the proteins that interacted with 14-3-3σ were successfully screened from a HeLa cDNA library. KCMF1 and 14-3-3σ protein may affect the proliferation and colony formation of human colon cancer stem cells.
Collapse
|
16
|
Langan RC, Mullinax JE, Raiji MT, Upham T, Summers T, Stojadinovic A, Avital I. Colorectal cancer biomarkers and the potential role of cancer stem cells. J Cancer 2013; 4:241-50. [PMID: 23459666 PMCID: PMC3584837 DOI: 10.7150/jca.5832] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/11/2013] [Indexed: 02/06/2023] Open
Abstract
Over 50% of patients with colorectal cancer (CRC) will progress and/or develop metastases. Biomarkers capable of predicting progression, risk stratification and therapeutic benefit are needed. Cancer stem cells are thought to be responsible for tumor initiation, dissemination and treatment failure. Therefore, we hypothesized that CRC stem cell markers (CRCSC) can identify a group of patients whom are at increased risk for recurrence or progression of disease. If proven correct, these CRCSC biomarkers may herald a paradigm shift in the treatment of this deadly disease. This manuscript reviews current CRC evidence based screening modalities, patient stratification, and summarizes the current state of biomarkers and discusses the novel concept of putative CRCSC's as prognostic biomarkers.
Collapse
|
17
|
Wu S, Yu L, Wang D, Zhou L, Cheng Z, Chai D, Ma L, Tao Y. Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer 2012; 12:535. [PMID: 23170850 PMCID: PMC3518202 DOI: 10.1186/1471-2407-12-535] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 11/14/2012] [Indexed: 12/28/2022] Open
Abstract
Background To investigate on expressions and clinical significances of CD133 protein and vasculogenic mimicry (VM) in primary non-small cell lung cancer (NSCLC). Methods The specimens of NSCLC from 305 Chinese patients with follow-up were analyzed for CD133 protein expression and VM by immunohistochemical and histochemical staining. Results In NSCLC, positive rates of 48.9% and 35.7% were obtained for CD133 and VM, respectively. The VM and expression of CD133 were significantly higher in carcinoma than in normal. There were a positive relationship between the VM and expression of CD133 and the tumor grade, lymph node metastasis and clinical stage (all P<0.05). The overall mean survival time of the patients with CD133 and VM positive expression was lower than that of patients with negative expression. Microvessel density (MVD) was positive corresponded with the grade, lymph node metastasis and clinical stage (all P<0.05). The overall mean survival time of the patients with MVD≥22’s group was shorter than that of patients with MVD<22’s group. Pathological-tumor-node-metastasis (pTNM) stage, positive expression of CD133 and VM, postoperative therapy and MVD were independent prognostic factors of NSCLC (P<0.05). Immunohistochemistry revealed an important intratumoral heterogeneity in all four CD133 expression profiles. Conclusions VM, MVD and expression of CD133 are related to differentiation, lymph node metastasis, clinical stage, and prognosis. It is suggested that CD133, VM and MVD should be considered as a potential marker for the prognosis.
Collapse
Affiliation(s)
- Shiwu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
HONG XIN, CHEDID KHALIL, KALKANIS STEVENN. Glioblastoma cell line-derived spheres in serum-containing medium versus serum-free medium: A comparison of cancer stem cell properties. Int J Oncol 2012; 41:1693-700. [DOI: 10.3892/ijo.2012.1592] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/06/2012] [Indexed: 11/05/2022] Open
|
19
|
Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R, Ao-Kondo H, Tsumoto K, Akiyama T, Oyama M. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome. PLoS One 2012; 7:e43398. [PMID: 22912867 PMCID: PMC3422224 DOI: 10.1371/journal.pone.0043398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors with poor prognosis. Although various studies have been performed so far, there are not effective treatments for patients with glioblastoma. Methodology/Principal Findings In order to systematically elucidate the aberrant signaling machinery activated in this malignant brain tumor, we investigated phosphoproteome dynamics of glioblastoma initiating cells using high-resolution nanoflow LC-MS/MS system in combination with SILAC technology. Through phosphopeptide enrichment by titanium dioxide beads, a total of 6,073 phosphopeptides from 2,282 phosphorylated proteins were identified based on the two peptide fragmentation methodologies of collision induced dissociation and higher-energy C-trap dissociation. The SILAC-based quantification described 516 up-regulated and 275 down-regulated phosphorylation sites upon epidermal growth factor stimulation, including the comprehensive status of the phosphorylation sites on stem cell markers such as nestin. Very intriguingly, our in-depth phosphoproteome analysis led to identification of novel phosphorylated molecules encoded by the undefined sequence regions of the human transcripts, one of which was regulated upon external stimulation in human glioblastoma initiating cells. Conclusions/Significance Our result unveils an expanded diversity of the regulatory phosphoproteome defined by the human transcriptome.
