1
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Qiu Y, Zhu L, Cai W, Zhu L. Research Progress on BDNF and Depression. ACS Chem Neurosci 2025. [PMID: 40359301 DOI: 10.1021/acschemneuro.5c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Depression is a potentially life-threatening psychiatric disorder that affects the physical and mental health of millions of individuals worldwide. It can manifest at any stage of life, inducing profound emotional despondency, negative cognitions, and, in severe cases, suicidal ideation, often accompanied by physical symptoms, bringing a significant burden on both families and society. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is widely expressed in the central nervous system (CNS), particularly in regions, such as the hippocampus and cortex. Numerous studies have shown that an imbalance or inadequate conversion of pro-brain-derived neurotrophic factor (proBDNF) into its mature form, mature BDNF (mBDNF), may impair neuronal plasticity, which is crucial to the pathogenesis of depression. This paper provides a comprehensive review of the neurotrophic mechanisms implicated in depression, covering the location, expression, and release of BDNF; the relationship between proBDNF, mBDNF, and depression; and the downstream signaling pathways triggered by BNDF binding to its receptors. This review aims to provide a theoretical foundation for understanding the pathogenesis and clinical treatment of depression.
Collapse
Affiliation(s)
- Yahong Qiu
- The Key Laboratory of Developmental Genes and Human Disease, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lixia Zhu
- Patent Examination Cooperation (JIANGSU) Center of the Patent Office, China National Intellectual Property Administration (CNIPA), Suzhou, Jiangsu 215163, China
| | - Wenyan Cai
- The Key Laboratory of Developmental Genes and Human Disease, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lijuan Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Pang Y, Li J, Hu H, Ung COL. Genetic associations of prostate cancer in China: a systematic review. BMC Cancer 2025; 25:604. [PMID: 40181298 PMCID: PMC11966891 DOI: 10.1186/s12885-025-13830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVES In recent years, there has been a notable increase in the incidence and mortality rates of prostate cancer (PCa) in China, highlighting it as a significant public health issue. This study aimed to investigate the genetic association of PCa in China to better inform national disease management and medical resource allocation. METHODS A systematic literature review was conducted using 5 English databases (Web of Science, PubMed, Embase, Cochrane, Scopus) and 1 Chinese database (CNKI) to identify articles published from database inception to October 8, 2022, which reported the genetic associations of PCa in China. RESULTS Of the 11,195 articles retrieved, 41 were included in the review. A total of 116 different polymorphisms (including single nucleotide polymorphisms, deletions, insertions, and repeat lengths) in 58 genes were studied in Chinese populations. Among these, 37 out of 51 polymorphisms in 28 candidate genes such as BIRC5, C2orf43, COX-2, CYR61 (IGFBP10), DNMT1, DNMT3B, EXO1, FOXP4, and 7 unmapped SNPs were found to have either a positive or negative effect on PCa risk. However, 18 variants in 5 genes remain controversial across different studies. Additionally, 23 SNPs in 16 genes were reported to be associated with disease stage, Gleason score, PSA levels, PCa risk, and clinicopathological characteristics of PCa in China. CONCLUSION In Chinese populations, PCa risk and clinical features may result from individual genes, gene-gene interactions, and gene-environment interactions. These findings provide important insights into the relationship between genetic susceptibility and PCa risk in Chinese men.
Collapse
Affiliation(s)
- Yimin Pang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Junjun Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
5
|
Santos VR, Jerow LG, LaSarge CL. Behavioral analyses in rodent models of tuberous sclerosis complex. Epilepsy Behav 2025; 165:110313. [PMID: 39978075 DOI: 10.1016/j.yebeh.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Tuberous sclerosis complex (TSC) is typically associated with epilepsy, but patients also present with a myriad of comorbid neuropsychiatric disorders. TSC is caused by mutations in the tuberous sclerosis complex genes 1 or 2 (TSC1, TSC2). This TSC1/2 complex serves as a negative regulator of the mammalian target of rapamycin (mTOR) signaling pathway, which plays a crucial role in regulating neuronal function, including cell proliferation, survival, growth, and protein synthesis. Mutations result in hyperactivation of the pathway. Animal models with mutations in Tsc1 or Tsc2 consistently exhibit epilepsy and behavioral phenotypes. Additionally, abnormal neuronal populations can impact the broader network, leading to deficits in learning and memory, anxiety-like behaviors, deficits in social behaviors, and perseverative and repetitive behaviors. This review aims to synthesize the existing animal literature linking TSC models to epileptogenesis and behavioral impairments, with insights on how modifications in TSC signaling influence both the structure and function of neurons and behavior. Understanding these relationships may provide valuable insights into potential therapeutic targets for managing epilepsy and neuropsychiatric disorders associated with TSC dysregulation.
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Biology Cell Graduate Program, Neuroscience Graduate Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, OH, USA.
| | - Candi L LaSarge
- Neuroscience Graduate Program, University of Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Theocharopoulos C, Ziogas IA, Mungo B, Gogas H, Ziogas DC, Kontis E. HER2-targeted therapies: Unraveling their role in biliary tract cancers. Crit Rev Oncol Hematol 2025; 208:104655. [PMID: 39923923 DOI: 10.1016/j.critrevonc.2025.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025] Open
Abstract
Biliary tract cancers (BTCs) constitute a heterogeneous group of malignancies with rising incidence and limited therapeutic options in advanced stages, leading to increased overall mortality. Extensive genomic profiling has identified key oncogenic drivers in BTCs that represent promising therapeutic targets and could change the treatment paradigm. Evidence suggests improved survival outcomes for patients with actionable molecular alterations who received matched targeted therapies. Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase and proto-oncogene that has been extensively studied as a prognostic biomarker and a therapeutic target in multiple solid organ malignancies. Recent clinical trials on the combination of trastuzumab with tucatinib, FOLFOX, or pertuzumab for previously treated, HER2-positive, advanced BTCs have shown improved outcomes compared to current second-line therapies. Early evidence from observational studies on trastuzumab-containing regimens as first-line suggests promising efficacy. Furthermore, the recent tumor-agnostic approval of trastuzumab deruxtecan for HER2-positive solid tumors has formally introduced HER2-directed agents in the BTC therapeutic arsenal. This review aims to summarize the rapidly evolving landscape of HER2-directed agents for BTCs, highlighting current evidence of survival benefit. Beginning with a concise presentation of the structural and functional aspects of HER2, we detail the frequency and prognostic significance of HER2 alterations in BTCs and discuss all available preclinical and clinical data on anti-HER2 agents tested for BTCs.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Benedetto Mungo
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece.
| | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece.
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece.
