1
|
Law KC, Quattrocchi AT, Xuereb BE, Moriarty N, Thompson LH, Parish CL. A pharmacological vasoconstrictor cocktail targeting endothelin signalling generates a stable, reproducible focal cerebral infarct with associated functional deficits in mice. Exp Neurol 2025; 388:115215. [PMID: 40081787 DOI: 10.1016/j.expneurol.2025.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Necessary for enhanced understanding of brain injury, and for developing new therapies, is the generation of reliable animal models. While many models are available, each comes with benefits and limitations. Intracerebral injection of the vasoconstrictive peptide endothelin-1 creates one of the most widely adopted models of focal ischemic stroke in rats, yet its potency is underwhelming in mice. This is likely underpinned by the greater proportions of vasodilatory compared to vasoconstrictive receptor subtypes in the mouse brain. Yet mouse models of ischemic stroke provide the benefit of exploiting the wide range of transgenic strains that can aid in further understanding pathophysiology mechanisms of acute and secondary damage, as well as endogenous recovery. To improve the efficiency of focal endothelin-1 infarcts in mice, we investigated the impact of co-administering pharmacological compounds that target endothelin receptor subtypes and downstream signalling, aimed at selectively enhancing vasoconstriction whilst reducing vasodilation. We report exacerbated neuronal loss and tissue atrophy resulting in motor and cognitive dysfunction when endothelin-1 was co-administered with the nitric oxide synthase inhibitor L-NAME and the selective ETB1 antagonist RES-701-1. These infarcts were stable, reproducible and achievable across brain regions. These findings demonstrate a new and effective mouse model to study focal ischemic stroke.
Collapse
Affiliation(s)
- Kevin Cl Law
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Andrew T Quattrocchi
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Brianna E Xuereb
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
2
|
Moriarty N, Fraser TD, Hunt CPJ, Eleftheriou G, Kauhausen JA, Thompson LH, Parish CL. Exercise promotes the functional integration of human stem cell-derived neural grafts in a rodent model of Parkinson's disease. Stem Cell Reports 2025:102480. [PMID: 40280136 DOI: 10.1016/j.stemcr.2025.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Human pluripotent stem cell (hPSC)-derived dopamine neurons can functionally integrate and reverse motor symptoms in Parkinson's disease models, motivating current clinical trials. However, dopamine neuron proportions remain low and their plasticity inferior to fetal tissue grafts. Evidence shows exercise can enhance neuron survival and plasticity, warranting investigation for hPSC-derived neural grafts. We show voluntary exercise (wheel running) significantly increases graft plasticity, accelerating motor recovery in animals receiving ectopic, but not homotopic, placed grafts, suggestive of threshold requirements. Plasticity was accompanied by increased phosphorylated extracellular signal-regulated kinase (ERK+) cells in the graft (and host), reflective of mitogen-activated protein kinase (MAPK)-ERK signaling, a downstream target of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), proteins that were also elevated. Verifying improved graft integration was the increase in cFos+ postsynaptic striatal neurons. These findings have direct implications for the adoption of physical therapy-based approaches to enhance neural transplantation outcomes in future Parkinson's disease clinical trials.
Collapse
Affiliation(s)
- Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Tyra D Fraser
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Georgia Eleftheriou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica A Kauhausen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Charles Perkins Institute, The University of Sydney, Sydney, NSW, Australia.
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Moore M, Cetinkaya-Un B, Sarkar P, Kayisli UA, Semerci-Gunay N, Teng M, Lockwood CJ, Guzeloglu-Kayisli O. Depletion of Fkbp5 Protects Against the Rapid Decline in Ovarian Reserve Induced by Prenatal Stress in Female Offspring of Wild-Type Mice. Int J Mol Sci 2025; 26:2471. [PMID: 40141115 PMCID: PMC11942629 DOI: 10.3390/ijms26062471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Prenatal stress (PNS) impairs offspring ovarian development by exerting negative long-term effects on postnatal ovarian function and folliculogenesis. FKBP51 is a stress-responsive protein that inhibits glucocorticoid and progesterone receptors. We hypothesize that FKBP51 contributes to impaired ovarian development and folliculogenesis induced by PNS. Timed-pregnant Fkbp5+/+ (wild-type) and Fkbp5-/- (knockout) mice were randomly assigned to either the undisturbed (nonstress) or PNS group, with exposure to maternal restraint stress from embryonic days 8 to 18. Ovaries from the offspring were harvested and stained, and follicles were counted according to their stages. Ovarian expressions of FKBP51 were evaluated by immunohistochemistry and Fkbp5 and steroidogenic enzymes were evaluated by qPCR. Compared to controls, Fkbp5+/+ PNS offspring had increased peripubertal primordial follicle atresia and fewer total follicles in the adult and middle-aged groups. In adult Fkbp5+/+ offspring, PNS elevated FKBP51 levels in granulosa cells of primary to tertiary follicles. Our results suggest that PNS administration increased FKBP51 levels, depleted the ovarian reserve, and dysregulated ovarian steroid synthesis. However, these PNS effects were tolerated in Fkbp5-/- mice, supporting the conclusion that FKBP51 contributes to reduced ovarian reserve induced by PNS.
