1
|
Zheng R, Xu Z, Zeng Y, Wang E, Li M. SPIDE: A single cell potency inference method based on the local cell-specific network entropy. Methods 2023; 220:90-97. [PMID: 37952704 DOI: 10.1016/j.ymeth.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
For a given single cell RNA-seq data, it is critical to pinpoint key cellular stages and quantify cells' differentiation potency along a differentiation pathway in a time course manner. Currently, several methods based on the entropy of gene functions or PPI network have been proposed to solve the problem. Nevertheless, these methods still suffer from the inaccurate interactions and noises originating from scRNA-seq profile. In this study, we proposed a cell potency inference method based on cell-specific network entropy, called SPIDE. SPIDE introduces the local weighted cell-specific network for each cell to maintain cell heterogeneity and calculates the entropy by incorporating gene expression with network structure. In this study, we compared three cell entropy estimation models on eight scRNA-Seq datasets. The results show that SPIDE obtains consistent conclusions with real cell differentiation potency on most datasets. Moreover, SPIDE accurately recovers the continuous changes of potency during cell differentiation and significantly correlates with the stemness of tumor cells in Colorectal cancer. To conclude, our study provides a universal and accurate framework for cell entropy estimation, which deepens our understanding of cell differentiation, the development of diseases and other related biological research.
Collapse
Affiliation(s)
- Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ziwei Xu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yanping Zeng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Liu K, Ou JHJ. Regulators of liver cancer stem cells. World J Stem Cells 2021; 13:1127-1133. [PMID: 34567430 PMCID: PMC8422929 DOI: 10.4252/wjsc.v13.i8.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/06/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths. It is often detected at a stage when there are few therapeutic options. Liver cancer stem cells (LCSCs) are highly tumorigenic and resistant to chemotherapy and radiation therapy. Their presence in HCC is a major reason why HCC is difficult to treat. The development of LCSCs is regulated by a variety of factors. This review summarizes recent advances on the factors that regulate the development of LCSCs. Due to the importance of LCSCs in the development of HCC, a better understanding of how LCSCs are regulated will help to improve the treatments for HCC patients.
Collapse
Affiliation(s)
- Kai Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States
| |
Collapse
|
3
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
5
|
Luo H, Liu W, Zhang Y, Yang Y, Jiang X, Wu S, Shao L. METTL3-mediated m 6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Res Ther 2021; 12:159. [PMID: 33648590 PMCID: PMC7923612 DOI: 10.1186/s13287-021-02223-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are a promising cell source in endodontic regeneration and tissue engineering with limited self-renewal and pluripotency capacity. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs associated with stem cell fate determination. In this study, we aim to explore the biological effect of m6A methylation in DPSCs. Methods m6A immunoprecipitation with deep sequencing (m6A RIP-seq) demonstrated the features of m6A modifications in DPSC transcriptome. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence, and apoptosis were analyzed by β-galactosidase, TUNEL staining, and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq functionally enriched overlapped genes and screened target of METTL3. Cell cycle distributions were assayed by flow cytometry, and m6A RIP-qPCR was used to confirm METTL3-mediated m6A methylation. Results Here, m6A peak distribution, binding area, and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relatively high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. A conjoint analysis of m6A RIP and RNA sequencing showed METTL3 depletion associated with cell cycle, mitosis, and alteration of METTL3 resulted in cell cycle arrest. Furthermore, the protein interaction network of differentially expressed genes identified Polo-like kinase 1 (PLK1), a critical cycle modulator, as the target of METTL3-mediated m6A methylation in DPSCs. Conclusions These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and served new insight into stem cell-based tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02223-x.
Collapse
Affiliation(s)
- Haiyun Luo
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China.,Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yeqing Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiao Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shiqing Wu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Cardon T, Franck J, Coyaud E, Laurent EMN, Damato M, Maffia M, Vergara D, Fournier I, Salzet M. Alternative proteins are functional regulators in cell reprogramming by PKA activation. Nucleic Acids Res 2020; 48:7864-7882. [PMID: 32324228 PMCID: PMC7641301 DOI: 10.1093/nar/gkaa277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial–mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies.