| |
Collapse
|
7
|
Liu J, Huang R, Tang F, Ma Y, Kwan P. A missense variant in DEPDC5 resulted in abnormal morphology and increased seizure susceptibility and mortality through regulating mTOR signaling. Neurobiol Dis 2025; 207:106842. [PMID: 39954744 DOI: 10.1016/j.nbd.2025.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Dishevelled, Egl-10 and Pleckstrin domain-containing 5 (DEPDC5), a key inhibitor of the mammalian/mechanistic target of rapamycin (mTOR) pathway, is frequently associated with epilepsy. However, the functional consequences of most DEPDC5 variants rely on in silico predictions and have not been experimentally confirmed.This study aimed to determine the functional consequences of a DEPDC5 variant identified in patients with epilepsy across multiple generations in a Chinese family. We identified a missense heterozygous variant (c. 2055C > A; p. Phe685Leu) in DEPDC5 in Chinese family affected by epilepsy across three generations. This variant has not been previously reported in the Chinese population. Primary neuron cultures transfected with the mutant plasmid exhibited altered subcellular localization. To explore the mechanisms of epilepsy linked to this variant, we created nervous system-specific conditional human DEPDC5 knock-in mouse using Cre-recombination under the Nestin promotor (hDEPDC5WT mice, hDEPDC5F685L mice). Compared to wildtype (WT) and hDEPDC5WT mice, hDEPDC5F685L mice exhibited histological signs of mTOR hyperactivation, enlarged neuronal soma, abnormal neurons, and heightened susceptibility to seizures and mortality. Administering rapamycin to hDEPDC5F685L mice starting two weeks after birth normalized neuronal size and mTOR activity, decreased seizure susceptibility and mortality, and showed no effects in the WT or hDEPDC5WT mice. Collectively, these results indicate that the DEPDC5 variant causes abnormal morphology and increased seizure vulnerability through modulation of mTOR signaling.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Rui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Fenglin Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, 402160, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Patrick Kwan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Epilepsy Unit, Brain Program, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Lan J, Cai D, Gou S, Bai Y, Lei H, Li Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Cho CH, Zhang Y, Zheng X, Xiao Z, Du F. The dynamic role of ferroptosis in cancer immunoediting: Implications for immunotherapy. Pharmacol Res 2025; 214:107674. [PMID: 40020885 DOI: 10.1016/j.phrs.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Currently, cancer immunotherapy strategies are primarily formulated based on the patient's present condition, representing a "static" treatment approach. However, cancer progression is inherently "dynamic," as the immune environment is not fixed but undergoes continuous changes. This dynamism is characterized by the ongoing interactions between tumor cells and immune cells, which ultimately lead to alterations in the tumor immune microenvironment. This process can be effectively elucidated by the concept of cancer immunoediting, which divides tumor development into three phases: "elimination," "equilibrium," and "escape." Consequently, adjusting immunotherapy regimens based on these distinct phases may enhance patient survival and improve prognosis. Targeting ferroptosis is an emerging area in cancer immunotherapy, and our findings reveal that the antioxidant systems associated with ferroptosis possess dual roles, functioning differently across the three phases of cancer immunoediting. Therefore, this review delve into the dual role of the ferroptosis antioxidant system in tumor development and progression. It also propose immunotherapy strategies targeting ferroptosis at different stages, ultimately aiming to illuminate the significant implications of targeting ferroptosis at various phases for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarui Lan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Yulin Bai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Huaqing Lei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China
| | - Xin Zheng
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| |
Collapse
|
9
|
Kramer A, Vaughan OR, Barentsen K, Urschitz J, Powell TL, Jansson T, Rosario FJ. Lentivirus-Mediated Trophoblast-Specific Deptor Knockdown Increases Transplacental System A and System L Amino Acid Transport and Fetal Growth in Mice. FUNCTION 2025; 6:zqaf018. [PMID: 40133007 PMCID: PMC11992690 DOI: 10.1093/function/zqaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 03/27/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling is a positive regulator of human placental function including system A/L amino acid transport activity. Placental mTOR signaling is inhibited in fetal growth restriction (FGR) and activated in fetal overgrowth in women; however, the causes of these changes in placental mTOR signaling are unknown. DEP (Dishevelled, Egl-10, Pleckstrin) domain containing mTOR-interacting protein (DEPTOR) is an endogenous inhibitor of mTOR. We tested the hypothesis that trophoblast-specific Deptor knockdown activates placental mTOR signaling and amino acid transport and causes fetal overgrowth. Using lentiviral transduction of blastocyst trophectoderm with a small hairpin RNA, we achieved 47% knockdown of placental Deptor mRNA expression, without altering fetal Deptor mRNA expression. Trophoblast-specific Deptor knockdown activated placental mTORC1 and mTORC2 signaling and increased trophoblast plasma membrane (TPM) LAT1 and SNAT2 protein abundance, and TPM system L and A transporter activity. In addition, Deptor knockdown increased in vivo transplacental system A and L amino acid transport and stimulated placental and fetal growth. In human FGR, placental DEPTOR protein expression was higher and negatively correlated with birth weight and microvillus plasma membrane system A activity. In conclusion, we provide mechanistic evidence that DEPTOR regulates placental mTOR signaling and amino acid transport and fetal growth in vivo. We speculate that modulation of placental DEPTOR is a promising target for intervention in pregnancies characterized by abnormal placental function and fetal growth.
Collapse
Affiliation(s)
- Avery Kramer
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Owen R Vaughan
- EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Zhang J, Hao L, Li S, He Y, Zhang Y, Li N, Hu X. mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156374. [PMID: 39798342 DOI: 10.1016/j.phymed.2025.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality rate, and despite treatment advancements, long-term outcomes remain poor. PURPOSE This study explores the therapeutic targets and pathways of Sini Decoction plus Ginseng Soup (SNRS) in ALF using bioinformatics and network pharmacology, focusing on its impact on macrophage polarization through glucose metabolism reprogramming. The efficacy of SNRS was validated in an LPS/D-GalN-induced ALF model, and its optimal concentration was determined for in vitro macrophage intervention. STUDY DESIGN AND METHODS Differentially expressed genes (DEGs) in HBV-induced and acetaminophen-induced ALF were identified from GEO datasets. The correlation between target gene expression and immune cell infiltration in ALF liver tissue was analyzed. AST, ALT, TNF-α, HMGB1, IL-1β, IL-6, and IL-10 levels were measured, and liver histopathology was assessed. Macrophage polarization was analyzed via immunofluorescence, flow cytometry, and Western blot. Glycolysis-related enzymes and metabolites, including HK2, PFK-1, PKM2, and LDHA, were quantified. Cellular ultrastructure was examined by transmission electron microscopy. RESULTS Five key glycolysis-regulating genes (HK2, CDK1, SOD1, VEGFA, GOT1) were identified, with significant involvement in the HIF-1 signaling pathway. Immune infiltration was markedly higher in ALF liver tissue. SNRS improved survival, reduced ALT/AST levels, alleviated liver injury, and modulated macrophage polarization by decreasing CD86 and increasing CD163 expression. In vitro, SNRS inhibited LPS-induced inflammatory cytokine release, lactate production, p-mTOR/mTOR ratio, and HIF-1α expression. CONCLUSION SNRS modulates macrophage polarization and glucose metabolism reprogramming via the mTOR/HIF-1α pathway, showing promise as a treatment for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinghuai District, Nanjing, Jiangsu 210029, PR China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Ying He
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Yang Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Na Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
11
|
Zhao N, Xiong Q, Li P, Chen G, Xiao H, Wu C. TSC complex decrease the expression of mTOR by regulated miR-199b-3p. Sci Rep 2025; 15:1892. [PMID: 39806027 PMCID: PMC11730325 DOI: 10.1038/s41598-025-85706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The TSC complex formed by TSC1 and TSC2 is the most important upstream negative regulator of mTORC1. Genetic variations in either TSC1 or TSC2 cause tuberous sclerosis complex (TSC) disease which is a rare autosomal dominant disorder resulting in impairment of multiple organ systems. In this study, besides a reported variation, c.2509_2512del (p.Asn837Valfs*11, p.N837fs) in TSC1, we found a de novo TSC2 variation c.1113delG (p.Gln371Hisfs*18, p.Q371fs), which these two mutation influence the formation of TSC complex. We found that the decrease of TSC complex with the appearance of the decreased miR-199b-3p expression. At the same time, the reduction of miR-199b-3p increased the expression of mTOR and the activation of mTORC1 and mTORC2, the additional miR-199b-3p caused the decrease the expression of mTOR and the activation of mTORC1 and mTORC2. In brief, our results may illustrate a novel mechanism of TSC caused by variations in either TSC1 or TSC2, and a new mTOR expression regulator, miR-199b-3p.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, ShanXi, Taiyuan, 030000, China
| | - Qiuhong Xiong
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Guangxin Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Han Xiao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Changxin Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
12
|
Kapuy O, Holczer M, Csabai L, Korcsmáros T. Oscillatory autophagy induction is enabled by an updated AMPK-ULK1 regulatory wiring. PLoS One 2024; 19:e0313302. [PMID: 39724154 DOI: 10.1371/journal.pone.0313302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024] Open
Abstract
Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle. While many of these interactions have been known for decades, recent discoveries have revealed how mTORC1, AMPK, and ULK1 are truly interconnected. Although these new findings initially appeared contradictory to established models, additional experiments and our systems biology analysis clarify the updated regulatory structure. Through computational modelling of the autophagy oscillatory response, we show how this regulatory network governs autophagy induction. Our results not only reconcile previous conflicting experimental observations but also offer insights for refining autophagy regulation and advancing understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Luca Csabai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
13
|
Wang H, Xu F, Yao C, Dai H, Xu J, Wu B, Tian B, Shi X, Wang C. Engineering bacteria for cancer immunotherapy by inhibiting IDO activity and reprogramming CD8+ T cell response. Proc Natl Acad Sci U S A 2024; 121:e2412070121. [PMID: 39693352 DOI: 10.1073/pnas.2412070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Inhibiting indoleamine 2,3 dioxygenase (IDO) for anticancer therapy has garnered significant attention in recent years. However, current IDO inhibitors face significant challenges which limit their clinical application. Here, we genetically engineered a high tryptophan-expressing Clostridium butyricum (L-Trp CB) strain that can colonize tumors strictly following systemic administration. We revealed that butyrate produced by L-Trp CB can inhibit IDO activity, preventing tryptophan catabolism and kynurenine accumulation in tumors. In addition, the large released tryptophan by L-Trp CB can provide discrete signals that support CD8+ T cell activation and energy metabolism within the tumor microenvironment. We observed that L-Trp CB significantly restored the proportion and function of CD8+ T cells, leading to significantly delayed tumor growth in both mouse and rabbit multiple tumor models with limited side effects. We here provide a synthetic biology treatment strategy for enhanced tumor immunotherapy by inhibiting IDO activity and reprogramming CD8+ T cell response in tumors.