Collapse
Affiliation(s)
- Monica Moore
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Busra Cetinkaya-Un
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Papri Sarkar
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Umit A. Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Nihan Semerci-Gunay
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Michael Teng
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA; (M.M.); (B.C.-U.); (P.S.); (U.A.K.); (N.S.-G.); (C.J.L.)
| |
Collapse
|
5
|
Beauchamp LC, Ellett LJ, Juan SMA, Liu XM, Hunt CPJ, Parish CL, Jacobson LH, Shepherd CE, Halliday GM, Bush AI, Vella LJ, Finkelstein DI, Barnham KJ. Evidence of COMT dysfunction in the olfactory bulb in Parkinson's disease. Acta Neuropathol 2025; 149:21. [PMID: 40024917 PMCID: PMC11872990 DOI: 10.1007/s00401-025-02861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hyposmia is one of the most prevalent non-motor symptoms of Parkinson's disease and antecedes motor dysfunction by up to a decade. However, the underlying pathophysiology remains poorly understood. In this study, we investigated the mechanisms of dopamine metabolism in post-mortem olfactory bulbs from ten Parkinson's disease and ten neurologic control subjects. In contrast to the loss of dopaminergic neurons in the midbrain, we observed an increase in tyrosine hydroxylase-positive neurons in the Parkinson's disease olfactory bulb, suggesting a potential role for dopamine in the hyposmia associated with the condition. Using immunohistochemistry, high-performance liquid chromatography, western blot, and enzyme-linked immunosorbent assays, we demonstrate a reduction in catechol-O-methyltransferase catabolism of dopamine to homovanillic acid, potentially due to a depletion of the methyl donor substrate S-adenosyl methionine. We hypothesized that reduction in catechol-O-methyltransferase activity would result in increased dopamine occupation of the D2 receptor, and consequent inhibition of olfactory processing. Next, we conducted pharmacological interventions to modify dopamine dynamics in hyposmic tau knockout mice, which exhibit altered dopamine metabolism. Our hypothesis was supported by the observation that the D2 receptor antagonist haloperidol temporarily alleviated olfactory deficits in these tau knockout mice. This study implicates a potential role of catechol-O-methyltransferase-mediated dopamine metabolism in the early olfactory impairments associated with Parkinson's disease.
Collapse
Affiliation(s)
- Leah C Beauchamp
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura J Ellett
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiang M Liu
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Glenda M Halliday
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney Brain and Mind Centre, Camperdown, NSW, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Surgery, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kevin J Barnham
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Li X, Fang K, Wang F. Somatic cell reprogramming for Parkinson's disease treatment. IBRAIN 2025; 11:59-73. [PMID: 40103698 PMCID: PMC11911114 DOI: 10.1002/ibra.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration of dopamine neurons in the substantia nigra pars compacta. The patient exhibits a series of motor symptoms, such as static tremors, which impair their capacity to take care for themselves in daily life. In the late stage, the patient is unable to walk independently and is bedridden for an extended period of time, reducing their quality of life significantly. So far, treatment methods for PD mainly include drug therapy and deep brain stimulation. Pharmacotherapy is aimed at increasing dopamine (DA) levels; however, the treatment effect is more pronounced in the short term, and there is no benefit in improvement in the overall progression of the disease. In recent years, novel therapeutic strategies have been developed, such as cell reprogramming, trying to generate more DA in PD treatment. This review mainly discusses the advantages, methodology, cell origin, transformation efficiency, and practical application shortcomings of cell reprogramming therapy in PD strategy.
Collapse
Affiliation(s)
- Xiaozhuo Li
- School of Institute of Primate Translational Medicine Kunming University of Science and Technology Kunming China
| | - Kevin Fang
- Living Systems Institute University of Exeter Exeter UK
| | - Fengping Wang
- College of Traditional Chinese Medicine Shandong Second Medical University Weifang Shandong China
| |
Collapse
|
7
|
Guichardaz M, Bottini S, Balmas E, Bertero A. Overcoming the Silencing of Doxycycline-Inducible Promoters in hiPSC-derived Cardiomyocytes. OPEN RESEARCH EUROPE 2024; 4:266. [PMID: 39926351 PMCID: PMC11803382 DOI: 10.12688/openreseurope.19024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/11/2025]
Abstract
Background Human induced pluripotent stem cells (hiPSCs) are pivotal for studying human development, modeling diseases, and advancing regenerative medicine. Effective control of transgene expression is crucial to achieve temporal and quantitative precision in all of these contexts. The doxycycline (dox)-inducible OPTi-OX system, which integrates the Tet-On 3G transactivator and dox-responsive transgene at the hROSA26 and AAVS1 genomic safe harbors (GSHs), respectively, offers a promising solution. Yet, transgene silencing, particularly in hiPSC-derived cardiomyocytes (hiPSC-CMs), limits its utility. Methods To address this, we evaluated strategies to enhance dox-inducible transgene expression. We compared two promoters, TRE3VG and T11, for activity and stability, and investigated the addition of a Ubiquitous Chromatin Opening Element (UCOE) to reduce silencing. We also tested relocating the transgene cassette to the CLYBL GSH, and employed sodium butyrate (SB), a histone deacetylase inhibitor, to restore promoter activity. Transgene expression was assessed via flow cytometry and real-time quantitative PCR. Results TRE3VG exhibited higher activity than T11, but both were prone to silencing. UCOE did not enhance promoter activity in hiPSCs, but modestly reduced silencing in hiPSC-CMs. Targeting the CLYBL locus improved promoter activity compared to AAVS1 in both hiPSCs and hiPSC-CMs. SB restored activity in silenced inducible promoters within hiPSC-CMs, but compromised hiPSC viability. Unexpectedly, Tet-On 3G was silenced in some clones and could not be reactivated by SB. Conclusions These findings underscore the need for integrating multiple strategies, including careful GSH selection, improved cassette design, epigenetic modulation, and clone screening, to develop robust dox-inducible systems that retain functionality during hiPSC differentiation.