Collapse
Affiliation(s)
- Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Julien Franck
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Estelle M N Laurent
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marina Damato
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| |
Collapse
|
7
|
Gunne-Braden A, Sullivan A, Gharibi B, Sheriff RSM, Maity A, Wang YF, Edwards A, Jiang M, Howell M, Goldstone R, Wollman R, East P, Santos SDM. GATA3 Mediates a Fast, Irreversible Commitment to BMP4-Driven Differentiation in Human Embryonic Stem Cells. Cell Stem Cell 2020; 26:693-706.e9. [PMID: 32302522 PMCID: PMC7487786 DOI: 10.1016/j.stem.2020.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
During early development, extrinsic triggers prompt pluripotent cells to begin the process of differentiation. When and how human embryonic stem cells (hESCs) irreversibly commit to differentiation is a fundamental yet unanswered question. By combining single-cell imaging, genomic approaches, and mathematical modeling, we find that hESCs commit to exiting pluripotency unexpectedly early. We show that bone morphogenetic protein 4 (BMP4), an important differentiation trigger, induces a subset of early genes to mirror the sustained, bistable dynamics of upstream signaling. Induction of one of these genes, GATA3, drives differentiation in the absence of BMP4. Conversely, GATA3 knockout delays differentiation and prevents fast commitment to differentiation. We show that positive feedback at the level of the GATA3-BMP4 axis induces fast, irreversible commitment to differentiation. We propose that early commitment may be a feature of BMP-driven fate choices and that interlinked feedback is the molecular basis for an irreversible transition from pluripotency to differentiation.
Irreversible commitment to BMP4-driven hESC differentiation is fast SMAD activation is sustained, bistable, and irreversible due to positive feedback GATA3 mirrors SMAD dynamics and mediates fast commitment to differentiation GATA3 is an early commitment gene
Collapse
Affiliation(s)
| | | | | | - Rahuman S M Sheriff
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Alok Maity
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | - Roy Wollman
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | |
Collapse
|
8
|
|
9
|
Wei Z, Li D, Zhu L, Yang L, Chen C, Bai C, Li G. Omega 3 polyunsaturated fatty acids inhibit cell proliferation by regulating cell cycle in fad3b transgenic mouse embryonic stem cells. Lipids Health Dis 2018; 17:210. [PMID: 30193583 PMCID: PMC6129006 DOI: 10.1186/s12944-018-0862-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 01/13/2023] Open
Abstract
Background The consumption of omega 3 polyunsaturated fatty acids (PUFAs) is important for human health and is closely associated with cell proliferation and differentiation. This study aimed to investigate the influence of omega 3 PUFAs on embryonic stem cell (ESC) proliferation and explore potential mechanisms that mediate these effects. Methods In this study, we isolated ESCs from fad3b-expressing transgenic mice. We detected the fatty-acid composition of ESCs using gas chromatography-mass spectroscopy, analyzed cell-cycle phases using flow cytometry, and detected gene expression using real-time polymerase chain reaction (PCR) and western blots. Results The amount of omega 3 PUFAs significantly increased in fad3b versus control ESCs. However, the growth of fad3b ESCs was slower than that of control cells, and most fad3b ESCs were in a prolonged G0/G1 phase after being passaged for 18 h. Therefore, we hypothesized that fad3b expression inhibited the cell cycle in ESCs by increasing the expression of P21, which then decreased the expression of cyclin-dependent kinase 4 (Cdk4). We found that pretreatment of fad3b ESCs with PD0325901, a P21 inhibitor, clearly attenuated the inhibitory effects of P21 on Cdk4, and resumed the cell cycle. Conclusions Expression of the fad3b gene in ESCs increased the omega 3 PUFA content, which inhibited cell proliferation by prolonging the G1 phase but did not arrest the G0-to-G1 or G1-to-S transitions. The prolonged G1 phase in fad3b ESCs was probably induced by downregulation of Cdk4 expression via p21 upregulation. These results suggest that accumulation of omega 3 PUFAs in vivo may beneficially affect ESC differentiation and that fad3b ESCs may be a useful tool for investigating related mechanisms. Electronic supplementary material The online version of this article (10.1186/s12944-018-0862-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuying Wei
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.,College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Dongfang Li
- Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chen Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.,College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. .,College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
10
|
