1
|
Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D. Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 2025; 20:2807-2822. [PMID: 39435615 PMCID: PMC11826472 DOI: 10.4103/nrr.nrr-d-24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities. Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites, neglecting multilevel pathological analysis of the overall nervous system and target organs. This has led to restrictions on current therapeutic approaches. In this paper, we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective, covering the central nervous system, peripheral nervous system, and target organs. After peripheral nerve injury, the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves; changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord. The nerve will undergo axonal regeneration, activation of Schwann cells, inflammatory response, and vascular system regeneration at the injury site. Corresponding damage to target organs can occur, including skeletal muscle atrophy and sensory receptor disruption. We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury. The main current treatments are conducted passively and include physical factor rehabilitation, pharmacological treatments, cell-based therapies, and physical exercise. However, most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway. Therefore, we should further explore multilevel treatment options that produce effective, long-lasting results, perhaps requiring a combination of passive (traditional) and active (novel) treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Ruixin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Ruihua Li
- Department of Hand Microsurgery, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Kai-Yu Tong
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| |
Collapse
|
2
|
Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15:385-399. [PMID: 37342219 PMCID: PMC10277963 DOI: 10.4252/wjsc.v15.i5.385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.
Collapse
Affiliation(s)
- Li-Yi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| |
Collapse
|
3
|
Neto E, Leitão L, Mateus JC, Sousa DM, Alves CJ, Aroso M, Monteiro AC, Conceição F, Oreffo ROC, West J, Aguiar P, Lamghari M. Osteoclast-derived extracellular vesicles are implicated in sensory neurons sprouting through the activation of epidermal growth factor signaling. Cell Biosci 2022; 12:127. [PMID: 35965312 PMCID: PMC9375906 DOI: 10.1186/s13578-022-00864-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different pathologies, affecting the skeletal system, were reported to display altered bone and/or cartilage innervation profiles leading to the deregulation of the tissue homeostasis. The patterning of peripheral innervation is achieved through the tissue-specific expression of attractive or repulsive axonal guidance cues in specific space and time frames. During the last decade, emerging findings attributed to the extracellular vesicles (EV) trading a central role in peripheral tissue innervation. However, to date, the contribution of EV in controlling bone innervation is totally unknown. RESULTS Here we show that sensory neurons outgrowth induced by the bone resorbing cells-osteoclasts-is promoted by osteoclast-derived EV. The EV induced axonal growth is achieved by targeting epidermal growth factor receptor (EGFR)/ErbB2 signaling/protein kinase C phosphorylation in sensory neurons. In addition, our data also indicate that osteoclasts promote sensory neurons electrophysiological activity reflecting a possible pathway in nerve sensitization in the bone microenvironment, however this effect is EV independent. CONCLUSIONS Overall, these results identify a new mechanism of sensory bone innervation regulation and shed the light on the role of osteoclast-derived EV in shaping/guiding bone sensory innervation. These findings provide opportunities for exploitation of osteoclast-derived EV based strategies to prevent and/or mitigate pathological uncontrolled bone innervation.
Collapse
Affiliation(s)
- Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.
| | - Luís Leitão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - José C Mateus
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Cecília J Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Miguel Aroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Ana C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Francisco Conceição
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Tremona Rd, Southampton, SO16 6YD, UK
| | - Jonathan West
- Institute for Life Sciences and Cancer Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Rodríguez-Sánchez DN, Pinto GBA, Cartarozzi LP, de Oliveira ALR, Bovolato ALC, de Carvalho M, da Silva JVL, Dernowsek JDA, Golim M, Barraviera B, Ferreira RS, Deffune E, Bertanha M, Amorim RM. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther 2021; 12:303. [PMID: 34051869 PMCID: PMC8164252 DOI: 10.1186/s13287-021-02315-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Ana Livia Carvalho Bovolato
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Marcio de Carvalho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Vicente Lopes da Silva
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Janaina de Andréa Dernowsek
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Marjorie Golim
- Hemocenter division of Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Mathues Bertanha
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Leitão L, Neto E, Conceição F, Monteiro A, Couto M, Alves CJ, Sousa DM, Lamghari M. Osteoblasts are inherently programmed to repel sensory innervation. Bone Res 2020; 8:20. [PMID: 32435517 PMCID: PMC7220946 DOI: 10.1038/s41413-020-0096-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue innervation is a complex process controlled by the expression profile of signaling molecules secreted by tissue-resident cells that dictate the growth and guidance of axons. Sensory innervation is part of the neuronal network of the bone tissue with a defined spatiotemporal occurrence during bone development. Yet, the current understanding of the mechanisms regulating the map of sensory innervation in the bone tissue is still limited. Here, we demonstrated that differentiation of human mesenchymal stem cells to osteoblasts leads to a marked impairment of their ability to promote axonal growth, evidenced under sensory neurons and osteoblastic-lineage cells crosstalk. The mechanisms by which osteoblast lineage cells provide this nonpermissive environment for axons include paracrine-induced repulsion and loss of neurotrophic factors expression. We identified a drastic reduction of NGF and BDNF production and stimulation of Sema3A, Wnt4, and Shh expression culminating at late stage of OB differentiation. We noted a correlation between Shh expression profile, OB differentiation stages, and OB-mediated axonal repulsion. Blockade of Shh activity and signaling reversed the repulsive action of osteoblasts on sensory axons. Finally, to strengthen our model, we localized the expression of Shh by osteoblasts in bone tissue. Overall, our findings provide evidence that the signaling profile associated with osteoblast phenotype differentiating program can regulate the patterning of sensory innervation, and highlight osteoblast-derived Shh as an essential player in this cue-induced regulation.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Marina Couto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Li P, Chen Y, Yang K, Chen D, Kong D. Mechanical characteristics of BMSCs-intervened sciatic nerve in chronic alcohol-intoxicated animal model. Int J Neurosci 2020; 131:650-656. [PMID: 32233713 DOI: 10.1080/00207454.2020.1750397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To study the mechanical properties of sciatic nerve in rats with chronic alcoholism (CA) and intervened with bone marrow mesenchymal stem cells (BMSCs) and to provide biomechanical basis for clinical practice. METHODS the serum of the BMSCs-intervened CA rats was sampled and determined the contents of malondialdehyde (MDA), metallothionein (CAS, MT), and Glutathione/r -glutamyl cysteinyl/glycine (GSH); meanwhile, the rats' sciatic nerve was tested the tensile and observed the histomorphological changes. RESULTS The mechanical properties of sciatic nerve in BMSCs-intervened CA rats, as well as the serum levels of MT and GSH, were significantly different from those in the basic fibroblast growth factor (bFGF)-intervened CA rats (p < 0.05). CONCLUSIONS BMSCs intervention can restore the levels of MT, GSH, MDA, histomorphology, and tensile mechanical properties in CA animal model, and its effects on repairing sciatic nerve are obvious.