Collapse
Affiliation(s)
- Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenlu Yao
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huaxing Dai
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jialu Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bingbing Wu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaolin Shi
- Medical College of Soochow University, Suzhou 215123, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
14
|
Zhang Z, Mathew D, Lim TL, Mason K, Martinez CM, Huang S, Wherry EJ, Susztak K, Minn AJ, Ma Z, Zhang NR. Recovery of biological signals lost in single-cell batch integration with CellANOVA. Nat Biotechnol 2024:10.1038/s41587-024-02463-1. [PMID: 39592777 DOI: 10.1038/s41587-024-02463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2024] [Indexed: 11/28/2024]
Abstract
Data integration to align cells across batches has become a cornerstone of single-cell data analysis, critically affecting downstream results. Currently, there are no guidelines for when the biological differences between samples are separable from batch effects. Here we show that current paradigms for single-cell data integration remove biologically meaningful variation and introduce distortion. We present a statistical model and computationally scalable algorithm, CellANOVA (cell state space analysis of variance), that harnesses experimental design to explicitly recover biological signals that are erased during single-cell data integration. CellANOVA uses a 'pool-of-controls' design concept, applicable across diverse settings, to separate unwanted variation from biological variation of interest and allow the recovery of subtle biological signals. We apply CellANOVA to diverse contexts and validate the recovered biological signals by orthogonal assays. In particular, we show that CellANOVA is effective in the challenging case of single-cell and single-nucleus data integration, where it recovers subtle biological signals that can be validated and replicated by external data.
Collapse
Affiliation(s)
- Zhaojun Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan L Lim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaishu Mason
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Clara Morral Martinez
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sijia Huang
- Penn Institute of Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal, Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
| | - Nancy R Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Lee HS, Lee J, An HJ, Sung MJ, Heo JH, Lee SY, Song YS. Mitophagy Defects Exacerbate Inflammation and Aberrant Proliferation in Lymphocytic Thyroiditis. Thyroid 2024; 34:1401-1413. [PMID: 39397581 DOI: 10.1089/thy.2024.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background: Mitochondrial dysfunction in the thyroid due to defective mitophagy has been observed in lymphocytic thyroiditis (LT). However, the effect of impaired mitophagy on the pathogenesis of LT is not well understood. The aim of this study is to investigate the role of mitophagy dysregulation in the thyroid gland. Methods: We analyzed RNA sequencing data of human thyroid glands with/without LT from Genotype-Tissue Expression (GTEx; n = 653) and performed RNA sequencing in thyroid glands of phosphatase and tensin homolog-induced putative protein kinase 1 (Pink1) knock-out and wild-type mice. We evaluated the phenotypic and histopathologic characteristics of the human (n = 16) and mouse thyroids. Additionally, we assessed cell proliferation, reactive oxygen species (ROS) production, and cytokine secretion of human thyroid epithelial cells (HTori-3) treated with PINK1 siRNA or a mitophagy inhibitor. Results: We found that expression of PINK1, a key regulator of mitophagy, was compromised in human thyroids with LT. Thyroid glands of Pink1-deficient mice exhibited increased inflammatory responses and nodular hyperplasia. Furthermore, mitophagy defects led to the production of pro-inflammatory cytokines and ROS in thyroid cells, resulting in immune cell recruitment. Notably, these mitophagy defects upregulated both the RNA expression and protein secretion of amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, in thyroid cells, while decreasing the protein expression of cAMP response element-binding protein (CREB), a transcription factor that suppresses AREG transcription. Finally, we demonstrated that aberrant cell proliferation in thyroid cells, driven by mitophagy defects, was mitigated after treatment with cetuximab, an EGFR inhibitor. Conclusions: In this study, we observed that mitophagy defects in the thyroid not only intensify inflammation through the accumulation of ROS, cytokine production, and immune cell recruitment but also contribute to hyperplasia via the EGFR pathway, facilitated by increased secretion of AREG from thyroid cells.
Collapse
Affiliation(s)
- Han Sai Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Graduate School, CHA University, Seongnam, South Korea
| | - Jinju Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Graduate School, CHA University, Seongnam, South Korea
| | - Hyun-Ju An
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Min-Ji Sung
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jin-Hyung Heo
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Graduate School, CHA University, Seongnam, South Korea
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| |
Collapse
|
16
|
Wohlfert AJ, Phares J, Granholm AC. The mTOR Pathway: A Common Link Between Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:6183. [PMID: 39458132 PMCID: PMC11508835 DOI: 10.3390/jcm13206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Down syndrome (DS) is a chromosomal condition that causes many systemic dysregulations, leading to several possible age-related diseases including Alzheimer's disease (AD). This may be due to the triplication of the Amyloid precursor protein (APP) gene or other alterations in mechanistic pathways, such as the mTOR pathway. Impairments to upstream regulators of mTOR, such as insulin, PI3K/AKT, AMPK, and amino acid signaling, have been linked to amyloid beta plaques (Aβ) and neurofibrillary tangles (NFT), the most common AD pathologies. However, the mechanisms involved in the progression of pathology in human DS-related AD (DS-AD) are not fully investigated to date. Recent advancements in omics platforms are uncovering new insights into neurodegeneration. Genomics, spatial transcriptomics, proteomics, and metabolomics are novel methodologies that provide more data in greater detail than ever before; however, these methods have not been used to analyze the mTOR pathways in connection to DS-AD. Using these new techniques can unveil unexpected insights into pathological cellular mechanisms through an unbiased approach.