Collapse
Affiliation(s)
- Michelle Guichardaz
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| |
Collapse
|
8
|
Yuan Q, Zhang SC. Circuit integration by transplanted human neurons. Curr Opin Genet Dev 2024; 89:102225. [PMID: 39586651 DOI: 10.1016/j.gde.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Transplantation-based cell therapy holds the potential to offer sustained and physiological repair for neurological diseases and injuries, which requires the integration of transplanted neurons into the neural circuits of the human brain. Recent studies involving transplantation of human pluripotent stem cell-derived neural progenitors into the brain of model animals reveal the remarkable capacity of grafted immature human neurons to mature, project axons in a long distance, and form both pre- and postsynaptic connections with host neurons, corresponding to functional recovery. Strikingly, this circuit integration depends largely on the identity of the transplanted cells and may be modified by external stimuli. This realization begs for enriched authentic target cells for transplantation and combination with rehabilitation for better therapeutic outcomes.
Collapse
Affiliation(s)
- Qiang Yuan
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore
| | - Su-Chun Zhang
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
9
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Barker RA, Björklund A, Parmar M. The history and status of dopamine cell therapies for Parkinson's disease. Bioessays 2024; 46:e2400118. [PMID: 39058892 PMCID: PMC11589688 DOI: 10.1002/bies.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of the dopaminergic nigrostriatal pathway which has led to the successful development of drug therapies that replace or stimulate this network pharmacologically. Although these drugs work well in the early stages of the disease, over time they produce side effects along with less consistent clinical benefits to the person with Parkinson's (PwP). As such there has been much interest in repairing this pathway using transplants of dopamine neurons. This work which began 50 years ago this September is still ongoing and has now moved to first in human trials using human pluripotent stem cell-derived dopaminergic neurons. The results of these trials are eagerly awaited although proof of principle data has already come from trials using human fetal midbrain dopamine cell transplants. This data has shown that developing dopamine cells when transplanted in the brain of a PwP can survive long term with clinical benefits lasting decades and with restoration of normal dopaminergic innervation in the grafted striatum. In this article, we discuss the history of this field and how this has now led us to the recent stem cell trials for PwP.
Collapse
Affiliation(s)
- Roger A. Barker
- Department of Clinical Neurosciences and Cambridge Stem Cell InstituteJohn van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUK
| | - Anders Björklund
- Department of Experimental Medical ScienceWallenberg Neuroscience CenterLund UniversityLundSweden
| | - Malin Parmar
- Department of Experimental Medical ScienceWallenberg Neuroscience CenterLund UniversityLundSweden
- Department of Clinical Sciences LundLund Stem Cell Center and Division of NeurologyLund UniversityLundSweden
| |
Collapse
|
11
|
Fiorenzano A, Storm P, Sozzi E, Bruzelius A, Corsi S, Kajtez J, Mudannayake J, Nelander J, Mattsson B, Åkerblom M, Björklund T, Björklund A, Parmar M. TARGET-seq: Linking single-cell transcriptomics of human dopaminergic neurons with their target specificity. Proc Natl Acad Sci U S A 2024; 121:e2410331121. [PMID: 39541349 PMCID: PMC11588066 DOI: 10.1073/pnas.2410331121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Dopaminergic (DA) neurons exhibit significant diversity characterized by differences in morphology, anatomical location, axonal projection pattern, and selective vulnerability to disease. More recently, scRNAseq has been used to map DA neuron diversity at the level of gene expression. These studies have revealed a higher than expected molecular diversity in both mouse and human DA neurons. However, whether different molecular expression profiles correlate with specific functions of different DA neurons or with their classical division into mesolimbic (A10) and nigrostriatal (A9) neurons, remains to be determined. To address this, we have developed an approach termed TARGET-seq (Tagging projections by AAV-mediated RetroGrade Enrichment of Transcriptomes) that links the transcriptional profile of the DA neurons with their innervation of specific target structures in the forebrain. Leveraging this technology, we identify molecularly distinct subclusters of human DA neurons with a clear link between transcriptome and axonal target-specificity, offering the possibility to infer neuroanatomical-based classification to molecular identity and target-specific connectivity. We subsequently used this dataset to identify candidate transcription factors along DA developmental trajectories that may control subtype identity, thus providing broad avenues that can be further explored in the design of next-generation A9 and A10 enriched DA-neurons for drug screening or A9 enriched DA cells for clinical stem cell-based therapies.