Collapse
Affiliation(s)
- Peng Li
- Department of Mechanics, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Yudong Chen
- Department of Mechanics, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Kun Yang
- Aviation Fundamental College, Aviation University of Air Force, Changchun, China
| | - Dachuan Chen
- Aviation Fundamental College, Aviation University of Air Force, Changchun, China
| | - Daliang Kong
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun, China
| |
Collapse
|
7
|
Yu Z, Xu N, Zhang N, Xiong Y, Wang Z, Liang S, Zhao D, Huang F, Zhang C. Repair of Peripheral Nerve Sensory Impairments via the Transplantation of Bone Marrow Neural Tissue-Committed Stem Cell-Derived Sensory Neurons. Cell Mol Neurobiol 2019; 39:341-353. [PMID: 30684112 PMCID: PMC11469867 DOI: 10.1007/s10571-019-00650-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
The present study aimed to investigate the efficacy of transplantation of bone marrow neural tissue-committed stem cell-derived sensory neuron-like cells for the repair of peripheral nerve sensory impairments in rats. Bone marrow was isolated and cultured to obtain the neural tissue-committed stem cells (NTCSCs), and the differentiation of these cells into sensory neuron-like cells was induced. Bone marrow mesenchymal stem cells (BMSCs), bone marrow NTCSCs, and bone marrow NTCSC-derived sensory neurons (NTCSC-SNs) were transplanted by microinjection into the L4 and L5 dorsal root ganglions (DRGs) in an animal model of sensory defect. On the 2nd, 4th, 8th, and 12th week after the transplantation, the effects of the three types of stem cells on the repair of the sensory functional defect were analyzed via behavioral observation, sensory function evaluation, electrophysiological examination of the sciatic nerve, and morphological observation of the DRGs. The results revealed that the transplanted BMSCs, NTCSCs, and NTCSC-SNs were all able to repair the sensory nerves. In addition, the effect of the NTCSC-SNs was significantly better than that of the other two types of stem cells. The general posture and gait of the animals in the sensory defect model exhibited evident improvement over time. Plantar temperature sensitivity and pain sensitivity gradually recovered, and the sensation latency was reduced, with faster sensory nerve conduction velocity. Transplantation of NTCSC-SNs can improve the repair of peripheral nerve sensory defects in rats.
Collapse
Affiliation(s)
- Zhenhai Yu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Naili Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yanlian Xiong
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zhiqiang Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shaohua Liang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Dongmei Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Fei Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Chuansen Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
8
|
Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol 2018; 56:1812-1824. [PMID: 29931510 PMCID: PMC6394792 DOI: 10.1007/s12035-018-1172-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury requires optimal conditions in both macro-environment and microenvironment for promotion of axonal regeneration. However, most repair strategies of traumatic peripheral nerve injury often lead to dissatisfying results in clinical outcome. Though various strategies have been carried out to improve the macro-environment, the underlying molecular mechanism of axon regeneration in the microenvironment provided by nerve conduit remains unclear. In this study, we evaluate the effects of from adipose-derived mesenchymal stem cells (adMSCs) originating exosomes with respect to sciatic nerve regeneration and neurite growth. Molecular and immunohistochemical techniques were used to investigate the presence of characteristic exosome markers. A co-culture system was established to determine the effect of exosomes on neurite elongation in vitro. The in vivo walking behaviour of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by immunocytochemistry. adMSCs secrete nano-vesicles known as exosomes, which increase neurite outgrowth in vitro and enhance regeneration after sciatic nerve injury in vivo. Furthermore, we showed the presence of neural growth factors transcripts in adMSC exosomes for the first time. Our results demonstrate that exosomes, constitutively produced by adMSCs, are involved in peripheral nerve regeneration and have the potential to be utilised as a therapeutic tool for effective tissue-engineered nerves.
Collapse
Affiliation(s)
- Vesna Bucan
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany.
| | - Desiree Vaslaitis
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
9
|
De la Rosa MB, Kozik EM, Sakaguchi DS. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:41-71. [PMID: 30151648 DOI: 10.1007/5584_2018_254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injuries (PNI) occur as the result of sudden trauma and can lead to life-long disability, reduced quality of life, and heavy economic and social burdens. Although the peripheral nervous system (PNS) has the intrinsic capacity to regenerate and regrow axons to a certain extent, current treatments frequently show incomplete recovery with poor functional outcomes, particularly for large PNI. Many surgical procedures are available to halt the propagation of nerve damage, and the choice of a procedure depends on the extent of the injury. In particular, recovery from large PNI gaps is difficult to achieve without any therapeutic intervention or some form of tissue/cell-based therapy. Autologous nerve grafting, considered the "gold standard" is often implemented for treatment of gap formation type PNI. Although these surgical procedures provide many benefits, there are still considerable limitations associated with such procedures as donor site morbidity, neuroma formation, fascicle mismatch, and scarring. To overcome such restrictions, researchers have explored various avenues to improve post-surgical outcomes. The most commonly studied methods include: cell transplantation, growth factor delivery to stimulate regenerating axons and implanting nerve guidance conduits containing replacement cells at the site of injury. Replacement cells which offer maximum benefits for the treatment of PNI, are Schwann cells (SCs), which are the peripheral glial cells and in part responsible for clearing out debris from the site of injury. Additionally, they release growth factors to stimulate myelination and axonal regeneration. Both primary SCs and genetically modified SCs enhance nerve regeneration in animal models; however, there is no good source for extracting SCs and the only method to obtain SCs is by sacrificing a healthy nerve. To overcome such challenges, various cell types have been investigated and reported to enhance nerve regeneration.In this review, we have focused on cell-based strategies aimed to enhance peripheral nerve regeneration, in particular the use of mesenchymal stem cells (MSCs). Mesenchymal stem cells are preferred due to benefits such as autologous transplantation, routine isolation procedures, and paracrine and immunomodulatory properties. Mesenchymal stem cells have been transplanted at the site of injury either directly in their native form (undifferentiated) or in a SC-like form (transdifferentiated) and have been shown to significantly enhance nerve regeneration. In addition to transdifferentiated MSCs, some studies have also transplanted ex-vivo genetically modified MSCs that hypersecrete growth factors to improve neuroregeneration.