Zhao B, Zhang W, Cun Y, Li J, Liu Y, Gao J, Zhu H, Zhou H, Zhang R, Zheng P. Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex. Cell Res 2017; 28:69-89. [PMID: 29125140 DOI: 10.1038/cr.2017.139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor constitutive DNA replication stress during their rapid proliferation and the consequent genome instability hampers their applications in regenerative medicine. It is therefore important to understand the regulatory mechanisms of replication stress response in PSCs. Here, we report that mouse embryonic stem cells (ESCs) are superior to differentiated cells in resolving replication stress. Specifically, ESCs utilize a unique Filia-Floped protein complex-dependent mechanism to efficiently promote the restart of stalled replication forks, therefore maintaining genomic stability. The ESC-specific Filia-Floped complex resides on replication forks under normal conditions. Replication stress stimulates their recruitment to stalling forks and the serine 151 residue of Filia is phosphorylated in an ATR-dependent manner. This modification enables the Filia-Floped complex to act as a functional scaffold, which then promotes the stalling fork restart through a dual mechanism: both enhancing recruitment of the replication fork restart protein, Blm, and stimulating ATR kinase activation. In the Blm pathway, the scaffolds recruit the E3 ubiquitin ligase, Trim25, to the stalled replication forks, and in turn Trim25 tethers and concentrates Blm at stalled replication forks through ubiquitination. In differentiated cells, the recruitment of the Trim25-Blm complex to replication forks and the activation of ATR signaling are much less robust due to lack of the ESC-specific Filia-Floped scaffold. Thus, our study reveals that ESCs utilize an additional and unique regulatory layer to efficiently promote the stalled fork restart and maintain genomic stability.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yixian Cun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jingzheng Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
11
|
Yin C, Fufa T, Chandrasekar G, Aeluri M, Zaky V, Abdelhady S, Rodríguez AB, Jakobsson J, Varnoosfaderani FS, Mahalingam J, Liu J, Larsson O, Hovatta O, Gaunitz F, Göndör A, Andäng M, Kitambi SS. Phenotypic Screen Identifies a Small Molecule Modulating ERK2 and Promoting Stem Cell Proliferation. Front Pharmacol 2017; 8:726. [PMID: 29114221 PMCID: PMC5660848 DOI: 10.3389/fphar.2017.00726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022] Open
Abstract
Stem cells display a fundamentally different mechanism of proliferation control when compared to somatic cells. Uncovering these mechanisms would maximize the impact in drug discovery with a higher translational applicability. The unbiased approach used in phenotype-based drug discovery (PDD) programs can offer a unique opportunity to identify such novel biological phenomenon. Here, we describe an integrated phenotypic screening approach, employing a combination of in vitro and in vivo PDD models to identify a small molecule increasing stem cell proliferation. We demonstrate that a combination of both in vitro and in vivo screening models improves hit identification and reproducibility of effects across various PDD models. Using cell viability and colony size phenotype measurement we characterize the structure activity relationship of the lead molecule, and identify that the small molecule inhibits phosphorylation of ERK2 and promotes stem cell proliferation. This study demonstrates a PDD approach that employs combinatorial models to identify compounds promoting stem cell proliferation.
Collapse
Affiliation(s)
- Chang Yin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Temesgen Fufa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Gayathri Chandrasekar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Madhu Aeluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Verina Zaky
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shaimaa Abdelhady
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio B Rodríguez
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jianping Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Gaunitz
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Anita Göndör
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Andäng
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Satish S Kitambi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
13
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
14
|
Chandrakesan P, May R, Qu D, Weygant N, Taylor VE, Li JD, Ali N, Sureban SM, Qante M, Wang TC, Bronze MS, Houchen CW. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal. Oncotarget 2016; 6:30876-86. [PMID: 26362399 PMCID: PMC4741574 DOI: 10.18632/oncotarget.5129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022] Open
Abstract
To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP- cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells.