Collapse
Affiliation(s)
- Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Edoardo Sozzi
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Andreas Bruzelius
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Sara Corsi
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Janko Kajtez
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Janitha Mudannayake
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Jenny Nelander
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Bengt Mattsson
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Malin Åkerblom
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund Skåne223 62, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund Skåne223 62, Sweden
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Skåne223 62, Sweden
| |
Collapse
|
12
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
13
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
14
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Wells CA, Guhr A, Bairoch A, Chen Y, Hu M, Löser P, Ludwig TE, Mah N, Mueller SC, Seiler Wulczyn AEM, Seltmann S, Rossbach B, Kurtz A. Guidelines for managing and using the digital phenotypes of pluripotent stem cell lines. Stem Cell Reports 2024; 19:1369-1378. [PMID: 39332404 PMCID: PMC11561460 DOI: 10.1016/j.stemcr.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
Each pluripotent stem cell line has a physical entity as well as a digital phenotype, but linking the two unambiguously is confounded by poor naming practices and assumed knowledge. Registration gives each line a unique and persistent identifier that links to phenotypic data generated over the lifetime of that line. Registration is a key recommendation of the 2023 ISSCR Standards for the use of human stem cells in research. Here we consider how community adoption of stem cell line registration could facilitate the establishment of integrated digital phenotypes of specific human pluripotent stem cell (hPSC) lines.
Collapse
Affiliation(s)
- Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Medical, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anke Guhr
- Robert Koch Institute, 13353 Berlin, Germany
| | - Amos Bairoch
- University of Geneva and SIB Swiss Institute of Bioinformatics, CMU, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Ying Chen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Mengqi Hu
- Stem Cell Systems, Department of Anatomy and Physiology, Medical, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Löser
- Robert Koch Institute, 13353 Berlin, Germany
| | | | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Sabine C Mueller
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | | | - Stefanie Seltmann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Bella Rossbach
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Andreas Kurtz
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany; Berlin Institute of Health Center for Regenerative Therapies at Charité, Berlin, Germany.
| |
Collapse
|
16
|
Fu CL, Jiang X, Dong BC, Li D, She XY, Yao J. Protocol for transplantation of cells derived from human midbrain organoids into a Parkinson's disease mouse model to restore motor function. STAR Protoc 2024; 5:103251. [PMID: 39120976 PMCID: PMC11364011 DOI: 10.1016/j.xpro.2024.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024] Open
Abstract
Midbrain organoids provide an innovative cellular source for transplantation therapies of neurodegenerative diseases. Here, we present a protocol for midbrain organoid-derived cell transplantation into a Parkinson's disease mouse model. We describe steps for midbrain organoid generation, single-cell suspension preparation, and cell transplantation. This approach is valuable for studying the efficacy of midbrain organoids as a potential cellular source for restoring motor function. For complete details on the use and execution of this protocol, please refer to Fu et al.1.
Collapse
Affiliation(s)
- Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern, Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern, Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo-Cheng Dong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern, Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xin-Yu She
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern, Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern, Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Lin X, Ren P, Xue Z, Liu X, Cao Y, Li T, Miao H. Astrocytic GDNF ameliorates anesthesia and surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice. Neurochem Int 2024; 177:105765. [PMID: 38750960 DOI: 10.1016/j.neuint.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) are common complications after surgery in older patients. However, the specific mechanism of this condition remains unclear. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophin that abundantly expressed throughout the brain. It can enhance synaptic plasticity and alleviate learning and memory impairments. Thus, the purpose of this study was to investigate the role of GDNF in PND and the mechanisms involved. METHODS The PND animal model was established by performing left tibial fracture surgery on 18-month-old C57BL/6 mice under sevoflurane anesthesia. Recombinant adeno-associated virus (rAAV)-GDNF or empty vectors were injected bilaterally into the hippocampal CA1 region of aged mice 3 weeks before anesthesia/surgery. The open field and fear conditioning test were used to assess the behavior changes. Golgi staining and electrophysiology were utilized to evaluate the morphological and functional alterations of neuronal synaptic plasticity. Western blot analysis was carried out to measure the proteins expression levels and immunofluorescence staining was performed to probe the cellular localization of GDNF. RESULTS Mice with surgery and anesthesia showed a significant decrease in hippocampus-dependent learning and memory, accompanied by a decline in hippocampal synaptic plasticity. Anesthesia/surgery induced a reduction of GDNF, which was colocalized with astrocytes. Overexpression of GDNF in astrocytes could ameliorate the decline in cognitive function by improving hippocampal synaptic plasticity, meanwhile astrocytic GDNF rescued the anesthesia/surgery-induced decrease in GFRα1 and NCAM. CONCLUSION The study concludes that astrocytic GDNF may improve anesthesia/surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice via the GFRα1/NCAM pathway.
Collapse
Affiliation(s)
- Xiaowan Lin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ziyi Xue
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Xiao Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ying Cao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Huihui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
19
|
Zhang W, Hou Y, Yin S, Miao Q, Lee K, Zhou X, Wang Y. Advanced gene nanocarriers/scaffolds in nonviral-mediated delivery system for tissue regeneration and repair. J Nanobiotechnology 2024; 22:376. [PMID: 38926780 PMCID: PMC11200991 DOI: 10.1186/s12951-024-02580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.
Collapse
Affiliation(s)
- Wanheng Zhang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Hou
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
| | - Shiyi Yin
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Miao
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon, 35365, Republic of Korea
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Yongtao Wang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China.