Collapse
Affiliation(s)
- Metzere Bierlein De la Rosa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,Veterinary Specialty Center, Buffalo Grove, IL, USA
| | - Emily M Kozik
- Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald S Sakaguchi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA. .,Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Neuroscience Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
10
|
Gashmardi N, Hosseini SE, Mehrabani D, Edalatmanesh MA, Khodabandeh Z. Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:593-598. [PMID: 29184268 PMCID: PMC5684381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategories), subjected to SCI and cell transplantation. In the experimental group, 2×105 BMSCs were injected intravenously 1 day after SCI. The mesenchymal property of the cells was assessed. The animals in the 3 groups were sacrificed 1, 21, and 35 days after the induction of injury and caspase-3 levels were evaluated using a caspase-3 assay kit. The obtained values were analyzed with ANOVA and Tukey tests using GraphPad and SPSS. Based on the assessments, the transplanted cells were spindle-shaped and were negative for the hematopoietic markers of CD34 and CD45 and positive for the expression of the mesenchymal marker of CD90 and osteogenic induction. The caspase-3 levels showed a significant increase in the sham and experimental groups in comparison to the control group. One day after SCI, the caspase-3 level was significantly higher in the sham group (1.157±0.117) than in the other groups (P<0.000). Twenty-one days after SCI, the caspase-3 level was significantly lower in the experimental group than in the sham group (0.4±0.095 vs. 0.793±0.076; P˂0.000). Thirty-five days following SCI, the caspase-3 level was lower in the experimental group than in the sham group (0.223±0.027 vs. 0.643±0.058; P˂0.000). We conclude that BMSC transplantation was able to downregulate the caspase-3 level after acute SCI, underscoring the role of caspase-3 as a marker for the assessment of treatment efficacy in acute SCI.
Collapse
Affiliation(s)
- Noushin Gashmardi
- Department of Physiology, College of Sciences, Fars Science and Research Branch, Islamic Azad University, Fars, Iran,Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Seyed Ebrahim Hosseini
- Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran,Correspondence: Seyed Ebrahim Hosseini, PhD; Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran Tel: +98 71 3112201
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Khodabandeh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ, Almeida RD. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 2017. [PMID: 28646200 PMCID: PMC5482809 DOI: 10.1038/s41598-017-03592-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used for cell-based therapies in regenerative medicine, with increasing importance in central and peripheral nervous system repair. However, MSCs grafting present disadvantages, such as, a high number of cells required for transplantation and low survival rate when transplanted into the central nervous system (CNS). In line with this, MSCs secretome which present on its composition a wide range of molecules (neurotrophins, cytokines) and microvesicles, can be a solution to surpass these problems. However, the effect of MSCs secretome in axonal elongation is poorly understood. In this study, we demonstrate that application of MSCs secretome to both rat cortical and hippocampal neurons induces an increase in axonal length. In addition, we show that this growth effect is axonal intrinsic with no contribution from the cell body. To further understand which are the molecules required for secretome-induced axonal outgrowth effect, we depleted brain-derived neurotrophic factor (BDNF) from the secretome. Our results show that in the absence of BDNF, secretome-induced axonal elongation effect is lost and that axons present a reduced axonal growth rate. Altogether, our results demonstrate that MSCs secretome is able to promote axonal outgrowth in CNS neurons and this effect is mediated by BDNF.
Collapse
Affiliation(s)
- Luís F Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Aguiar
- INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fabio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,School of Health, Polytechnic of Porto (ESS-IPP), Porto, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Wen SY, Li AM, Mi KQ, Wang RZ, Li H, Liu HX, Xing Y. In vitro neuroprotective effects of ciliary neurotrophic factor on dorsal root ganglion neurons with glutamate-induced neurotoxicity. Neural Regen Res 2017; 12:1716-1723. [PMID: 29171438 PMCID: PMC5696854 DOI: 10.4103/1673-5374.217352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ciliary neurotrophic factor has neuroprotective effects mediated through signal transducer and Janus kinase (JAK) 2/activator of transcription 3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. Whether ciliary neurotrophic factor is neuroprotective for glutamate-induced excitotoxicity of dorsal root ganglion neurons is poorly understood. In the present study, the in vitro neuroprotective effects of ciliary neurotrophic factor against glutamate-induced excitotoxicity were determined in a primary culture of dorsal root ganglion neurons from Wistar rat embryos at embryonic day 15. Whether the JAK2/STAT3 and PI3K/Akt signaling pathways were related to the protective effects of ciliary neurotrophic factor was also determined. Glutamate exposure inhibited neurite outgrowth, cell viability, and growth-associated protein 43 expression and promoted apoptotic neuronal cell death, all of which were reversed by the administration of exogenous ciliary neurotrophic factor. Additionally, preincubation with either JAK2 inhibitor AG490 or PI3K inhibitor LY294002 blocked the neuroprotective effect of ciliary neurotrophic factor. These data indicate that the two pathways JAK2/STAT3 and PI3K/Akt play major roles in mediating the in vitro neuroprotective effects of ciliary neurotrophic factor on dorsal root ganglion neurons with glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Shu-Yun Wen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province; Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ai-Min Li
- Department of Rheumatology, Qingdao Fifth People's Hospital, Qingdao, Shandong Province, China
| | - Kuan-Qing Mi
- Department of Neurosurgery, Jinan Fifth People's Hospital, Jinan, Shandong Province, China
| | - Rui-Zheng Wang
- Department of Neurosurgery, Jinan Fifth People's Hospital, Jinan, Shandong Province, China
| | - Hao Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Hua-Xiang Liu
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yi Xing
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
13
|
Shi H, Gong Y, Qiang L, Li X, Zhang S, Gao J, Li K, Ji X, Tian L, Gu X, Ding F. Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration. Biomaterials 2016; 89:25-37. [DOI: 10.1016/j.biomaterials.2016.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/16/2022]
|
14
|
Wang D, Zhang J. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia. Neural Regen Res 2015; 7:749-55. [PMID: 25737697 PMCID: PMC4345656 DOI: 10.3969/j.issn.1673-5374.2012.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/12/2022] Open
Abstract
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| | - Jianjun Zhang
- Department of Neurosurgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| |
Collapse
|
15
|
Czaja K, Fornaro M, Geuna S. Neurogenesis in the adult peripheral nervous system. Neural Regen Res 2015; 7:1047-54. [PMID: 25722694 PMCID: PMC4340017 DOI: 10.3969/j.issn.1673-5374.2012.14.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
Abstract
Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.