Collapse
Affiliation(s)
- Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yukiko Nasu-Nishimura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyama-Nasu
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Ao-Kondo
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Langan RC, Mullinax JE, Ray S, Raiji MT, Schaub N, Xin HW, Koizumi T, Steinberg SM, Anderson A, Wiegand G, Butcher D, Anver M, Bilchik AJ, Stojadinovic A, Rudloff U, Avital I. A Pilot Study Assessing the Potential Role of non-CD133 Colorectal Cancer Stem Cells as Biomarkers. J Cancer 2012; 3:231-40. [PMID: 22670157 PMCID: PMC3366478 DOI: 10.7150/jca.4542] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023] Open
Abstract
Introduction: Over 50% of patients with colorectal cancer (CRC) will progress and/or develop metastases. Biomarkers capable of predicting progression, risk stratification and therapeutic benefit are needed. Cancer stem cells are thought to be responsible for tumor initiation, dissemination and treatment failure. Therefore, we hypothesized that CRC cancer stem cell markers (CRCSC) will identify a group of patients at high risk for progression. Methods: Paraffin-embedded tissue cores of normal (n=8), and histopathologically well-defined primary (n= 30) and metastatic (n=10) CRC were arrayed in duplicate on tissue microarrays (TMAs). Expression profiles of non-CD133 CRCSC (CD29, CD44, ALDH1A1, ALDH1B1, EpCam, and CD166) were detected by immunohistochemistry and the association with clinicopathological data and patient outcomes was determined using standard statistical methodology. An independent pathologist, blinded to the clinical data scored the samples. Scoring included percent positive cells (0 to 4, 0 = <10%, 1 = 10 - 24%, 2 = 25 - 49%, 3 = 50 - 74%, 4 = 75 - 100%), and the intensity of positively stained cells (0 to 4; 0 = no staining, 1 = diminutive intensity, 2 = low intensity, 3 = intermediate intensity, 4 = high intensity). The pathologic score represents the sum of these two values, reported in this paper as a combined IHC staining score (CSS). Results: Of 30 patients 7 were AJCC stage IIA, 10 stage IIIB, 7 stage IIIC and 6 stage IV. Median follow-up was 113 months. DFI was 17 months. Median overall survival (OS) was not reached. Stage-specific OS was: II - not reached; III - not reached; IV - 11 months. In a univariate analysis, poor OS was associated with loss of CD29 expression; median OS, 32 months vs. not reached for CSS 3-7 vs. >7.5, respectively; p=0.052 comparing entire curves, after adjustment. In a Cox model analysis, loss of CD29 exhibited a trend toward association with survival (p=0.098) after adjusting for the effect of stage (p=0.0076). Greater expression of ALDH1A1 was associated with increasing stage (p=0.042 over stages 2, 3b, 3c, and 4) while loss of CD29 expression exhibited a trend toward being associated with stages 3 and 4 (p=0.08). Compared to normal colon tissue, primary tumors were associated with increased expression of ALDH1B1 (p=0.008). ALD1H1B1 expression level differed according to whether the tumor was moderately or poorly differentiated, well differentiated, or mucinous; the highest expression levels were associated with moderately or poorly differentiated tumors (p=0.011). Lymph node metastases were associated with a trend toward decreased expression of EpCAM (p = 0.06) when comparing 0 vs. 1 vs. 2+ positive lymph nodes, as was CD29 (p = 0.08) when comparing 0 vs. any positive lymph nodes. Compared to normal colon tissue metastatic colon cancers from different patients were associated with increased ALDH1B1 expression (p=0.001) whereas CD29 expression was higher in normal colonic tissue (p=0.014). Conclusion: CD29 may be associated with survival as well as clinical stage and number of lymph nodes. ALDH1B1 expression was associated with differentiation as well as type of tissue evaluated. ALDH1A1 was associated with clinical stage, and decreased EpCAM expression was found in patients with advanced lymph node stage. CRCSCs may be useful biomarkers to risk stratify, and estimate outcomes in CRC. Larger prospective studies are required to validate the current findings.
Collapse
Affiliation(s)
- Russell C Langan
- 1. National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Identification of β-tubulin as a common immunogen in gastrointestinal malignancy by mass spectrometry of colorectal cancer proteome: implications for early disease detection. Anal Bioanal Chem 2012; 403:1801-9. [DOI: 10.1007/s00216-011-5628-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 01/11/2023]
|
22
|
Yu XF, Zou J, Bao ZJ, Dong J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol 2011; 17:4711-7. [PMID: 22180714 PMCID: PMC3233678 DOI: 10.3748/wjg.v17.i42.4711] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/23/2011] [Accepted: 06/30/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify differentially expressed microRNAs (miRNAs) in human colon cancer stem cells (SW1116csc) and study their function in SW1116csc proliferation.
METHODS: SW1116csc were isolated from the human colon cancer cell line, SW1116 and cultured in serum-free medium. A miRNA microarray was used to detect differential expression profiles of miRNAs in SW1116csc and SW1116 cells. Real-time quantitative polymerase chain reaction (PCR) was performed to verify the differential expression of candidate miRNAs obtained from the microarray. Target mRNAs of differentially expressed miRNAs were predicted with target prediction tools. miRNA expression plasmids were transfected into SW1116csc using Lipofectamine 2000 reagent. Cell proliferation curves were generated with trypan blue staining, and the colony formation rate of transfected cells was measured with the soft agar colony formation assay. Expression of target mRNAs and proteins from differentially expressed miRNAs were detected using reverse transcription (RT)-PCR and western blotting.
RESULTS: Compared with expression in SW1116 cells, 35 miRNAs (including hsa-miR-192, hsa-miR-29b, hsa-miR-215, hsa-miR-194, hsa-miR-33a and hsa-miR-32) were upregulated more than 1.5-fold, and 11 miRNAs (including hsa-miR-93, hsa-miR-1231, hsa-miRPlus-F1080, hsa-miR-524-3p, hsa-miR-886-3p and hsa-miR-561) were downregulated in SW1116csc. The miRNA microarray results were further validated with quantitative RT-PCR. miR-93 was downregulated, and its predicted mRNA targets included BAMBI, CCND2, CDKN1A, HDAC8, KIF23, MAP3K9, MAP3K11, MYCN, PPARD, TLE4 and ZDHHC1. Overexpressed miR-93 significantly inhibited cell proliferation and colony formation by SW1116csc. Furthermore, miR-93 negatively regulated the mRNA and protein levels of HDAC8 and TLE4.
CONCLUSION: Some miRNAs were differentially expressed during differentiation of SW1116csc into SW1116 cells. miR-93 may inhibit SW1116csc proliferation and colony formation.
Collapse
|