Collapse
Affiliation(s)
- Parthasarathy Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vivian E Taylor
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James D Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naushad Ali
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sripathi M Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Qante
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Timothy C Wang
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - Michael S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Courtney W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA.,COARE Biotechnology, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Tabata T, Petitt M, Zydek M, Fang-Hoover J, Larocque N, Tsuge M, Gormley M, Kauvar LM, Pereira L. Human cytomegalovirus infection interferes with the maintenance and differentiation of trophoblast progenitor cells of the human placenta. J Virol 2015; 89:5134-47. [PMID: 25741001 PMCID: PMC4403461 DOI: 10.1128/jvi.03674-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a major cause of birth defects that include severe neurological deficits, hearing and vision loss, and intrauterine growth restriction. Viral infection of the placenta leads to development of avascular villi, edema, and hypoxia associated with symptomatic congenital infection. Studies of primary cytotrophoblasts (CTBs) revealed that HCMV infection impedes terminal stages of differentiation and invasion by various molecular mechanisms. We recently discovered that HCMV arrests earlier stages involving development of human trophoblast progenitor cells (TBPCs), which give rise to the mature cell types of chorionic villi-syncytiotrophoblasts on the surfaces of floating villi and invasive CTBs that remodel the uterine vasculature. Here, we show that viral proteins are present in TBPCs of the chorion in cases of symptomatic congenital infection. In vitro studies revealed that HCMV replicates in continuously self-renewing TBPC lines derived from the chorion and alters expression and subcellular localization of proteins required for cell cycle progression, pluripotency, and early differentiation. In addition, treatment with a human monoclonal antibody to HCMV glycoprotein B rescues differentiation capacity, and thus, TBPCs have potential utility for evaluation of the efficacies of novel antiviral antibodies in protecting and restoring placental development. Our results suggest that HCMV replicates in TBPCs in the chorion in vivo, interfering with the earliest steps in the growth of new villi, contributing to virus transmission and impairing compensatory development. In cases of congenital infection, reduced responsiveness of the placenta to hypoxia limits the transport of substances from maternal blood and contributes to fetal growth restriction. IMPORTANCE Human cytomegalovirus (HCMV) is a leading cause of birth defects in the United States. Congenital infection can result in permanent neurological defects, mental retardation, hearing loss, visual impairment, and pregnancy complications, including intrauterine growth restriction, preterm delivery, and stillbirth. Currently, there is neither a vaccine nor any approved treatment for congenital HCMV infection during gestation. The molecular mechanisms underlying structural deficiencies in the placenta that undermine fetal development are poorly understood. Here we report that HCMV replicates in trophoblast progenitor cells (TBPCs)-precursors of the mature placental cells, syncytiotrophoblasts and cytotrophoblasts, in chorionic villi-in clinical cases of congenital infection. Virus replication in TBPCs in vitro dysregulates key proteins required for self-renewal and differentiation and inhibits normal division and development into mature placental cells. Our findings provide insights into the underlying molecular mechanisms by which HCMV replication interferes with placental maturation and transport functions.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Martin Zydek
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Mitsuru Tsuge
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | | | - Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Exploiting the power of LINE-1 retrotransposon mutagenesis for identification of genes involved in embryonic stem cell differentiation. Stem Cell Rev Rep 2014; 10:408-16. [PMID: 24610122 PMCID: PMC4008784 DOI: 10.1007/s12015-014-9500-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Identifying the genes or epigenetic factors that control the self-renewal and differentiation of stem cells is critical to understanding the molecular basis of cell commitment. Although a number of insertional mutagenesis vectors have been developed for identifying gene functions in animal models, the L1 retrotransposition system offers additional advantages as a tool to disrupt genes in embryonic stem cells in order to identify their functions and the phenotypes associated with them. Recent advances in producing synthetic versions of L1 retrotransposon vector system and the optimization of techniques to accurately identify retrotransposon integration sites have increased their utility for gene discovery applications. We have developed a novel episomal, nonviral L1 retrotransposon vector using scaffold/matrix attachment regions that provides stable, sustained levels of retrotransposition in cell cultures without being affected by epigenetic silencing or from some of the common problems of vector integration. This modified vector contains a GFP marker whose expression occurs only after successful gene disruption events and thus the cells with disrupted genes can be easily picked for functional analysis. Here we present a method to disrupt gene function in embryonic stem cells that aid in the identification of genes involved in stem cell differentiation processes. The methods presented here can be easily adapted to the study of other types of cancer stem cells or induced pluripotent stem cells using the L1 retrotransposon as an insertional mutagen.