Collapse
Affiliation(s)
- Krzysztof Czaja
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (VCAPP), College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA
| | - Michele Fornaro
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Italy
| |
Collapse
|
16
|
Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, Hu W, Yu B, Wang Y, Ding F, Liu Y, Gu X. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2014; 23:423-33. [PMID: 25394845 PMCID: PMC4351454 DOI: 10.1038/mt.2014.220] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Shiying Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinghui Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chu Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Hu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
17
|
Wang D, Zhang J. Effects of hypothermia combined with neural stem cell transplantation on recovery of neurological function in rats with spinal cord injury. Mol Med Rep 2014; 11:1759-67. [PMID: 25385306 PMCID: PMC4270334 DOI: 10.3892/mmr.2014.2905] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 09/18/2014] [Indexed: 12/13/2022] Open
Abstract
The microenvironment of the injured spinal cord is hypothesized to be involved in driving the differentiation and survival of engrafted neural stem cells (NSCs). Hypothermia is known to improve the microenvironment of the injured spinal cord in a number of ways. To investigate the effect of NSC transplantation in combination with hypothermia on the recovery of rat spinal cord injury, 60 Sprague-Dawley female rats were used to establish a spinal cord hemisection model. They were divided randomly into three groups: A, spinal cord injury group; B, NSC transplantation group; and C, NSC transplantation + hypothermia group. At 1, 2, 4, 6 and 8 weeks post-injury, the motor function of all animals was evaluated using the Basso, Beattie and Besnaham locomotor scoring system and the inclined plane test. At 4 weeks post-transplantation, histological analysis and immunocytochemistry were performed. At 8 weeks post-transplantation, horseradish peroxidase nerve tracing and transmission electron microscopy were conducted to observe axonal regeneration. The outcome of hind limb motor function recovery in group C significantly surpassed that in group B at 4 weeks post-injury (P<0.05). Recovery was also observed in group A, but to a lesser degree. For the pathological sections no neural axonal were observed in group A. A few axon-like structures were observed in group B and more in group C. Horseradish peroxidase-labeled neurofibers and bromodeoxyuridine-positive cells were observed in the spinal cords of group C. Fewer of these cells were found in group B and fewer still in group A. The differences among the three groups were significant (P<0.05). Using transmission electron microscopy, newly formed nerve fibers and myelinated nerve fibers were observed in the central transverse plane in groups B and C, although these nerve fibers were not evident in group A. In conclusion, NSC transplantation promoted the recovery of hind limb function in rats, and combination treatment with hypothermia produced synergistic effects.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, P.R. China
| | - Jianjun Zhang
- Department of Neurosurgery, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, P.R. China
| |
Collapse
|
18
|
Xia P, Pan S, Cheng J, Yang M, Qi Z, Hou T, Yang X. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord. Neural Regen Res 2014; 9:1688-95. [PMID: 25374590 PMCID: PMC4211189 DOI: 10.4103/1673-5374.141804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.
Collapse
Affiliation(s)
- Peng Xia
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Su Pan
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Jieping Cheng
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Maoguang Yang
- Department of Endocrinology, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Zhiping Qi
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Tingting Hou
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Yang
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
19
|
Oliveira JT, Bittencourt-Navarrete RE, de Almeida FM, Tonda-Turo C, Martinez AMB, Franca JG. Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation. Front Neuroanat 2014; 8:111. [PMID: 25360086 PMCID: PMC4199278 DOI: 10.3389/fnana.2014.00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
We studied the morphology and the cortical representation of the median nerve (MN), 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL) conduit with or without bone marrow-derived mesenchymal stem cell (MSC) transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1), electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in three groups: MN Intact (n = 4), PCL-Only (n = 3), and PCL+MSC (n = 3). Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group) or without (PCL-Only group) injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to five animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383 ± 390 fibers; 2.3 mm2, respectively) than the PCL-Only group (2,226 ± 575 fibers; 1.6 mm2). In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.
Collapse
Affiliation(s)
- Julia T Oliveira
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Fernanda M de Almeida
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Universidade Federal do Rio de Janeiro Macaé, Brazil
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino Torino, Italy
| | - Ana Maria B Martinez
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Departamento de Anatomia Patológica, Faculdade de Medicina, e Pós Graduação em Anatomia Patológica, Centro de Ciências da Saúde, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - João G Franca
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
20
|
The Secretome of Bone Marrow and Wharton Jelly Derived Mesenchymal Stem Cells Induces Differentiation and Neurite Outgrowth in SH-SY5Y Cells. Stem Cells Int 2014; 2014:438352. [PMID: 25132857 PMCID: PMC4124228 DOI: 10.1155/2014/438352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
The goal of this study was to determine and compare the effects of the secretome of mesenchymal stem cells (MSCs) isolated from human bone-marrow (BMSCs) and the Wharton jelly surrounding the vein and arteries of the umbilical cord (human umbilical cord perivascular cells (HUCPVCs)) on the survival and differentiation of a human neuroblastoma cell line (SH-SY5Y). For this purpose, SH-SY5Y cells were differentiated with conditioned media (CM) from the MSCs populations referred above. Retinoic acid cultured cells were used as control for neuronal differentiated SH-SY5Y cells. SH-SY5Y cells viability assessment revealed that the secretome of BMSCs and HUCPVCs, in the form of CM, was able to induce their survival. Moreover, immunocytochemical experiments showed that CM from both MSCs was capable of inducing neuronal differentiation of SH-SY5Y cells. Finally, neurite lengths assessment and quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) analysis demonstrated that CM from BMSCs and HUCPVCs differently induced neurite outgrowth and mRNA levels of neuronal markers exhibited by SH-SY5Y cells. Overall, our results show that the secretome of both BMSCs and HUCPVCs was capable of supporting SH-SY5Y cells survival and promoting their differentiation towards a neuronal phenotype.