Collapse
Affiliation(s)
- Abigail J. Wohlfert
- Department of Modern Human Anatomy and Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| |
Collapse
|
17
|
Salimi K, Alvandi M, Saberi Pirouz M, Rakhshan K, Howatson G. Regulating eEF2 and eEF2K in skeletal muscle by exercise. Arch Physiol Biochem 2024; 130:503-514. [PMID: 36633938 DOI: 10.1080/13813455.2023.2164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Skeletal muscle is a flexible and adaptable tissue that strongly responds to exercise training. The skeletal muscle responds to exercise by increasing muscle protein synthesis (MPS) when energy is available. One of protein synthesis's major rate-limiting and critical regulatory steps is the translation elongation pathway. The process of translation elongation in skeletal muscle is highly regulated. It requires elongation factors that are intensely affected by various physiological stimuli such as exercise and the total available energy of cells. Studies have shown that exercise involves the elongation pathway by numerous signalling pathways. Since the elongation pathway, has been far less studied than the other translation steps, its comprehensive prospect and quantitative understanding remain in the dark. This study highlights the current understanding of the effect of exercise training on the translation elongation pathway focussing on the molecular factors affecting the pathway, including Ca2+, AMPK, PKA, mTORC1/P70S6K, MAPKs, and myostatin. We further discussed the mode and volume of exercise training intervention on the translation elongation pathway.What is the topic of this review? This review summarises the impacts of exercise training on the translation elongation pathway in skeletal muscle focussing on eEF2 and eEF2K.What advances does it highlight? This review highlights mechanisms and factors that profoundly influence the translation elongation pathway and argues that exercise might modulate the response. This review also combines the experimental observations focussing on the regulation of translation elongation during and after exercise. The findings widen our horizon to the notion of mechanisms involved in muscle protein synthesis (MPS) through translation elongation response to exercise training.
Collapse
Affiliation(s)
- Kia Salimi
- Department of Exercise Physiology, Faculty of Sport and Exercise Sciences, University of Tehran, Tehran, Iran
| | - Masoomeh Alvandi
- Department of Biological Science in Sport and Health, University of Shahid Beheshti, Tehran, Iran
| | - Mahdi Saberi Pirouz
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
18
|
Hernandez Martinez CDJ, Glessner J, Finoti LS, Silva PF, Messora M, Coletta RD, Hakonarson H, Palioto DB. Methylome-wide analysis in systemic microbial-induced experimental periodontal disease in mice with different susceptibility. Front Cell Infect Microbiol 2024; 14:1369226. [PMID: 39086605 PMCID: PMC11289848 DOI: 10.3389/fcimb.2024.1369226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Objective The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.
Collapse
Affiliation(s)
- Cristhiam de Jesus Hernandez Martinez
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Livia Sertori Finoti
- Laboratory of Rebecca Ahrens-Nicklas,Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Pedro Felix Silva
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniela Bazan Palioto
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Wu XQ, Deng LH, Xue Q, Li X, Li MH, Wang JT. Metformin administration in prevention of colorectal polyps in type 2 diabetes mellitus patients. World J Clin Cases 2024; 12:4206-4216. [PMID: 39015918 PMCID: PMC11235560 DOI: 10.12998/wjcc.v12.i20.4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Colorectal polyps are frequently observed in patients with type 2 diabetes mellitus (DM), posing a significant risk for colorectal cancer. Metformin, a widely prescribed biguanidine drug for type 2 DM, has been suggested to have potential chemoprophylactic effects against various cancers. AIM To explore the correlation between colorectal polyps and metformin use in type 2 DM patients. METHODS Type 2 DM patients were categorized into polyp and non-polyp groups. Following this, all patients were categorized into the type 2 DM-metformin, type 2 DM-non-metformin, and non-type 2 DM groups. Based on the baseline colonoscopy results, we performed pairwise comparisons of the incidence of colorectal polyps among the three groups. Additionally, we analyzed the relationship between colorectal polyps and the duration of metformin use and between the size and number of polyps and metformin use. Simultaneously, we focused on the specific pathological types of polyps and analyzed their relationship with metformin use. Finally, we compared the incidence of polyps between metformin and non-metformin groups according to the interval colonoscopy results. RESULTS The rate of metformin use in patients with colorectal polyps was 0.502 times that of patients without colorectal polyps [odds ratio (OR) = 0.502, 95% confidence interval (CI): 0.365-0.689; P < 0.001]. The incidence of colorectal polyps did not differ significantly between the type 2 DM-metformin and non-type 2 DM groups (P > 0.05). Furthermore, the correlations between the duration of metformin use and the incidence of colorectal polyps and between the size and number of polyps and metformin use were not statistically significant (P > 0.05). Metformin use did not affect the incidence of colorectal polyps during interval colonoscopy (P > 0.05). CONCLUSION Metformin use and colorectal polyp incidence in type 2 DM patients showed a negative correlation, independent of the hypoglycemic effect of metformin.
Collapse
Affiliation(s)
- Xiao-Qing Wu
- Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
| | - Li-Hua Deng
- Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
| | - Qian Xue
- Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
| | - Xia Li
- Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
| | - Meng-Han Li
- Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
| | - Jing-Tong Wang
- Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
20
|
Singh AA, Yadav D, Khan F, Song M. Indole-3-Carbinol and Its Derivatives as Neuroprotective Modulators. Brain Sci 2024; 14:674. [PMID: 39061415 PMCID: PMC11274471 DOI: 10.3390/brainsci14070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF's mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| |
Collapse
|
21
|
Al-Lamki RS, Tolkovsky AM, Alawwami M, Lu W, Field SF, Wang J, Pober JS, Bradley JR. Tumor Necrosis Factor Receptor-2 Signals Clear-Cell Renal Carcinoma Proliferation via Phosphorylated 4E Binding Protein-1 and Mitochondrial Gene Translation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1374-1387. [PMID: 38537932 DOI: 10.1016/j.ajpath.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/09/2024]
Abstract
Clear-cell renal cell carcinoma (ccRCC), a tubular epithelial malignancy, secretes tumor necrosis factor (TNF), which signals ccRCC cells in an autocrine manner via two cell surface receptors, TNFR1 and TNFR2, to activate shared and distinct signaling pathways. Selective ligation of TNFR2 drives cell cycle entry of malignant cells via a signaling pathway involving epithelial tyrosine kinase, vascular endothelial cell growth factor receptor type 2, phosphatidylinositol-3-kinase, Akt, pSer727-Stat3, and mammalian target of rapamycin. In this study, phosphorylated 4E binding protein-1 (4EBP1) serine 65 (pSer65-4EBP1) was identified as a downstream target of this TNFR2 signaling pathway. pSer65-4EBP1 expression was significantly elevated relative to total 4EBP1 in ccRCC tissue compared with that in normal kidneys, with signal intensity increasing with malignant grade. Selective ligation of TNFR2 with the TNFR2-specific mutein increased pSer65-4EBP1 expression in organ cultures that co-localized with internalized TNFR2 in mitochondria and increased expression of mitochondrially encoded COX (cytochrome c oxidase subunit) Cox1, as well as nuclear-encoded Cox4/5b subunits. Pharmacologic inhibition of mammalian target of rapamycin reduced both TNFR2-specific mutein-mediated phosphorylation of 4EBP1 and cell cycle activation in tumor cells while increasing cell death. These results signify the importance of pSer65-4EBP1 in mediating TNFR2-driven cell-cycle entry in tumor cells in ccRCC and implicate a novel relationship between the TNFR2/pSer65-4EBP1/COX axis and mitochondrial function.