Collapse
|
17
|
Zhu H, Hu S, Baker J. JMJD5 Regulates Cell Cycle and Pluripotency in Human Embryonic Stem Cells. Stem Cells 2014; 32:2098-110. [DOI: 10.1002/stem.1724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/20/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Hui Zhu
- Department of Genetics; Stanford University; Stanford California USA
| | - Shijun Hu
- Department of Radiology; Stanford University; Stanford California USA
| | - Julie Baker
- Department of Genetics; Stanford University; Stanford California USA
- Department of Obstetrics and Gynecology; Stanford University; Stanford California USA
| |
Collapse
|
18
|
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 2014; 19:780-94. [PMID: 24746804 DOI: 10.1016/j.cmet.2014.03.017] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/09/2014] [Accepted: 03/11/2014] [Indexed: 12/26/2022]
Abstract
Mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are in a high-flux metabolic state, with a high dependence on threonine catabolism. However, little is known regarding amino acid metabolism in human ESCs/iPSCs. We show that human ESCs/iPSCs require high amounts of methionine (Met) and express high levels of enzymes involved in Met metabolism. Met deprivation results in a rapid decrease in intracellular S-adenosylmethionine (SAM), triggering the activation of p53-p38 signaling, reducing NANOG expression, and poising human iPSC/ESCs for differentiation, follow by potentiated differentiation into all three germ layers. However, when exposed to prolonged Met deprivation, the cells undergo apoptosis. We also show that human ESCs/iPSCs have regulatory systems to maintain constant intracellular Met and SAM levels. Our findings show that SAM is a key regulator for maintaining undifferentiated pluripotent stem cells and regulating their differentiation.
Collapse
|
19
|
Abstract
CONTEXT The field of ovarian germ cell tumors (OGCTs) has remained relatively unchanged in the last 2 decades. However, the introduction of new stem cell pluripotency markers has provided a new understanding into the identification and taxonomy of OGCT types. New data have provided new insights into unusual teratoma-associated autoimmune disorders and the origin of gliomatosis peritonei. OBJECTIVE To review the impact of new pluripotency markers in the diagnosis of malignant OGCT (MOGCT) and analyze new nomenclature proposals and clinicopathologic entities. DATA SOURCES Ovarian germ cell tumors from routine material and expert consultation files at San Cecilio University Hospital, Granada, Spain, and the relevant literature were reviewed. CONCLUSIONS Although a correct diagnosis of MOGCT can often be made with histologic and classic immunohistochemical studies, the new immunohistochemical pluripotency markers give higher diagnostic accuracy. Germ cell tumors represent a caricature of the phases of normal embryonic differentiation from primordial germ and stem cells to extraembryonal and somatic tissue differentiation. Since every stage of differentiation and its related tumor type exhibit characteristic markers, the analysis of their expression facilitates tumor typing, thus complementing the use of classic antibodies. They also allow a more precise evaluation of the degree of immaturity in teratoma. The new term, primitive endodermal tumors, simplifies the understanding of the complex histology of the yolk sac tumor group, as this terminology encompasses its multiple endodermal differentiations. Recently described autoimmune encephalitis due to antibodies against the N-methyl-d-aspartate receptor has become the most frequent autoimmune disorder associated with ovarian teratoma.
Collapse
Affiliation(s)
- Francisco F Nogales
- From the Department of Pathology, San Cecilio University Hospital, Granada, Spain (Drs Nogales and Dulcey); and Department of Research and Development, Master Diagnostica, Granada, Spain (Dr Preda)
| | | | | |
Collapse
|
20
|
|
21
|
The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells. Differentiation 2014; 87:134-146. [PMID: 24613594 DOI: 10.1016/j.diff.2014.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/23/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
The dysfunction of the primary cilium, a complex, evolutionarily conserved, organelle playing an important role in sensing and transducing cell signals, is the unifying pathogenetic mechanism of a growing number of diseases collectively termed "ciliopathies", typically characterized by multiorgan involvement. Developmental defects of the central nervous system (CNS) characterize a subset of ciliopathies showing clinical and genetic overlap, such as Joubert syndrome (JS) and Meckel syndrome (MS). Although several knock-out mice lacking a variety of ciliary proteins have shown the importance of primary cilia in the development of the brain and CNS-derived structures, developmental in vitro studies, extremely useful to unravel the role of primary cilia along the course of neural differentiation, are still missing. Mouse embryonic stem cells (mESCs) have been recently proven to mimic brain development, giving the unique opportunity to dissect the CNS differentiation process along its sequential steps. In the present study we show that mESCs express the ciliary proteins Meckelin and Jouberin in a developmentally-regulated manner, and that these proteins co-localize with acetylated tubulin labeled cilia located at the outer embryonic layer. Further, mESCs differentiating along the neuronal lineage activate the cilia-dependent sonic hedgehog signaling machinery, which is impaired in Meckelin knock-out cells but results unaffected in Jouberin-deficient mESCs. However, both lose the ability to acquire a neuronal phenotype. Altogether, these results demonstrate a pivotal role of Meckelin and Jouberin during embryonic neural specification and indicate mESCs as a suitable tool to investigate the developmental impact of ciliary proteins dysfunction.