Collapse
|
21
|
Liang CM, Weng SJ, Tsai TH, Li IH, Lu PH, Ma KH, Tai MC, Chen JT, Cheng CY, Huang YS. Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells. Cytotherapy 2014; 16:1371-83. [PMID: 24996595 DOI: 10.1016/j.jcyt.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. METHODS Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. RESULTS Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. CONCLUSIONS L-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.
Collapse
Affiliation(s)
- Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Tung-Han Tsai
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pin-Hui Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
22
|
Oliveira JT, Mostacada K, de Lima S, Martinez AMB. Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 108:59-77. [PMID: 24083431 DOI: 10.1016/b978-0-12-410499-0.00003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the peripheral nervous system has an inherent capacity for regeneration, injuries to nerves still result in considerable disabilities. The persistence of these disabilities along with the underlying problem of nerve reconstruction has motivated neuroscientists worldwide to seek additional therapeutic strategies. In recent years, cell-based therapy has emerged as a promising therapeutic tool. Schwann cells (SCs) are the main supportive cells for peripheral nerve regeneration; however, there are several technical limitations regarding its application for cell-based therapy. In this context, bone marrow mesenchymal stem cells (BM-MSCs) have been used as alternatives to SCs for treating peripheral neuropathies, showing great promise. Several studies have been trying to shed light on the mechanisms behind the nerve regeneration-promotion potential of BM-MSCs. Although not completely clarified, understanding how BM-MSCs exert tissue repair effects will facilitate their development as therapeutic agents before they become a clinically viable tool for encouraging peripheral nerve regeneration.
Collapse
Affiliation(s)
- Júlia Teixeira Oliveira
- Programa de Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
23
|
Martinez AMB, Goulart CDO, Ramalho BDS, Oliveira JT, Almeida FM. Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 2014; 6:179-94. [PMID: 24772245 PMCID: PMC3999776 DOI: 10.4252/wjsc.v6.i2.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy has attracted the attention of scientists and clinicians around the world. Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury. These effects are believed to be due to their ability to differentiate into other cell lineages, modulate inflammatory and immunomodulatory responses, reduce cell apoptosis, secrete several neurotrophic factors and respond to tissue injury, among others. There are many pre-clinical studies on MSC treatment for spinal cord injury (SCI) and peripheral nerve injuries. However, the same is not true for clinical trials, particularly those concerned with nerve trauma, indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions. As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies. For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes. This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now. At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves, respectively.
Collapse
Affiliation(s)
- Ana Maria Blanco Martinez
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Camila de Oliveira Goulart
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Bruna Dos Santos Ramalho
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Júlia Teixeira Oliveira
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Abstract
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
Collapse
|
25
|
Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, Saito H, Takemoto H, Houkin K, Kuroda S. Bone Marrow Stromal Cells Rescue Ischemic Brain by Trophic Effects and Phenotypic Change Toward Neural Cells. Neurorehabil Neural Repair 2014; 29:80-9. [DOI: 10.1177/1545968314525856] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background. Transplantation of bone marrow stromal cells (BMSCs) may contribute to functional recovery after stroke. This study was designed to clarify their mechanisms, trophic effects of neurotrophic factors, and neural differentiation. Methods. Mouse neurons exposed to glutamate were cocultured with mouse BMSCs. Either neutralizing antibodies against brain-derived neurotrophic factor (BDNF) or nerve growth factor (NGF) or Trk inhibitor K252a was added to explore the mechanism of their protective effects. Fluorescence in situ hybridization (FISH) was used to assess BDNF or NGF mRNA expression in BMSCs. The mice were subjected to permanent focal ischemia, and 7 days later, either BMSCs or the vehicle was stereotactically transplanted into the ipsilateral striatum. The mouse brains were processed for FISH and immunostaining 2 or 4 weeks after transplantation. Results. BMSCs significantly ameliorated glutamate-induced neuronal death. Treatment with anti-BDNF antibody significantly reduced their protective effects. FISH analysis showed that the majority of BMSCs expressed BDNF and NGF mRNA in vitro. BMSC transplantation significantly improved the survival of neurons in peri-infarct areas. FISH analysis revealed that approximately half of BMSCs expressed BDNF and NGF mRNA 2 weeks after transplantation; however, the percentage of BDNF and NGF mRNA-positive cells decreased thereafter. Instead, the percentage of microtubule-associated protein 2–positive BMSCs gradually increased during 4 weeks after transplantation. Conclusions. These findings strongly suggest that BDNF may be a key factor underlying the trophic effects of BMSCs. BMSCs might exhibit the trophic effect in the early stage of cell therapy and the phenotypic change toward neural cells thereafter.
Collapse
Affiliation(s)
- Hideo Shichinohe
- Depertment of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Ishihara
- Shionogi Innovation Center for Drug, Shionogi & Co Ltd, Sapporo, Japan
| | - Koji Takahashi
- Shionogi Innovation Center for Drug, Shionogi & Co Ltd, Sapporo, Japan
| | - Yoshikazu Tanaka
- Shionogi Innovation Center for Drug, Shionogi & Co Ltd, Sapporo, Japan
| | - Michiyuki Miyamoto
- Depertment of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomohiro Yamauchi
- Depertment of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisayasu Saito
- Depertment of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Takemoto
- Shionogi Innovation Center for Drug, Shionogi & Co Ltd, Sapporo, Japan
| | - Kiyohiro Houkin
- Depertment of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science for Education, University of Toyama, Toyama, Japan
| |
Collapse
|
26
|
Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Gu X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014; 35:2253-63. [DOI: 10.1016/j.biomaterials.2013.11.087] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/28/2013] [Indexed: 12/25/2022]
|
27
|
Butt GF, Habib A, Mahgoub K, Sofela A, Tilley M, Guo L, Cordeiro MF. Optic nerve regeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Basic Fibroblast Growth Factor (bFGF) Facilitates Differentiation of Adult Dorsal Root Ganglia-Derived Neural Stem Cells Toward Schwann Cells by Binding to FGFR-1 Through MAPK/ERK Activation. J Mol Neurosci 2013; 52:538-51. [DOI: 10.1007/s12031-013-0109-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
|
29
|
Sun H, Bénardais K, Stanslowsky N, Thau-Habermann N, Hensel N, Huang D, Claus P, Dengler R, Stangel M, Petri S. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS)--in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. PLoS One 2013; 8:e72926. [PMID: 24069165 PMCID: PMC3771979 DOI: 10.1371/journal.pone.0072926] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 12/13/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSC) improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice), NSC-34 cells and glial cells (astrocytes, microglia) (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice) in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM) attenuated staurosporine (STS) - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF) in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1) was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS.