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
21
|
Kong L, Miu L, Yao W, Shi Z. Effect of Regular Aerobic Exercise on Cognitive Function, Depression Level and Regulative Role of Neurotrophic Factor: A Prospective Cohort Study in the Young and the Middle-Aged Sample. Risk Manag Healthc Policy 2024; 17:935-943. [PMID: 38633669 PMCID: PMC11021864 DOI: 10.2147/rmhp.s456765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Mild cognitive impairment (MCI) and depressive disorder (DD), which are associated with unhealthy lifestyles, are prevalent worldwide. This study aimed to investigate the effects of regular aerobic exercise on cognitive function, depression, and the regulatory role of neurotrophic growth factors for providing scientific basis in preventing MCI and DD in healthy individuals. Patients and Methods Eighty members of the fitness center and 80 community residents were recruited, who were administered by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Patient Health Questionnaire (PHQ-9). Brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) in the peripheral blood were detected by enzyme-linked immunosorbent assay (ELISA). Results The RBANS and other factor scores, except for visuospatial abilities, were higher and PHQ-9 scores were lower in the study group than in the control group. The concentrations of BDNF and GDNF in the study group were higher than those in the control group. RBANS and its factor scores positively and PHQ-9 negatively correlated with BDNF and GDNF levels. Finally, multiple regression analysis showed that BDNF, as a predictor of RBANS, could explain 59.90% of its variance and that GDNF was a predictor of PHQ-9 could explain 12.30% of the variance. Conclusion Regular aerobic exercise can improve cognitive function and depressive symptoms by increasing the BDNF and GDNF levels.
Collapse
Affiliation(s)
- Lingming Kong
- Mental Health Research Center, No. 904th Hospital, Changzhou, Jiangsu, 213003, People’s Republic of China
| | - Liqin Miu
- Psychiatry Department, the 2nd People’s Hospital of Jintan District, Changzhou, Jiangsu, 213200, People’s Republic of China
| | - Wenwei Yao
- Psychiatry Department, the 2nd People’s Hospital of Jintan District, Changzhou, Jiangsu, 213200, People’s Republic of China
| | - Zhiyuan Shi
- College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| |
Collapse
|
22
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
23
|
Fu CL, Dong BC, Jiang X, Li D, Yao J. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson's disease mouse model. Heliyon 2024; 10:e24234. [PMID: 38293351 PMCID: PMC10826648 DOI: 10.1016/j.heliyon.2024.e24234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and loss of DA transmission in the striatum, thus making cell transplantation an effective treatment strategy. Here, we develop a cellular therapy based on induced pluripotent stem cell (iPSC)-derived midbrain organoids. By transplanting midbrain organoid cells into the striatum region of a 6-OHDA-lesioned PD mouse model, we found that the transplanted cells survived and highly efficiently differentiated into DA neurons. Further, using a dopamine sensor, we observed that the differentiated human DA neurons could efficiently release dopamine and were integrated into the neural network of the PD mice. Moreover, starting from four weeks after transplantation, the motor function of the transplanted mice could be significantly improved. Therefore, cell therapy based on iPSC-derived midbrain organoids can be a potential strategy for the clinical treatment of PD.
Collapse
Affiliation(s)
- Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Bo-Cheng Dong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 PMCID: PMC11091588 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Xiao B, Tan EK. Cell replacement for Parkinson's disease: advances and challenges. Neural Regen Res 2023; 18:2693-2694. [PMID: 37449626 DOI: 10.4103/1673-5374.373710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
27
|
Casserly L, Garton DR, Montaño-Rodriguez A, Andressoo JO. Analysis of Acute and Chronic Methamphetamine Treatment in Mice on Gdnf System Expression Reveals a Potential Mechanism of Schizophrenia Susceptibility. Biomolecules 2023; 13:1428. [PMID: 37759827 PMCID: PMC10526418 DOI: 10.3390/biom13091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The increase in presynaptic striatal dopamine is the main dopaminergic abnormality in schizophrenia (SCZ). SCZ is primarily treated by modulating the activity of monoamine systems, with a focus on dopamine and serotonin receptors. Glial cell line-derived neurotrophic factor (GDNF) is a strong dopaminergic factor, that recently was shown to correlate with SCZ in human CSF and in striatal tissue. A 2-3-fold increase in GDNF in the brain was sufficient to induce SCZ-like dopaminergic and behavioural changes in mice. Here, we analysed the effect of acute, chronic, and embryonic methamphetamine, a drug known to enhance the risk of psychosis, on Gdnf and its receptors, Gfra1 and Ret, as well as on monoamine metabolism-related gene expression in the mouse brain. We found that acute methamphetamine application increases Gdnf expression in the striatum and chronic methamphetamine decreases the striatal expression of GDNF receptors Gfra1 and Ret. Both chronic and acute methamphetamine treatment upregulated the expression of genes related to dopamine and serotonin metabolism in the striatum, prefrontal cortex, and substantia nigra. Our results suggest a potential mechanism as to how methamphetamine elicits individual psychosis risk in young adults-variation in initial striatal GDNF induction and subsequent GFRα1 and RET downregulation may determine individual susceptibility to psychosis. Our results may guide future experiments and precision medicine development for methamphetamine-induced psychosis using GDNF/GFRa1/RET antagonists.