Collapse
MESH Headings
- Humans
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Mitochondria/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.
| | - Aviva M Tolkovsky
- Department of Clinical Neurosciences, The Clifford Allbutt Building, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Alawwami
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - WanHua Lu
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sarah F Field
- Dementia Research Institute, Island Research Building, University of Cambridge, Cambridge, United Kingdom
| | - Jun Wang
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - John R Bradley
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Layman DK. Impacts of protein quantity and distribution on body composition. Front Nutr 2024; 11:1388986. [PMID: 38765819 PMCID: PMC11099237 DOI: 10.3389/fnut.2024.1388986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
The importance of meal distribution of dietary protein to optimize muscle mass and body remains unclear, and the findings are intertwined with age, physical activity, and the total quantity and quality of protein consumed. The concept of meal distribution evolved from multiple discoveries about regulating protein synthesis in skeletal muscle. The most significant was the discovery of the role of the branched-chain amino acid leucine as a metabolic signal to initiate a post-meal anabolic period of muscle protein synthesis (MPS) in older adults. Aging is often characterized by loss of muscle mass and function associated with a decline in protein synthesis. The age-related changes in protein synthesis and subsequent muscle atrophy were generally considered inevitable until the discovery of the unique role of leucine for the activation of the mTOR signal complex for the initiation of MPS. Clinical studies demonstrated that older adults (>60 years) require meals with at least 2.8 g of leucine (~30 g of protein) to stimulate MPS. This meal requirement for leucine is not observed in younger adults (<30 years), who produce a nearly linear response of MPS in proportion to the protein content of a meal. These findings suggest that while the efficiency of dietary protein to stimulate MPS declines with aging, the capacity for MPS to respond is maintained if a meal provides adequate protein. While the meal response of MPS to total protein and leucine is established, the long-term impact on muscle mass and body composition remains less clear, at least in part, because the rate of change in muscle mass with aging is small. Because direct diet studies for meal distribution during aging are impractical, research groups have applied meal distribution and the leucine threshold to protein-sparing concepts during acute catabolic conditions such as weight loss. These studies demonstrate enhanced MPS at the first meal after an overnight fast and net sparing of lean body mass during weight loss. While the anabolic benefits of increased protein at the first meal to stimulate MPS are clear, the benefits to long-term changes in muscle mass and body composition in aging adults remain speculative.
Collapse
Affiliation(s)
- Donald K. Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
23
|
León F, Pizarro EJ, Noll D, Pertierra LR, Gonzalez BA, Johnson WE, Marín JC, Vianna JA. History of Diversification and Adaptation from North to South Revealed by Genomic Data: Guanacos from the Desert to Sub-Antarctica. Genome Biol Evol 2024; 16:evae085. [PMID: 38761112 PMCID: PMC11102080 DOI: 10.1093/gbe/evae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/20/2024] Open
Abstract
The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.
Collapse
Affiliation(s)
- Fabiola León
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Eduardo J Pizarro
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Daly Noll
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Benito A Gonzalez
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santigo, Chile
| | | | - Juan Carlos Marín
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bio-Bío, Chillán, Chile
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
24
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
25
|
Baker BH, Freije S, MacDonald JW, Bammler TK, Benson C, Carroll KN, Enquobahrie DA, Karr CJ, LeWinn KZ, Zhao Q, Bush NR, Sathyanarayana S, Paquette AG. Placental transcriptomic signatures of prenatal and preconceptional maternal stress. Mol Psychiatry 2024; 29:1179-1191. [PMID: 38212375 PMCID: PMC11176062 DOI: 10.1038/s41380-023-02403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Prenatal exposure to maternal psychological stress is associated with increased risk for adverse birth and child health outcomes. Accumulating evidence suggests that preconceptional maternal stress may also be transmitted intergenerationally to negatively impact offspring. However, understanding of mechanisms linking these exposures to offspring outcomes, particularly those related to placenta, is limited. Using RNA sequencing, we identified placental transcriptomic signatures associated with maternal prenatal stressful life events (SLEs) and childhood traumatic events (CTEs) in 1 029 mother-child pairs in two birth cohorts from Washington state and Memphis, Tennessee. We evaluated individual gene-SLE/CTE associations and performed an ensemble of gene set enrichment analyses combing across 11 popular enrichment methods. Higher number of prenatal SLEs was significantly (FDR < 0.05) associated with increased expression of ADGRG6, a placental tissue-specific gene critical in placental remodeling, and decreased expression of RAB11FIP3, an endocytosis and endocytic recycling gene, and SMYD5, a histone methyltransferase. Prenatal SLEs and maternal CTEs were associated with gene sets related to several biological pathways, including upregulation of protein processing in the endoplasmic reticulum, protein secretion, and ubiquitin mediated proteolysis, and down regulation of ribosome, epithelial mesenchymal transition, DNA repair, MYC targets, and amino acid-related pathways. The directional associations in these pathways corroborate prior non-transcriptomic mechanistic studies of psychological stress and mental health disorders, and have previously been implicated in pregnancy complications and adverse birth outcomes. Accordingly, our findings suggest that maternal exposure to psychosocial stressors during pregnancy as well as the mother's childhood may disrupt placental function, which may ultimately contribute to adverse pregnancy, birth, and child health outcomes.
Collapse
Affiliation(s)
- Brennan H Baker
- University of Washington, Seattle, WA, USA.
- Seattle Children's Research Institute, Seattle, WA, USA.
| | | | | | | | - Ciara Benson
- Global Alliance to Prevent Preterm Birth and Stillbirth (GAPPS), Lynnwood, WA, USA
| | | | | | | | - Kaja Z LeWinn
- University of California San Francisco, San Francisco, CA, USA
| | - Qi Zhao
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Nicole R Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Alison G Paquette
- University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
26
|
Esbert M, Tao X, Ballesteros A, Yildirim RM, Scott RT, Seli E. Addition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women. Mol Hum Reprod 2024; 30:gaad048. [PMID: 38180884 DOI: 10.1093/molehr/gaad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Indexed: 01/07/2024] Open
Abstract
Both spontaneously conceived pregnancies and those achieved using assisted reproduction decline with advancing maternal age. In this study, we tested if rapamycin and/or cumulus cells (CCs) from young donors could improve oocyte maturation and euploidy rates of germinal vesicle (GV) stage oocytes obtained from older women of reproductive age. A total of 498 GVs from 201 women >38 years (40.6 ± 1.8, mean ± SD) were included. GVs were randomly assigned into five groups for rescue IVM: control (with no CCs and no rapamycin); with autologous CCs; with autologous CCs and rapamycin; with CCs from young women (<35 years); and with CCs from young women and rapamycin. After 24 h of culture, the first polar body (PB) was biopsied in metaphase II oocytes, and the cytogenetic constitution was assessed using next-generation sequencing for both oocytes and PBs. Comparable maturation rates were found (56.2%, 60.0%, 46.5%, 51.7%, and 48.5% for groups 1-5, respectively; P = 0.30). Similarly, comparable euploidy rates were observed in the five groups (41.5%, 37.8%, 47.2%, 43.6%, and 47.8% for Groups 1-5, respectively; P = 0.87). Our findings indicate that rescue IVM is effective for obtaining mature euploid oocytes in older women of reproductive age, and that incubation with rapamycin or CCs obtained from young donors does not improve the maturation or euploidy rate.
Collapse
Affiliation(s)
- Marga Esbert
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
- IVIRMA Global Research Alliance, IVIRMA Barcelona, Barcelona, Spain
| | - Xin Tao
- JUNO Genetics, Basking Ridge, NJ, USA
| | | | - Raziye Melike Yildirim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Richard T Scott
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Emre Seli
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Pan J, Wang Y, Li C, Zhang S, Ye Z, Ni J, Li H, Li Y, Yue H, Ruan C, Zhao D, Jiang Y, Wu X, Shen X, Zufall RA, Zhang Y, Li W, Lynch M, Long H. Molecular basis of phenotypic plasticity in a marine ciliate. THE ISME JOURNAL 2024; 18:wrae136. [PMID: 39018220 PMCID: PMC11308186 DOI: 10.1093/ismejo/wrae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.