Collapse
Affiliation(s)
- Hui Sun
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Nancy Stanslowsky
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Niko Hensel
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - DongYa Huang
- Department of Neurology, East Hospital, Tongji University, Shanghai, China
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover, Germany
- * E-mail:
| |
Collapse
|
30
|
Nakano N, Nakai Y, Seo TB, Homma T, Yamada Y, Ohta M, Suzuki Y, Nakatani T, Fukushima M, Hayashibe M, Ide C. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats. PLoS One 2013; 8:e73494. [PMID: 24039961 PMCID: PMC3770680 DOI: 10.1371/journal.pone.0073494] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 07/30/2013] [Indexed: 12/18/2022] Open
Abstract
It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs) through the cerebrospinal fluid (CSF) has beneficial effects on acute spinal cord injury (SCI) in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury), and/or chronic (4-week post-injury) SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly) into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0–3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle)-injection subgroups, it increased only from 0.5–4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF.
Collapse
Affiliation(s)
- Norihiko Nakano
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Yoshiyasu Nakai
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Tae-Beom Seo
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Tamami Homma
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Yoshihiro Yamada
- Department of Physical Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Masayoshi Ohta
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Toshio Nakatani
- Emergency and Critical Care Center, Kansai Medical University, Osaka, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Miki Hayashibe
- Department of Occupational Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Chizuka Ide
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
- Department of Occupational Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
- * E-mail:
| |
Collapse
|
31
|
Lin W, Li M, Li Y, Sun X, Li X, Yang F, Huang Y, Wang X. Bone marrow stromal cells promote neurite outgrowth of spinal motor neurons by means of neurotrophic factors in vitro. Neurol Sci 2013; 35:449-57. [PMID: 23832111 DOI: 10.1007/s10072-013-1490-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 06/24/2013] [Indexed: 12/13/2022]
Abstract
Transplantation of bone marrow stromal cells (BMSCs) into spinal cord injury models has shown significant neural function recovery; however, the underlying mechanisms have not been fully understood. In the present study we examined the effect of BMSCs on neurite outgrowth of spinal motor neuron using an in vitro co-culture system. The ventral horn of the spinal grey matter was harvested from neonatal Sprague-Dawley rats, cultured with BMSCs, and immunostained for neurofilament-200 (NF-200). Neurite outgrowth of spinal motor neurons was measured using Image J software. ELISA was used to quantify neurotrophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in culture media, and antibodies or exogenous neurotrophic factors were used to block or mimic the effect of BMSCs on neurite outgrowth, respectively. The results showed that neurite outgrowth significantly increased in spinal motor neurons after co-cultured with BMSCs, while the secretion level of BDNF, GDNF and NGF was dramatically elevated in co-culture. However, the neurite outgrowth-promoting effect of BMSCs was found to significantly reduced using antibodies to BDNF, GDNF and NGF. In addition, a fraction of BMSCs was found to exhibit NF-200 immunoreactivity. These results indicated that BMSCs could promote neurite outgrowth of motor neurons by means of neurotrophic factors. The findings of the present study provided new cues for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Weiwei Lin
- Department of Histology and Embryology, Medical College, Nantong University, 19 Qixiu Road, Nantong, 226001, JS, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu W, Ding Y, Zhang X, Wang L. Bone marrow stromal cells inhibit caspase-12 expression in rats with spinal cord injury. Exp Ther Med 2013; 6:671-674. [PMID: 24137244 PMCID: PMC3786846 DOI: 10.3892/etm.2013.1201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying the potentially beneficial effect of bone marrow stem cells (BMSCs) on spinal cord injury (SCI) are unknown. Therefore, the aim of the present study was to explore the protective effect of BMSCs in rats with SCI. A total of 45 adult male Sprague-Dawley rats were randomly divided into three groups; the SCI group (n=15), the BMSC group (n=15) and the sham-operation group (n=15). In the SCI and BMSC treatment groups, a modified Allen’s weight-drop technique was used to induce SCI. The BMSC treatment group received an injection of BMSCs using a microneedle into the epicenter of the spinal cord 24 h after injury. Rats in the sham-operation group were not subjected to SCI; however, the corresponding vertebral laminae were removed. Seven days after transplantation, a rapid recovery was observed in the Basso, Beattie and Bresnahan (BBB) scores of the BMSC treatment group, whereas the BBB scores in the SCI group remained low (P<0.05). Caspase-12 expression in the SCI group was increased compared with that in the sham-operation group, whereas caspase-12 expression was attenuated 24 h after transplantation in the BMSC treatment group (P<0.05). In conclusion, the transplantation of BMSCs may improve locomotor function and attenuate caspase-12 expression following SCI. Therefore, it is likely to be an effective strategy for preventing severe injury of the spinal cord.
Collapse
Affiliation(s)
- Wei Liu
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | |
Collapse
|
33
|
Mohammad-Gharibani P, Tiraihi T, Delshad A, Arabkheradmand J, Taheri T. Improvement of contusive spinal cord injury in rats by co-transplantation of gamma-aminobutyric acid-ergic cells and bone marrow stromal cells. Cytotherapy 2013; 15:1073-85. [PMID: 23806239 DOI: 10.1016/j.jcyt.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats. METHODS BDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks. RESULTS The Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation. CONCLUSIONS The study shows that the combination of GABAergic cells with BMSCs can improve SCI.