Collapse
Affiliation(s)
- Laoise Casserly
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Daniel R. Garton
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Ana Montaño-Rodriguez
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
28
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
29
|
Patrigeon M, Brot S, Bonnet ML, Belnoue L, Gaillard A. Host-to-graft Propagation of α-synuclein in a Mouse Model of Parkinson's Disease: Intranigral Versus Intrastriatal Transplantation. Transplantation 2023; 107:e201-e212. [PMID: 36944598 DOI: 10.1097/tp.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies. Ectopic transplantation of human fetal ventral mesencephalic DA neurons into the striatum of PD patients have provided proof-of-principle for the cell replacement strategy in this disorder. However, 10 to 22 y after transplantation, 1% to 27% of grafted neurons contained α-syn aggregates similar to those observed in the host brain. We hypothesized that intrastriatal grafts are more vulnerable to α-syn propagation because the striatum is not the ontogenic site of nigral DA neurons and represents an unfavorable environment for transplanted neurons. Here, we compared the long-term host-to-graft propagation of α-syn in 2 transplantation sites: the SNpc and the striatum. METHODS Two mouse models of PD were developed by injecting adeno-associated-virus2/9-human α-syn A53T into either the SNpc or the striatum of C57BL/6 mice. Mouse fetal ventral mesencephalic DA progenitors were grafted into the SNpc or into the striatum of SNpc or striatum of α-syn injected mice, respectively. RESULTS First, we have shown a degeneration of the nigrostriatal pathway associated with motor deficits after nigral but not striatal adeno-associated-virus-hαsyn A53T injection. Second, human α-syn preferentially accumulates in striatal grafts compared to nigral grafts. However, no differences were observed for phosphorylated α-syn, a marker of pathological α-syn aggregates. CONCLUSIONS Taken together, our results suggest that the ectopic site of the transplantation impacts the host-to-graft transmission of α-syn.
Collapse
Affiliation(s)
- Maëlig Patrigeon
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Laure Belnoue
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
30
|
Xie Y, Sun J, Man W, Zhang Z, Zhang N. Personalized estimates of brain cortical structural variability in individuals with Autism spectrum disorder: the predictor of brain age and neurobiology relevance. Mol Autism 2023; 14:27. [PMID: 37507798 PMCID: PMC10375633 DOI: 10.1186/s13229-023-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heritable condition related to brain development that affects a person's perception and socialization with others. Here, we examined variability in the brain morphology in ASD children and adolescent individuals at the level of brain cortical structural profiles and the level of each brain regional measure. METHODS We selected brain structural MRI data in 600 ASDs and 729 normal controls (NCs) from Autism Brain Imaging Data Exchange (ABIDE). The personalized estimate of similarity between gray matter volume (GMV) profiles of an individual to that of others in the same group was assessed by using the person-based similarity index (PBSI). Regional contributions to PBSI score were utilized for brain age gap estimation (BrainAGE) prediction model establishment, including support vector regression (SVR), relevance vector regression (RVR), and Gaussian process regression (GPR). The association between BrainAGE prediction in ASD and clinical performance was investigated. We further explored the related inter-regional profiles of gene expression from the Allen Human Brain Atlas with variability differences in the brain morphology between groups. RESULTS The PBSI score of GMV was negatively related to age regardless of the sample group, and the PBSI score was significantly lower in ASDs than in NCs. The regional contributions to the PBSI score of 126 brain regions in ASDs showed significant differences compared to NCs. RVR model achieved the best performance for predicting brain age. Higher inter-individual brain morphology variability was related to increased brain age, specific to communication symptoms. A total of 430 genes belonging to various pathways were identified as associated with brain cortical morphometric variation. The pathways, including short-term memory, regulation of system process, and regulation of nervous system process, were dominated mainly by gene sets for manno midbrain neurotypes. LIMITATIONS There is a sample mismatch between the gene expression data and brain imaging data from ABIDE. A larger sample size can contribute to the model training of BrainAGE and the validation of the results. CONCLUSIONS ASD has personalized heterogeneity brain morphology. The brain age gap estimation and transcription-neuroimaging associations derived from this trait are replenished in an additional direction to boost the understanding of the ASD brain.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
31
|
Li Y, Chang CC, Wang C, Wu WT, Wang CM, Tu HL. Microfluidic Biosensor Decorated with an Indium Phosphate Nanointerface for Attomolar Dopamine Detection. ACS Sens 2023; 8:2263-2270. [PMID: 37155824 DOI: 10.1021/acssensors.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing functional materials that directly integrate into miniaturized devices for sensing applications is essential for constructing the next-generation point-of-care system. Although crystalline structure materials such as metal organic frameworks are attractive materials exhibiting promising potential for biosensing, their integration into miniaturized devices is limited. Dopamine (DA) is a major neurotransmitter released by dopaminergic neurons and has huge implications in neurodegenerative diseases. Integrated microfluidic biosensors capable of sensitive monitoring of DA from mass-limited samples is thus of significant importance. In this study, we developed and systematically characterized a microfluidic biosensor functionalized with the hybrid material composed of indium phosphate and polyaniline nanointerfaces for DA detection. Under the flowing operation, this biosensor displays a linear dynamic sensing range going from 10-18 to 10-11 M and a limit of detection (LOD) value of 1.83 × 10-19 M. In addition to the high sensitivity, this microfluidic sensor showed good selectivity toward DA and high stability (>1000 cycles). Further, the reliability and practical utility of the microfluidic biosensor were demonstrated using the neuro-2A cells treated with the activator, promoter, and inhibiter. These promising results underscore the importance and potential of microfluidic biosensors integrated with hybrid materials as advanced biosensors systems.