Collapse
Affiliation(s)
- Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Simo Zhang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiahao Ni
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yichen Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hongwei Yue
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chenchen Ruan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dange Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yujian Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Wu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, United States
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
28
|
Pei J, Zhang J, Cong Q. Computational analysis of protein-protein interactions of cancer drivers in renal cell carcinoma. FEBS Open Bio 2024; 14:112-126. [PMID: 37964489 PMCID: PMC10761929 DOI: 10.1002/2211-5463.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer with rising cases in recent years. Extensive research has identified various cancer driver proteins associated with different subtypes of RCC. Most RCC drivers are encoded by tumor suppressor genes and exhibit enrichment in functional categories such as protein degradation, chromatin remodeling, and transcription. To further our understanding of RCC, we utilized powerful deep-learning methods based on AlphaFold to predict protein-protein interactions (PPIs) involving RCC drivers. We predicted high-confidence complexes formed by various RCC drivers, including TCEB1, KMT2C/D and KDM6A of the COMPASS-related complexes, TSC1 of the MTOR pathway, and TRRAP. These predictions provide valuable structural insights into the interaction interfaces, some of which are promising targets for cancer drug design, such as the NRF2-MAFK interface. Cancer somatic missense mutations from large datasets of genome sequencing of RCCs were mapped to the interfaces of predicted and experimental structures of PPIs involving RCC drivers, and their effects on the binding affinity were evaluated. We observed more than 100 cancer somatic mutations affecting the binding affinity of complexes formed by key RCC drivers such as VHL and TCEB1. These findings emphasize the importance of these mutations in RCC pathogenesis and potentially offer new avenues for targeted therapies.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
29
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Su C, Zhang H, Mo J, Liao Z, Zhang B, Zhu P. SP1-activated USP27X-AS1 promotes hepatocellular carcinoma progression via USP7-mediated AKT stabilisation. Clin Transl Med 2024; 14:e1563. [PMID: 38279869 PMCID: PMC10819096 DOI: 10.1002/ctm2.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Haoquan Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Zhibin Liao
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| | - Peng Zhu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| |
Collapse
|
31
|
Challal S, Skiba A, Langlois M, Esguerra CV, Wolfender JL, Crawford AD, Skalicka-Woźniak K. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116740. [PMID: 37315641 DOI: 10.1016/j.jep.2023.116740] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.
Collapse
Affiliation(s)
- Soura Challal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Adrianna Skiba
- Department of Natural Product Chemistry, Medical University of Lublin, Poland
| | - Mélanie Langlois
- Luxembourg Centre for Systems Biomedicine (LCSB), Belval, Luxembourg
| | - Camila V Esguerra
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway; Institute for Orphan Drug Discovery, Bremerhavener Innovations- und Gründerzentum (BRIG), Bremerhaven, Germany
| | | |
Collapse
|
32
|
Celik S, Aktas T, Gokbayrak O, Erol A, Yorukoglu K, Yilmaz B, Sari H, Altun Z, Mungan MU, Celebi I, Aslan G, Aktas S. Genomic Alterations of Signaling and DNA Damage Repair Pathways in Non-Muscle Invasive Bladder Cancer. Cancer Invest 2023; 41:848-857. [PMID: 37997757 DOI: 10.1080/07357907.2023.2288640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The aim of the study was to demonstrate the most common genetic alterations and evaluate possible targets involving phosphatidylinositol-3-OH kinase (PIK3)/AKT/mammalian target of rapamycin (mTOR) signaling and DNA damage repair (DDR) pathways for personalized treatment in patients with non-muscle invasive bladder cancer (NMIBC). Alterations of these pathways were observed in 89.5% and 100% of patients, respectively. Among them, BARD1 was more frequently altered in low/intermediate-risk cases, but PARP4 was more frequently affected in intermediate/high-risk patients. The possible target feasibility of BARD1 and PARP4 alterations should be evaluated for personalized treatment using PARP-inhibitors in NMIBC. It is important to detect high tumor mutation burden (TMB) in patients in terms of immunotherapy.
Collapse
Affiliation(s)
- Serdar Celik
- Department of Urology, Izmir Faculty of Medicine, Health Sciences University, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Tekincan Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Ozde Gokbayrak
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Aylin Erol
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Kutsal Yorukoglu
- Department of Pathology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Batuhan Yilmaz
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hilmi Sari
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zekiye Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Ugur Mungan
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilhan Celebi
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Guven Aslan
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Safiye Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
33
|
Lin J, Qu Z, Pu H, Shen LS, Yi X, Lin YS, Gong RH, Chen GQ, Chen S. In Vitro and In Vivo Anti-Cancer Activity of Lasiokaurin in a Triple-Negative Breast Cancer Model. Molecules 2023; 28:7701. [PMID: 38067432 PMCID: PMC10707582 DOI: 10.3390/molecules28237701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 12/18/2023] Open
Abstract
Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.
Collapse
Affiliation(s)
- Jinrong Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhao Qu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang 443002, China
| | - Huanhuan Pu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agricultural and Forestry University, Xinyang 464000, China;
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
34
|
Rida R, Kreydiyyeh S. Effect of FTY720P on lipid accumulation in HEPG2 cells. Sci Rep 2023; 13:19716. [PMID: 37953311 PMCID: PMC10641067 DOI: 10.1038/s41598-023-46011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by an increase in hepatic lipid accumulation due to impaired lipid metabolism. Although a correlation was found between NAFLD and sphingosine-1-phosphate (S1P), the role of the sphingolipid remains controversial. The aim of this study was to investigate any involvement of S1P in steatosis using its analog FTY720P and HepG2 cells. Lipid accumulation was induced by incubating the cells in a mixture of oleic and palmitic acid, and was quantified using Oil Red O. The involvement of signaling mediators was studied using pharmacological inhibitors and western blot analysis. FTY720P increased lipid accumulation, but this increase wasn't maintained in the presence of inhibitors of S1PR3, Gq, SREBP, mTOR, PI3K, and PPARγ indicating their involvement in the process. The results revealed that FTY720P binds to S1PR3 which activates sequentially Gq, PI3K, and mTOR leading to an increase in SREBP expression and PPARγ activation. It was concluded that in presence of a high level of fatty acids, lipid accumulation is increased in hepatocytes by the exogenously added FTY720P.
Collapse
Affiliation(s)
- Reem Rida
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
35
|
Soleimani M. Not all kidney cysts are created equal: a distinct renal cystogenic mechanism in tuberous sclerosis complex (TSC). Front Physiol 2023; 14:1289388. [PMID: 38028758 PMCID: PMC10663234 DOI: 10.3389/fphys.2023.1289388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, New Mexico Veterans Health Care Center, Albuquerque, NM, United States
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
36
|
Chrienova Z, Rysanek D, Novak J, Vasicova P, Oleksak P, Andrys R, Skarka A, Dumanovic J, Milovanovic Z, Jacevic V, Chvojkova M, Holubova K, Vales K, Skoupilova V, Valko M, Jomova K, Alomar SY, Botelho FD, Franca TCC, Kuca K, Hodny Z, Nepovimova E. Frentizole derivatives with mTOR inhibiting and senomorphic properties. Biomed Pharmacother 2023; 167:115600. [PMID: 37783152 DOI: 10.1016/j.biopha.2023.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid β (Aβ) - Aβ-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aβ-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Josef Novak
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jelena Dumanovic
- Faculty of Chemistry, University of Belgrade, Studenski trg 16, 11000 Belgrade, Serbia
| | - Zoran Milovanovic
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11030 Belgrade, Serbia
| | - Vesna Jacevic
- Department of Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy & Medical Faculty of the Military Medical Academy, University of Defence, 11 Crnotravska, 11000 Belgrade, Serbia
| | - Marketa Chvojkova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Kristina Holubova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Karel Vales
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic
| | - Veronika Skoupilova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fernanda D Botelho
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
37
|
Hu C, Sun Y, Li W, Bi Y. Hypoxia improves self-renew and migration of urine-derived stem cells by upregulating autophagy and mitochondrial function through ERK signal pathway. Mitochondrion 2023; 73:1-9. [PMID: 37678426 DOI: 10.1016/j.mito.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells with self-renewal ability and multi-lineage differentiation potential. Our previous studies have shown that hypoxia preconditioning can improve self-renewal and migration abilities of USCs by up-regulating autophagy. The purpose of this study was to investigate the specific mechanism by which hypoxia treatment promotes the biological function of USCs. We found that hypoxia treatment upregulated the expression of phosphralated ERK protein without affecting the expression of total ERK protein. Inhibiting ERK signaling with the PD98059 inhibitor decreased cell proliferation, migration and colony formation during hypoxia treatment. Hypoxia increased ATP production, mitochondrial membrane potential and mt-DNA copy number, which were reversed by inhibiting the ERK signal. Additionally, the number of autophagosomes and autophagic lysosomes was significantly lower in PD98059 group than in the hypoxia group. PD98059 treatment inhibited the up-regulation of autophagy related proteins induced by hypoxia. Therefore, this study suggests that hypoxia improves the self-renewal and migration abilities of USCs by upregulating autophagy and mitochondrial function through ERK signaling pathway. This finding may provide a new therapeutic mechanism for hypoxia pretreated USCs as a source of stem cell transplantation.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Digestive Department, Chongqing People's Hospital, Chongqing, China
| | - Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanxia Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Khemka S, Reddy A, Garcia RI, Jacobs M, Reddy RP, Roghani AK, Pattoor V, Basu T, Sehar U, Reddy PH. Role of diet and exercise in aging, Alzheimer's disease, and other chronic diseases. Ageing Res Rev 2023; 91:102091. [PMID: 37832608 PMCID: PMC10842571 DOI: 10.1016/j.arr.2023.102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by memory loss and multiple cognitive impairments. Genetic mutations cause a small proportion (1-2%) of early-onset AD, with mutations in amyloid precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2). Major contributing factors of late-onset AD are ApoE4 genotype, traumatic brain injury, diabetes, obesity, hypertension, cardiovascular conditions, in addition to lifestyle factors, such as unhealthy diet and lack of physical exercise. Disease progression can be delayed and/or prevented to a greater extent by adopting healthy lifestyle with balanced and antioxidant enriched diet and daily exercise. The interaction and interplay of diet, exercise, age, and pharmacological interventions holds a crucial role in the progression, pathogenesis and management of AD and its comorbidities, including diabetes, obesity, hypertension and cardiovascular conditions. Antioxidant enriched diet contributes to brain health, glucose control, weight management, and cardiovascular well-being. Regular exercise removes toxins including free radicals and enhances insulin sensitivity, and supports cardiovascular function. In the current article, we discussed, the role of diet, and exercise in aging, AD and other conditions including diabetes, obesity, hypertension, cardiovascular conditions. This article also highlights the impact of medication, socioeconomic and lifestyle factors, and pharmacological interventions. These aspects were discussed in different races and ethnic groups in Texas, and the US.