Collapse
Affiliation(s)
- Payam Mohammad-Gharibani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
34
|
Osanai T, Kuroda S, Sugiyama T, Kawabori M, Ito M, Shichinohe H, Kuge Y, Houkin K, Tamaki N, Iwasaki Y. Therapeutic effects of intra-arterial delivery of bone marrow stromal cells in traumatic brain injury of rats--in vivo cell tracking study by near-infrared fluorescence imaging. Neurosurgery 2012; 70:435-44; discussion 444. [PMID: 21822154 DOI: 10.1227/neu.0b013e318230a795] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A noninvasive and effective route of cell delivery should be established to yield maximal therapeutic effects for central nervous system (CNS) disorders. OBJECTIVE To elucidate whether intra-arterial delivery of bone marrow stromal cells (BMSCs) significantly promotes functional recovery in traumatic brain injury (TBI) in rats. METHODS Rat BMSCs were transplanted through the ipsilateral internal carotid artery 7 days after the onset of cortical freezing injury. The BMSCs were labeled with fluorescent dye, and in vivo optical imaging was employed to monitor the behaviors of cells for 4 weeks after transplantation. Motor function was assessed for 4 weeks, and the transplanted BMSCs were examined using immunohistochemistry. RESULTS In vivo optical imaging and histologic analysis clearly demonstrated that the intra-arterially injected BMSCs were engrafted during the first pass without systemic circulation, and the transplanted BMSCs started to migrate from the cerebral capillary bed to the injured CNS tissue within 3 hours. Intra-arterial BMSC transplantation significantly promoted functional recovery after cortical freezing injury. A subgroup of BMSCs expressed the phenotypes of neurons, astrocytes, and endothelial cells around the injured neocortex 4 weeks after transplantation. CONCLUSION Intra-arterial transplantation may be a valuable option for prompt, noninvasive delivery of BMSCs to the injured CNS tissue, enhancing functional recovery after TBI. In vivo optical imaging may provide important information on the intracerebral behaviors of donor cells by noninvasive, serial visualization.
Collapse
Affiliation(s)
- Toshiya Osanai
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mauri M, Lentini D, Gravati M, Foudah D, Biella G, Costa B, Toselli M, Parenti M, Coco S. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Mol Cell Neurosci 2012; 49:395-405. [PMID: 22388097 DOI: 10.1016/j.mcn.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.
Collapse
Affiliation(s)
- Mario Mauri
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jia H, Wang Y, Tong XJ, Liu GB, Li Q, Zhang LX, Sun XH. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse 2011; 66:256-69. [PMID: 22127791 DOI: 10.1002/syn.21508] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/07/2011] [Indexed: 12/23/2022]
Abstract
Acellular nerves possess the structural and biochemical features similar to those of naive endoneurial tubes, and have been proved bioactive for allogeneil graft in nerve tissue engineering. However, the source of allogenic donators is restricted in clinical treatment. To explore sufficient substitutes for acellular nerve allografts (ANA), we investigated the effectiveness of acellular nerve xenografts (ANX) combined with bone marrow stromal cells (BMSCs) on repairing peripheral nerve injuries. The acellular nerves derived from Sprague-Dawley rats and New Zealand rabbits were prepared, respectively, and BMSCs were implanted into the nerve scaffolds and cultured in vitro. All the grafts were employed to bridge 1 cm rat sciatic nerve gaps. Fifty Wistar rats were randomly divided into five groups (n = 10 per group): ANA group, ANX group, BMSCs-laden ANA group, BMSCs-laden ANX group, and autologous nerve graft group. At 8 weeks post-transplantation, electrophysiological study was performed and the regenerated nerves were assayed morphologically. Besides, growth-promoting factors in the regenerated tissues following the BMSCs integration were detected. The results indicated that compared with the acellular nerve control groups, nerve regeneration and functional rehabilitation for the xenogenic nerve transplantation integrated with BMSCs were advanced significantly, and the rehabilitation efficacy was comparable with that of the autografting. The expression of neurotrophic factors in the regenerated nerves, together with that of brain-derived neurotrophic factor (BDNF) in the spinal cord and muscles were elevated largely. In conclusion, ANX implanted with BMSCs could replace allografts to promote nerve regeneration effectively, which offers a reliable approach for repairing peripheral nerve defects.
Collapse
Affiliation(s)
- Hua Jia
- Department of Anatomy, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Jia H, Wang Y, Tong XJ, Liu GB, Li Q, Zhang LX, Sun XH. Biocompatibility of acellular nerves of different mammalian species for nerve tissue engineering. ACTA ACUST UNITED AC 2011; 39:366-75. [PMID: 21999105 DOI: 10.3109/10731199.2011.618133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To explore the biocompatibility of acellular nerves of different mammalian species, for the acellular nerves derived from rats and rabbits, the morphology, immunocompatibility, and cytocompatibility with bone marrow stromal cells (BMSCs) were evaluated. The results indicated that the tridimensional architecture and main proteins of endoneurial tubes in both biomaterials were well retained. The nerve scaffolds did not show immunogenicity or cytotoxicity, but facilitated growth of BMSCs and secretion of neurotrophic factors in vitro. In conclusion, acellular nerves of different species possess favorable biocompatibility, and xenogenic acellular nerves combined with BMSCs have potential to replace allografts for peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Hua Jia
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Chiba Y, Kuroda S, Osanai T, Shichinohe H, Houkin K, Iwasaki Y. Impact of ageing on biological features of bone marrow stromal cells (BMSC) in cell transplantation therapy for CNS disorders: Functional enhancement by granulocyte-colony stimulating factor (G-CSF). Neuropathology 2011; 32:139-48. [DOI: 10.1111/j.1440-1789.2011.01255.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Shichinohe H, Kuroda S, Sugiyama T, Ito M, Kawabori M, Nishio M, Takeda Y, Koike T, Houkin K. Biological Features of Human Bone Marrow Stromal Cells (hBMSC) Cultured with Animal Protein-Free Medium—Safety and Efficacy of Clinical Use for Neurotransplantation. Transl Stroke Res 2011; 2:307-15. [DOI: 10.1007/s12975-011-0088-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/24/2011] [Accepted: 06/03/2011] [Indexed: 01/07/2023]
|
40
|
Zimmerman TA, Rubakhin SS, Sweedler JV. MALDI mass spectrometry imaging of neuronal cell cultures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:828-36. [PMID: 21472517 PMCID: PMC3113696 DOI: 10.1007/s13361-011-0111-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 05/09/2023]
Abstract
Mass spectrometry imaging (MSI) provides the ability to detect and identify a broad range of analytes and their spatial distributions from a variety of sample types, including tissue sections. Here we describe an approach for probing neuropeptides from sparse cell cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI--at single cell spatial resolution-in both MS and tandem MS modes. Cultures of Aplysia californica neurons are grown on an array of glass beads embedded in a stretchable layer of Parafilm M. As the membrane is stretched, the beads/neurons are separated physically and the separated beads/neurons analyzed via MALDI TOF MS. Compared with direct MS imaging of samples, the stretching procedure enhances analyte extraction and incorporation into the MALDI matrix, with negligible analyte spread between separated beads. MALDI tandem MSI using the stretched imaging approach yields localization maps of both parent and fragment ions from Aplysia pedal peptide, thereby confirming peptide identification. This methodology represents a flexible platform for MSI investigation of a variety of cell cultures, including functioning neuronal networks.