Collapse
Affiliation(s)
- Ying Li
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chiao-Chun Chang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chu Wang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Ti Wu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Min Wang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- General Education Center, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
32
|
Liu Y, Zhang W, Hu C, Zheng C, Zhang F, Yang L, Li Z, Wang Y. A composite hydrogel improves the survival and differentiation of human iPSC-derived neural stem cells after ischemic stroke. COMPOSITES PART B: ENGINEERING 2023; 259:110711. [DOI: 10.1016/j.compositesb.2023.110711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Nishimura K, Yang S, Lee KW, Ásgrímsdóttir ES, Nikouei K, Paslawski W, Gnodde S, Lyu G, Hu L, Saltó C, Svenningsson P, Hjerling-Leffler J, Linnarsson S, Arenas E. Single-cell transcriptomics reveals correct developmental dynamics and high-quality midbrain cell types by improved hESC differentiation. Stem Cell Reports 2023; 18:337-353. [PMID: 36400027 PMCID: PMC9860082 DOI: 10.1016/j.stemcr.2022.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cell technologies provide new opportunities for modeling cells in health and disease and for regenerative medicine. In both cases, developmental knowledge and defining the molecular properties and quality of the cell types is essential. In this study, we identify developmental factors important for the differentiation of human embryonic stem cells (hESCs) into functional midbrain dopaminergic (mDA) neurons. We found that laminin-511, and dual canonical and non-canonical WNT activation followed by GSK3β inhibition plus FGF8b, improved midbrain patterning. In addition, neurogenesis and differentiation were enhanced by activation of liver X receptors and inhibition of fibroblast growth factor signaling. Moreover, single-cell RNA-sequencing analysis revealed a developmental dynamics similar to that of the endogenous human ventral midbrain and the emergence of high-quality molecularly defined midbrain cell types, including mDA neurons. Our study identifies novel factors important for human midbrain development and opens the door for a future application of molecularly defined hESC-derived cell types in Parkinson disease.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shanzheng Yang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ka Wai Lee
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Emilía Sif Ásgrímsdóttir
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kasra Nikouei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Sabine Gnodde
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lijuan Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carmen Saltó
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
34
|
Wu J, Tang Y. Transcription Factor-Mediated Differentiation of Motor Neurons from Human Pluripotent Stem Cells. Methods Mol Biol 2023; 2593:245-258. [PMID: 36513936 DOI: 10.1007/978-1-0716-2811-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Studying the pathogenesis of neurological diseases with animal models might not always truly recapitulate their pathophysiology, due to species differences. Fortunately, human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), especially derived from patients, have been widely employed to induce neural progenitor cells (NPCs) and further multiple neural subtypes. Particularly in the past decade, hPSC-based cell sources have been applied in studying neural development, cell therapy, disease modeling, and drug screening, among others. The generation of unlimited amount of neurons also facilitates a variety of biochemical assays, mass spectrometry, omic analysis, and next-generation sequencing, which thus provides an excellent tool in modeling neurodegenerative and neurodevelopmental diseases. Dysfunction or death of motor neurons (MNs) in the spinal cord and motor cortex is implicated in various motor neuron diseases (MNDs). Yet, producing high-purity and high-yield MNs remains a major challenge due to the complexity of MN specification during development. In this chapter, we describe a method of generating functional MNs via lentiviral delivery of transcription factors, based on the preservable NPC platform derived from hPSCs. Specifically, we transduce NPCs with a single lentivirus co-expressing three transcription factors including NGN2, ISL1, and LHX3, which is necessary and sufficient to induce mature MNs with high efficiencies (~90%) within 3 weeks. This chapter thus provides a robust method to generate high-purity hPSC-MNs at very high yields, enabling the acquisition of rich patient-specific MNs to be used for modeling the molecular underpinnings of MNDs.
Collapse
Affiliation(s)
- Junjiao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Cha Y, Park TY, Leblanc P, Kim KS. Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson's Disease. J Mov Disord 2023; 16:22-41. [PMID: 36628428 PMCID: PMC9978267 DOI: 10.14802/jmd.22141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Tae-Yoon Park
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
36
|
Lelos MJ. Investigating cell therapies in animal models of Parkinson's and Huntington's disease: Current challenges and considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:159-189. [PMID: 36424091 DOI: 10.1016/bs.irn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapeutics have entered into an exciting era, with first-in-person clinical trials underway for Parkinson's disease and novel cell therapies in development for other neurodegenerative diseases. In the hope of ensuring successful translation of these novel cell products to the clinic, a significant amount of preclinical work continues to be undertaken. Rodent models of neural transplantation are required to thoroughly assess the survival, safety and efficacy of novel therapeutics. It is critical to produce robust and reliable preclinical data, in order to increase the likelihood of clinical success. As a result, significant effort has been driven into generating ever more relevant model systems, from genetically modified disease models to mice with humanized immune systems. Despite this, several challenges remain in the quest to assess human cells in the rodent brain long-term. Here, with a focus on models of Parkinson's and Huntington's disease, we discuss key considerations for choosing an appropriate rodent model for neural transplantation. We also consider the challenges associated with long-term survival and assessment of functional efficacy in these models, as well as the need to consider the clinical relevance of the model. While the choice of model will be dependent on the scientific question, by considering the caveats associated with each model, we identify opportunities to optimize the preclinical assessment and generate reliable data on our novel cell therapeutics.