Collapse
Affiliation(s)
- Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Micheal Jacobs
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA
| | - Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department pf Speech, Language and Hearing Services, School Health Professions, Texas Tech University Healthy Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
39
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
40
|
Can AT, Mitchell JS, Dutton M, Bennett M, Hermens DF, Lagopoulos J. Insights into the neurobiology of suicidality: explicating the role of glutamatergic systems through the lens of ketamine. Psychiatry Clin Neurosci 2023; 77:513-529. [PMID: 37329495 DOI: 10.1111/pcn.13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.
Collapse
Affiliation(s)
- Adem Tevfik Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jules Shamus Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Maxwell Bennett
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
41
|
Zhang Z, Mathew D, Lim T, Mason K, Martinez CM, Huang S, Wherry EJ, Susztak K, Minn AJ, Ma Z, Zhang NR. Signal recovery in single cell batch integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539614. [PMID: 37215021 PMCID: PMC10197537 DOI: 10.1101/2023.05.05.539614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Data integration to align cells across batches has become a cornerstone of single cell data analysis, critically affecting downstream results. Yet, how much biological signal is erased during integration? Currently, there are no guidelines for when the biological differences between samples are separable from batch effects, and thus, data integration usually involve a lot of guesswork: Cells across batches should be aligned to be "appropriately" mixed, while preserving "main cell type clusters". We show evidence that current paradigms for single cell data integration are unnecessarily aggressive, removing biologically meaningful variation. To remedy this, we present a novel statistical model and computationally scalable algorithm, CellANOVA, to recover biological signal that is lost during single cell data integration. CellANOVA utilizes a "pool-of-controls" design concept, applicable across diverse settings, to separate unwanted variation from biological variation of interest. When applied with existing integration methods, CellANOVA allows the recovery of subtle biological signals and corrects, to a large extent, the data distortion introduced by integration. Further, CellANOVA explicitly estimates cell- and gene-specific batch effect terms which can be used to identify the cell types and pathways exhibiting the largest batch variations, providing clarity as to which biological signals can be recovered. These concepts are illustrated on studies of diverse designs, where the biological signals that are recovered by CellANOVA are shown to be validated by orthogonal assays. In particular, we show that CellANOVA is effective in the challenging case of single-cell and single-nuclei data integration, where the recovered biological signals are replicated in an independent study.
Collapse
Affiliation(s)
- Zhaojun Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, PA, United States
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Tristan Lim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Kaishu Mason
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, PA, United States
| | - Clara Morral Martinez
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Sijia Huang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, PA, United States
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, PA, United States
- Department of Genetics, University of Pennsylvania, PA, United States
| | - Andy J Minn
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, PA, United States
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, CT, United States
| | - Nancy R Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, PA, United States
| |
Collapse
|
42
|
Schaeffer J, Vilallongue N, Decourt C, Blot B, El Bakdouri N, Plissonnier E, Excoffier B, Paccard A, Diaz JJ, Humbert S, Catez F, Saudou F, Nawabi H, Belin S. Customization of the translational complex regulates mRNA-specific translation to control CNS regeneration. Neuron 2023; 111:2881-2898.e12. [PMID: 37442131 PMCID: PMC10522804 DOI: 10.1016/j.neuron.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
In the adult mammalian central nervous system (CNS), axons fail to regenerate spontaneously after injury because of a combination of extrinsic and intrinsic factors. Despite recent advances targeting the intrinsic regenerative properties of adult neurons, the molecular mechanisms underlying axon regeneration are not fully understood. Here, we uncover a regulatory mechanism that controls the expression of key proteins involved in regeneration at the translational level. Our results show that mRNA-specific translation is critical for promoting axon regeneration. Indeed, we demonstrate that specific ribosome-interacting proteins, such as the protein Huntingtin (HTT), selectively control the translation of a specific subset of mRNAs. Moreover, modulating the expression of these translationally regulated mRNAs is crucial for promoting axon regeneration. Altogether, our findings highlight that selective translation through the customization of the translational complex is a key mechanism of axon regeneration with major implications in the development of therapeutic strategies for CNS repair.
Collapse
Affiliation(s)
- Julia Schaeffer
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Noemie Vilallongue
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Decourt
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Beatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Nacera El Bakdouri
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Elise Plissonnier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Centre Léon Bérard, 69008 Lyon, France; Université de Lyon 1, 69000 Lyon, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frederic Catez
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Centre Léon Bérard, 69008 Lyon, France; Université de Lyon 1, 69000 Lyon, France
| | - Frederic Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
43
|
Oto OA, Atwood DJ, Chaudhary A, He Z, Li AS, Wempe MF, Edelstein CL. Metformin does not slow cyst growth in the PCK rat model of polycystic kidney disease. Physiol Rep 2023; 11:e15776. [PMID: 37653564 PMCID: PMC10471794 DOI: 10.14814/phy2.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
Metformin (MET) has the potential to activate p-AMPK and block mTORC1-induced proliferation of tubular cells in PKD kidneys. The aim of this study was to determine the effects of MET on cyst growth, kidney function, AMPK and mTOR signaling, and lactate levels in male PCK rats, a Pkhd1 gene mutation model of human autosomal recessive polycystic kidney disease (ARPKD). MET 300 mg/kg/day IP from days 28 to 84 of age resulted in a mean serum metformin level that was 10 times the upper limit of therapeutic, no effect on cyst indices, nephrotoxicity, and increased serum lactate. MET 150 mg/kg resulted in a therapeutic serum metformin level but had no effect on kidney weight, cyst indices, kidney function, or mTOR and autophagy proteins. In summary, a standard dose of MET was ineffective in reducing PKD, did not activate p-AMPK or suppress mTOR and the higher dose resulted in increased lactate levels and nephrotoxicity. In conclusion, the study dampens enthusiasm for human studies of MET in PKD. Doubling the metformin dose resulted in a 10-fold increase in mean blood levels and toxicity suggesting that the dosage range between therapeutic and toxic is narrow.