Collapse
|
22
|
Son MY, Seol B, Han YM, Cho YS. Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency. Hum Mol Genet 2013; 23:1802-16. [PMID: 24218367 DOI: 10.1093/hmg/ddt571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The extensive molecular characterization of human pluripotent stem cells (hPSCs), human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses, we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here, we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array, respectively. Among the RTKs tested, the up-regulation of EPHA1, ERBB2, FGFR4 and VEGFR2 and the down-regulation of AXL, EPHA4, PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably, the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally, a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs, revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.
Collapse
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Center, KRIBB, 125 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Erenpreisa J, Cragg MS. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal. Cancer Cell Int 2013; 13:92. [PMID: 24025698 PMCID: PMC4015969 DOI: 10.1186/1475-2867-13-92] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Metastatic cancer is rarely cured by current DNA damaging treatments, apparently due to the development of resistance. However, recent data indicates that tumour cells can elicit the opposing processes of senescence and stemness in response to these treatments, the biological significance and molecular regulation of which is currently poorly understood. Although cellular senescence is typically considered a terminal cell fate, it was recently shown to be reversible in a small population of polyploid cancer cells induced after DNA damage. Overcoming genotoxic insults is associated with reversible polyploidy, which itself is associated with the induction of a stemness phenotype, thereby providing a framework linking these separate phenomena. In keeping with this suggestion, senescence and autophagy are clearly intimately involved in the emergence of self-renewal potential in the surviving cells that result from de-polyploidisation. Moreover, subsequent analysis indicates that senescence may paradoxically be actually required to rejuvenate cancer cells after genotoxic treatments. We propose that genotoxic resistance is thereby afforded through a programmed life-cycle-like process which intimately unites senescence, polyploidy and stemness.
Collapse
|
24
|
Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells 2013; 31:259-68. [PMID: 23136034 DOI: 10.1002/stem.1278] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/09/2012] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression through translational inhibition and RNA decay and have been implicated in the regulation of cellular differentiation, proliferation, angiogenesis, and apoptosis. In this study, we analyzed global miRNA and mRNA microarrays to predict novel miRNA-mRNA interactions in human embryonic stem cells and induced pluripotent stem cells (iPSCs). In particular, we demonstrate a regulatory feedback loop between the miR-302 cluster and two transcription factors, NR2F2 and OCT4. Our data show high expression of miR-302 and OCT4 in pluripotent cells, while NR2F2 is expressed exclusively in differentiated cells. Target analysis predicts that NR2F2 is a direct target of miR-302, which we experimentally confirm by reporter luciferase assays and real-time polymerase chain reaction. We also demonstrate that NR2F2 directly inhibits the activity of the OCT4 promoter and thus diminishes the positive feedback loop between OCT4 and miR-302. Importantly, higher reprogramming efficiencies were obtained when we reprogrammed human adipose-derived stem cells into iPSCs using four factors (KLF4, C-MYC, OCT4, and SOX2) plus miR-302 (this reprogramming cocktail is hereafter referred to as "KMOS3") when compared to using four factors ("KMOS"). Furthermore, shRNA knockdown of NR2F2 mimics the over-expression of miR-302 by also enhancing reprogramming efficiency. Interestingly, we were unable to generate iPSCs from miR-302a/b/c/d alone, which is in contrast to previous publications that have reported that miR-302 by itself can reprogram human skin cancer cells and human hair follicle cells. Taken together, these findings demonstrate that miR-302 inhibits NR2F2 and promotes pluripotency through indirect positive regulation of OCT4. This feedback loop represents an important new mechanism for understanding and inducing pluripotency in somatic cells.