Collapse
Affiliation(s)
- Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
37
|
Tang Q, Schweitzer JS, Song B. Panning for gold: Purifying mesencephalic dopaminergic progenitors differentiated from human pluripotent stem cells. Stem Cell Reports 2022; 17:2167-2171. [PMID: 36179693 PMCID: PMC9561634 DOI: 10.1016/j.stemcr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/20/2022] Open
Abstract
In a recently published study, Xu et al. used two surface markers, CLSTN2 and PTPRO, to generate highly purified donor dopaminergic neurons and achieved stable and predictable therapeutic outcomes by transplantation into the brain of PD animal models (Xu et al., 2022).
Collapse
Affiliation(s)
- Qingyuan Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Liu Y, Bertels S, Reischl M, Peravali R, Bastmeyer M, Popova AA, Levkin PA. Droplet Microarray Based Screening Identifies Proteins for Maintaining Pluripotency of hiPSCs. Adv Healthc Mater 2022; 11:e2200718. [PMID: 35799451 PMCID: PMC11468593 DOI: 10.1002/adhm.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are crucial for disease modeling, drug discovery, and personalized medicine. Animal-derived materials hinderapplications of hiPSCs in medical fields. Thus, novel and well-defined substrate coatings capable of maintaining hiPSC pluripotency are important for advancing biomedical applications of hiPSCs. Here a miniaturized droplet microarray (DMA) platform to investigate 11 well-defined proteins, their 55 binary and 165 ternary combinations for their ability to maintainpluripotency of hiPSCs when applied as a surface coating, is used. Using this screening approach, ten protein group coatings are identified, which promote significantly higher NANOG expression of hiPSCs in comparison with Matrigel coating. With two of the identified coatings, long-term pluripotency maintenance of hiPSCs and subsequent differentiation into three germ layers are achieved. Compared with conventional high-throughput screening (HTS) in 96-well plates, the DMA platform uses only 83 µL of protein solution (0.83 µg total protein) and only ≈2.8 × 105 cells, decreasing the amount of proteins and cells ≈860 and 25-fold, respectively. The identified proteins will be essential for research and applications using hiPSCs, while the DMA platform demonstrates great potential for miniaturized HTS of scarce cells or expensive materials such as recombinant proteins.
Collapse
Affiliation(s)
- Yanxi Liu
- Institute of Biological and Chemical Systems – Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Sarah Bertels
- Zoological InstituteCell‐ and NeurobiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Markus Reischl
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems – Biological Information ProcessingKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Martin Bastmeyer
- Zoological InstituteCell‐ and NeurobiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
- Institute of Biological and Chemical Systems – Biological Information ProcessingKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems – Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyKaiserstraße 1276131KarlsruheGermany
| |
Collapse
|
39
|
de Luzy I, Pavan C, Moriarty N, Hunt C, Vandenhoven Z, Khanna A, Niclis J, Gantner C, Thompson L, Parish C. Identifying the optimal developmental age of human pluripotent stem cell-derived midbrain dopaminergic progenitors for transplantation in a rodent model of Parkinson's disease. Exp Neurol 2022; 358:114219. [DOI: 10.1016/j.expneurol.2022.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
|
40
|
Xiao B, Zhang SC, Tan EK. Combination therapy using GDNF and cell transplant in Parkinson's disease. Mol Neurodegener 2022; 17:49. [PMID: 35842673 PMCID: PMC9288671 DOI: 10.1186/s13024-022-00553-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore. .,Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
41
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
42
|
Brot S, Thamrin NP, Bonnet ML, Francheteau M, Patrigeon M, Belnoue L, Gaillard A. Long-Term Evaluation of Intranigral Transplantation of Human iPSC-Derived Dopamine Neurons in a Parkinson's Disease Mouse Model. Cells 2022; 11:cells11101596. [PMID: 35626637 PMCID: PMC9140181 DOI: 10.3390/cells11101596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). One strategy for treating PD is transplantation of DA neuroblasts. Significant advances have been made in generating midbrain DA neurons from human pluripotent stem cells. Before these cells can be routinely used in clinical trials, extensive preclinical safety studies are required. One of the main issues to be addressed is the long-term therapeutic effectiveness of these cells. In most transplantation studies using human cells, the maturation of DA neurons has been analyzed over a relatively short period not exceeding 6 months. In present study, we generated midbrain DA neurons from human induced pluripotent stem cells (hiPSCs) and grafted these neurons into the SNpc in an animal model of PD. Graft survival and maturation were analyzed from 1 to 12 months post-transplantation (mpt). We observed long-term survival and functionality of the grafted neurons. However, at 12 mpt, we observed a decrease in the proportion of SNpc DA neuron subtype compared with that at 6 mpt. In addition, at 12 mpt, grafts still contained immature neurons. Our results suggest that longer-term evaluation of the maturation of neurons derived from human stem cells is mandatory for the safe application of cell therapy for PD.
Collapse
Affiliation(s)
- Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Nabila Pyrenina Thamrin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
- CHU Poitiers, 86022 Poitiers, France
| | - Maureen Francheteau
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Maëlig Patrigeon
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Laure Belnoue
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
- CHU Poitiers, 86022 Poitiers, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
- Correspondence: ; Tel.: +33-54-945-3873
| |
Collapse
|
43
|
Roberton VH, Phillips JB. Considerations for the use of biomaterials to support cell therapy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:191-205. [DOI: 10.1016/bs.irn.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|