Collapse
Affiliation(s)
- Tyler A. Zimmerman
- Department of Chemistry, University of Illinois, 600 South Mathews Ave.; 63–5, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois, 600 South Mathews Ave.; 63–5, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois, 600 South Mathews Ave.; 63–5, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
41
|
Krick K, Tammia M, Martin R, Höke A, Mao HQ. Signaling cue presentation and cell delivery to promote nerve regeneration. Curr Opin Biotechnol 2011; 22:741-6. [PMID: 21531127 DOI: 10.1016/j.copbio.2011.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/01/2011] [Indexed: 01/09/2023]
Abstract
Limitations in current nerve regeneration techniques have stimulated the development of various approaches to mimic the extrinsic cues available in the natural nerve regeneration environment. Biomaterials approaches modulate the microenvironment of a regenerating nerve through tailored presentation of signaling molecules, creating physical and biochemical guidance cues to direct axonal regrowth across nerve lesion sites. Cell-based approaches center on increasing the neurotrophic support, adhesion guidance and myelination capacity of Schwann cells and other alternative cell types to enhance nerve regrowth and functional recovery. Recent advances in presenting directional guidance cues in nerve guidance conduits and improving the regenerative outcomes of cell delivery provide inspirations to engineering the next generation of nerve repair solutions.
Collapse
Affiliation(s)
- Kellin Krick
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
42
|
Kuroda S, Shichinohe H, Houkin K, Iwasaki Y. Autologous bone marrow stromal cell transplantation for central nervous system disorders - recent progress and perspective for clinical application. J Stem Cells Regen Med 2011. [PMID: 24693168 PMCID: PMC3908285 DOI: 10.46582/jsrm.0701002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is increasing evidence that the transplanted BMSC significantly promote functional recovery after CNS damage in the animal models of various kinds of CNS disorders, including cerebral infarct, traumatic brain injury and spinal cord injury. However, there are several shortages of information when considering clinical application of BMSC transplantation for patients with CNS disorders. In this review, therefore, we discuss what we should clarify to establish cell transplantation therapy as the scientifically proven entity in clinical situation and describe our recent works for this purpose. The BMSC have the ability to alter their gene expression profile and phenotype in response to the surrounding circumstances and to protect the neurons by producing some neurotrophic factors. They also promote neurite extension and rebuild the neural circuits in the injured CNS. The BMSC can be expanded in vitro using the animal serum-free medium. Pharmacological modulation may accelerate the in vitro proliferation of the BMSC. Using in vivo optical imaging technique, the transplanted BMSC can non-invasively be tracked in the living animals for at least 8 weeks after transplantation. It is urgent issues to develop clinical imaging technique to track the transplanted cells in the CNS and evaluate the therapeutic significance of BMSC transplantation in order to establish it as a definite therapeutic strategy in clinical situation in the future.
Collapse
Affiliation(s)
- S Kuroda
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine , Sapporo, Japan
| | - H Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine , Sapporo, Japan
| | - K Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine , Sapporo, Japan
| | - Y Iwasaki
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine , Sapporo, Japan
| |
Collapse
|
43
|
Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. BONE MARROW RESEARCH 2010; 2011:207326. [PMID: 22046556 PMCID: PMC3195349 DOI: 10.1155/2011/207326] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.
Collapse
|
44
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
45
|
Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience 2010; 170:1295-303. [PMID: 20800664 DOI: 10.1016/j.neuroscience.2010.08.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 12/11/2022]
Abstract
Although the majority of peripheral-nerve regeneration studies are carried out on the sciatic nerve, lesions of the upper extremities are more common in humans and usually lead to significant physical disabilities. The present study was driven by the hypothesis that a combination of strategies, namely grafts of mesenchymal stem cells (MSC) and resorbable polycaprolactone (PCL) conduits would improve median-nerve regeneration after transection. Mouse median nerves were transected and sutured to PCL tubes that were filled with either green fluorescent protein (GFP(+)) MSC in DMEM or with DMEM alone. During the post-operative period, animals were tested weekly for flexor digitorum muscle function by means of the grasping test. After 8 weeks, the proximal and middle portions of the PCL tube and the regenerating nerves were harvested and processed for light and electron microscopy. The flexor digitorum muscle was weighed and subjected to biochemical analysis for creatine phosphokinase (CK) levels. Scanning electron microscopy of the PCL tube 8 weeks after implantation showed clear signs of wall disintegration. MSC-treated animals showed significantly larger numbers of myelinated and unmyelinated nerve fibers and blood vessels compared with DMEM-treated animals. The flexor digitorum muscle CK levels were significantly higher in the MSC-treated animals, but muscle weight values did not differ between the groups. Compared with the DMEM-treated group, MSC-treated animals showed, by the grasping test, improved functional performance throughout the period analyzed. Immunofluorescence for S-100 and GFP showed, in a few cases, double-labeled cells, suggesting that transplanted cells may occasionally transdifferentiate into Schwann cells. Our data demonstrate that the polycaprolactone conduit filled with MSC is capable of significantly improving the median-nerve regeneration after a traumatic lesion.
Collapse
|