Collapse
Affiliation(s)
- Shijun Hu
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Plank M, Hu G, Silva AS, Wood SH, Hesketh EE, Janssens G, Macedo A, de Magalhães JP, Church GM. An analysis and validation pipeline for large-scale RNAi-based screens. Sci Rep 2013; 3:1076. [PMID: 23326633 PMCID: PMC3546318 DOI: 10.1038/srep01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/22/2012] [Indexed: 12/16/2022] Open
Abstract
Large-scale RNAi-based screens are a major technology, but require adequate prioritization and validation of candidate genes from the primary screen. In this work, we performed a large-scale pooled shRNA screen in mouse embryonic stem cells (ESCs) to discover genes associated with oxidative stress resistance and found several candidates. We then developed a bioinformatics pipeline to prioritize these candidates incorporating effect sizes, functional enrichment analysis, interaction networks and gene expression information. To validate candidates, we mixed normal cells with cells expressing the shRNA coupled to a fluorescent protein, which allows control cells to be used as an internal standard, and thus we could detect shRNAs with subtle effects. Although we did not identify genes associated with oxidative stress resistance, as a proof-of-concept of our pipeline we demonstrate a detrimental role of Edd1 silencing in ESC growth. Our methods may be useful for candidate gene prioritization of large-scale RNAi-based screens.
Collapse
Affiliation(s)
- Michael Plank
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Myb and the Regulation of Stem Cells in the Intestine and Brain: A Tale of Two Niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:353-68. [DOI: 10.1007/978-94-007-6621-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Kapinas K, Grandy R, Ghule P, Medina R, Becker K, Pardee A, Zaidi SK, Lian J, Stein J, van Wijnen A, Stein G. The abbreviated pluripotent cell cycle. J Cell Physiol 2013; 228:9-20. [PMID: 22552993 PMCID: PMC3667593 DOI: 10.1002/jcp.24104] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.
Collapse
Affiliation(s)
- Kristina Kapinas
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rodrigo Grandy
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Prachi Ghule
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Ricardo Medina
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Klaus Becker
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Arthur Pardee
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Sayyed K. Zaidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jane Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Janet Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andre van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Gary Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
28
|
Zhan M, Riordon DR, Yan B, Tarasova YS, Bruweleit S, Tarasov KV, Li RA, Wersto RP, Boheler KR. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells. PLoS One 2012; 7:e42350. [PMID: 22936984 PMCID: PMC3427317 DOI: 10.1371/journal.pone.0042350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/04/2012] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.
Collapse
Affiliation(s)
- Ming Zhan
- Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- The Methodist Hospital Research Institute, Cornell University Weill Cornell Medical College, Houston, Texas, United States of America
| | - Daniel R. Riordon
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Bin Yan
- Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yelena S. Tarasova
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Bruweleit
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kirill V. Tarasov
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Robert P. Wersto
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
29
|
Wang R, Guo YL. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells. Exp Cell Res 2012; 318:2094-104. [PMID: 22705123 DOI: 10.1016/j.yexcr.2012.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs.
Collapse
Affiliation(s)
- Ruoxing Wang
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | | |
Collapse
|
30
|
Srivastava S, Mishra RK, Dhawan J. Regulation of cellular chromatin state: insights from quiescence and differentiation. Organogenesis 2012; 6:37-47. [PMID: 20592864 DOI: 10.4161/org.6.1.11337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 01/19/2010] [Accepted: 01/29/2010] [Indexed: 11/19/2022] Open
Abstract
The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India.
| | | | | |
Collapse
|
31
|
Lee DF, Su J, Sevilla A, Gingold J, Schaniel C, Lemischka IR. Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nat Protoc 2012; 7:729-48. [PMID: 22441292 DOI: 10.1038/nprot.2012.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial scientific interest has been dedicated recently to the crucial factors that control the pluripotent state of stem cells. To gain a comprehensive understanding of the molecular mechanisms regulating mouse embryonic stem cell (mESC) self-renewal and lineage differentiation, we have developed a robust method for studying the role of a particular gene in these processes. This protocol describes detailed procedures for the design and generation of the complementation rescue system and its application in dissecting the network of pluripotency-associated factors, using mESCs as a model. Specifically, three main procedures are described: (i) screening pluripotency-associated factors by competition assay; (ii) setting up an inducible complementation rescue system; and (iii) dynamically studying the pluripotency network response to target depletion. Completion of the competition assay and complementation rescue system takes 35 and 30 d, respectively, and an additional 16 d to study the dynamic molecular effects of a gene of interest in the pluripotency network.