Collapse
Affiliation(s)
- Ozgur A. Oto
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel J. Atwood
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Anjana Chaudhary
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Zhibin He
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Amy S. Li
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Charles L. Edelstein
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
44
|
Gupta J, Tayyib NA, Jalil AT, Hlail SH, Zabibah RS, Vokhidov UN, Alsaikhan F, Ramaiah P, Chinnasamy L, Kadhim MM. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract 2023; 248:154591. [PMID: 37343381 DOI: 10.1016/j.prp.2023.154591] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Angiogenesis, the formation of new blood vessels, is an important stage in the growth of cancer. Extracellular matrix, endothelial cells, and soluble substances must be carefully coordinated during the multistep procedure of angiogenesis. Inducers and inhibitors have been found to control pretty much every phase. In addition to benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and angiogenesis have a critical role in the initiation and progression of prostate cancer. MicroRNA (miRNA) is endogenous, short, non-coding RNA molecules of almost 22 nucleotides play a role in regulating cellular processes and regulating several genes' expression. Through controlling endothelial migration, differentiation, death, and cell proliferation, miRNAs have a significant function in angiogenesis. A number of pathological and physiological processes, particularly prostate cancer's emergence, depend on the regulation of angiogenesis. Investigating the functions played with miRNAs in angiogenesis is crucial because it might result in the creation of novel prostate cancer therapies that entail regulating angiogenesis. The function of several miRNAs and its targeting genes engaged in cancer of the prostate angiogenesis will be reviewed in this review in light of the most recent developments. The potential clinical utility of miRNAs potentially a novel therapeutic targets will also be explored, as well as their capacity to control prostate cancer angiogenesis and the underlying mechanisms.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India.
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla 51001, Babylon, Iraq.
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ulug'bek N Vokhidov
- Department of ENT Diseases, Head of the Department of Quality Education, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| |
Collapse
|
45
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
47
|
Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA. Ketamine and the Disinhibition Hypothesis: Neurotrophic Factor-Mediated Treatment of Depression. Pharmaceuticals (Basel) 2023; 16:ph16050742. [PMID: 37242525 DOI: 10.3390/ph16050742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ketamine is a promising alternative to traditional pharmacotherapies for major depressive disorder, treatment-resistant depression, and other psychiatric conditions that heavily contribute to the global disease burden. In contrast to the current standard of care medications for these disorders, ketamine offers rapid onset, enduring clinical efficacy, and unique therapeutic potential for use in acute, psychiatric emergencies. This narrative presents an alternative framework for understanding depression, as mounting evidence supports a neuronal atrophy and synaptic disconnection theory, rather than the prevailing monoamine depletion hypothesis. In this context, we describe ketamine, its enantiomers, and various metabolites in a range of mechanistic actions through multiple converging pathways, including N-methyl-D-aspartate receptor (NMDAR) inhibition and the enhancement of glutamatergic signaling. We describe the disinhibition hypothesis, which posits that ketamine's pharmacological action ultimately results in excitatory cortical disinhibition, causing the release of neurotrophic factors, the most important of which is brain-derived neurotrophic factor (BDNF). BDNF-mediated signaling along with vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) subsequently give rise to the repair of neuro-structural abnormalities in patients with depressive disorders. Ketamine's efficacious amelioration of treatment-resistant depression is revolutionizing psychiatric treatment and opening up fresh vistas for understanding the underlying causes of mental illness.
Collapse
Affiliation(s)
- Philip Borsellino
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Reese I Krider
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Deanna Chea
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Ryan Grinnell
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Thomas A Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| |
Collapse
|
48
|
Lee E, Seo HD, Kim D, Park SH, Kim SR, Hyun C, Hahm JH, Ha TY, Ahn J, Jung CH. Millet seed oil activates β-catenin signaling and promotes hair growth. Front Pharmacol 2023; 14:1172084. [PMID: 37229245 PMCID: PMC10203242 DOI: 10.3389/fphar.2023.1172084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Alopecia, regardless of gender, exacerbates psychological stress in those affected. The rising prevalence of alopecia has fueled a research interest in preventing hair loss. This study investigates the potential of millet seed oil (MSO) in promoting the proliferation of hair follicle dermal papilla cells (HFDPC) and stimulating hair growth in animals with testosterone-dependent hair growth inhibition as part of a study on dietary treatments to improve hair growth. MSO-treated HFDPC significantly increased cell proliferation and phosphorylation of AKT, S6K1, and GSK3β proteins. This induces β-catenin, a downstream transcription factor, to translocate to the nucleus and increase the expression of factors related to cell growth. In a C57BL/6 mice model in which hair growth was inhibited by subcutaneous testosterone injection after shaving the dorsal skin, oral administration of MSO stimulated hair growth in the subject mice by increasing the size and number of hair follicles. These results suggest that MSO is a potent agent that may help prevent or treat androgenetic alopecia by promoting hair growth.
Collapse
Affiliation(s)
- Eunyoung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Daedong Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - Soo Ro Kim
- Suheung Research Center, Seongnam-si, Republic of Korea
| | | | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Tae-Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| |
Collapse
|
49
|
Zhang X, Xia M, Wu Y, Zhang F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023; 15:2161. [PMID: 37432261 DOI: 10.3390/nu15092161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Retinopathy is one of the leading causes of irreversible blindness and vision loss worldwide. Imbalanced nutrients play important roles in the pathogenesis and pathophysiology of retinal diseases. Branched-Chain Amino Acids (BCAAs), as essential amino acids, perform a variety of biological functions, including protein synthesis, glucose metabolism, lipid metabolism, inflammation, and oxidative stress in metabolic tissues of diabetes and aging-related diseases. Recently, it has been shown that BCAAs are highly related to neuroprotection, oxidative stress, inflammatory and glutamate toxicity in the retina of retinopathy. Therefore, this review summarizes the alterations of BCAA levels in retinopathy, especially diabetic retinopathy and aging-related macular disease, and the genetics, functions, and mechanisms of BCAAs in the retina as well as other metabolic tissues for reference. All of these efforts aim to provide fundamental knowledge of BCAAs for further discoveries and research on retina health based on the sensing and signaling of essential amino acids.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| |
Collapse
|
50
|
Kropivsek K, Kachel P, Goetze S, Wegmann R, Festl Y, Severin Y, Hale BD, Mena J, van Drogen A, Dietliker N, Tchinda J, Wollscheid B, Manz MG, Snijder B. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. NATURE CANCER 2023; 4:734-753. [PMID: 37081258 DOI: 10.1038/s43018-023-00544-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy defined by complex genetics and extensive patient heterogeneity. Despite a growing arsenal of approved therapies, MM remains incurable and in need of guidelines to identify effective personalized treatments. Here, we survey the ex vivo drug and immunotherapy sensitivities across 101 bone marrow samples from 70 patients with MM using multiplexed immunofluorescence, automated microscopy and deep-learning-based single-cell phenotyping. Combined with sample-matched genetics, proteotyping and cytokine profiling, we map the molecular regulatory network of drug sensitivity, implicating the DNA repair pathway and EYA3 expression in proteasome inhibitor sensitivity and major histocompatibility complex class II expression in the response to elotuzumab. Globally, ex vivo drug sensitivity associated with bone marrow microenvironmental signatures reflecting treatment stage, clonality and inflammation. Furthermore, ex vivo drug sensitivity significantly stratified clinical treatment responses, including to immunotherapy. Taken together, our study provides molecular and actionable insights into diverse treatment strategies for patients with MM.
Collapse
Affiliation(s)
- Klara Kropivsek
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Kachel
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Goetze
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Audrey van Drogen
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Nadja Dietliker
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Joëlle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|