Collapse
Affiliation(s)
- Dung-Fang Lee
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Jackson TR, Salmina K, Huna A, Inashkina I, Jankevics E, Riekstina U, Kalnina Z, Ivanov A, Townsend PA, Cragg MS, Erenpreisa J. DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells. Cell Cycle 2012; 12:430-41. [PMID: 23287532 PMCID: PMC3587444 DOI: 10.4161/cc.23285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G 2M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fraction. Phosphorylated CHK2 and RAD51/γH2AX-positive nuclear foci, overexpression of AURORA B kinase and moderate macroautophagy were evident. Upon release from G 2M arrest, cells with repaired DNA entered mitoses, while the cells with persisting DNA damage remained at this checkpoint or underwent mitotic slippage and gradually senesced. Reduction of TP53 using sh- or si-RNA prevented the upregulation of OCT4A and P21CIP1 and increased DNA damage. Subsequently, mitoses, micronucleation and senescence were all enhanced after TP53 reduction with senescence confirmed by upregulation of CDKN2A/P16INK4A and increased sa-β-galactosidase positivity. Those mitoses enhanced by TP53 silencing were shown to be multicentrosomal and multi-polar, containing fragmented and highly deranged chromosomes, indicating a loss of genome integrity. Together, these data suggest that TP53-dependent coupling of self-renewal and senescence pathways through the DNA damage checkpoint provides a mechanism for how embryonal stem cell-like EC cells safeguard DNA integrity, genome stability and ultimately the fidelity of self-renewal.
Collapse
Affiliation(s)
- Thomas R Jackson
- Cancer Sciences Unit, Southampton University Faculty of Medicine, General Hospital, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang A, Shi G, Zhou C, Lu R, Li H, Sun L, Jin Y. Nucleolin maintains embryonic stem cell self-renewal by suppression of p53 protein-dependent pathway. J Biol Chem 2011; 286:43370-82. [PMID: 22013067 PMCID: PMC3234871 DOI: 10.1074/jbc.m111.225185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 10/18/2011] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain pluripotent developmental potential. The unique characteristics of ESCs, including a distinct transcriptional network, a poised epigenetic state, and a specific cell cycle profile, distinguish them from somatic cells. However, the molecular mechanisms underlying these special properties of ESCs are not fully understood. Here, we report that nucleolin, a nucleolar protein highly expressed in undifferentiated ESCs, plays an essential role for the maintenance of ESC self-renewal. When nucleolin is knocked down by specific short hairpin RNA (shRNA), ESCs display dramatically reduced cell proliferation rate, increased cell apoptosis, and G(1) phase accumulation. Down-regulation of nucleolin also leads to evident ESC differentiation as well as decreased self-renewal ability. Interestingly, expression of pluripotency markers (Oct4 and Nanog) is unaltered in these differentiated cells. Mechanistically, depletion of nucleolin up-regulates the p53 protein level and activates the p53-dependent pathway, at least in part, via increasing p53 protein stability. Silencing of p53 rescues G(1) phase accumulation and apoptosis caused by nucleolin deficiency entirely, although it partially blocks abnormal differentiation in nucleolin-depleted ESCs. It is noteworthy that knocking down nucleolin in NIH3T3 cells affected cell survival and proliferation in a much milder way, despite the comparable silencing efficiency obtained in ESCs and NIH3T3 cells. Collectively, our data demonstrate that nucleolin is a critical regulator of ESC self-renewal and that suppression of the p53-dependent pathway is the major molecular mechanism underlying functions of nucleolin in ESCs.
Collapse
Affiliation(s)
- Acong Yang
- From the Shanghai Stem Cell Institute, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine and
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guilai Shi
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenlin Zhou
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Lu
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Li
- From the Shanghai Stem Cell Institute, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine and
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Sun
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Jin
- From the Shanghai Stem Cell Institute, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine and
- the Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
Gundry RL, Burridge PW, Boheler KR. Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 2011; 11:3947-61. [PMID: 21834136 DOI: 10.1002/pmic.201100100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
Stem cells represent obvious choices for regenerative medicine and are invaluable for studies of human development and drug testing. The proteomic landscape of pluripotent stem cells (PSCs), in particular, is not yet clearly defined; consequently, this field of research would greatly benefit from concerted efforts designed to better characterize these cells. In this concise review, we provide an overview of stem cell potency, highlight the types and practical implications of heterogeneity in PSCs and provide a detailed analysis of the current view of the pluripotent proteome in a unique resource for this rapidly evolving field. Our goal in this review is to provide specific insights into the current status of the known proteome of both mouse and human PSCs. This has been accomplished by integrating published data into a unified PSC proteome to facilitate the identification of proteins, which may be informative for the stem cell state as well as to reveal areas where our current view is limited. These analyses provide insight into the challenges faced in the proteomic analysis of PSCs and reveal one area--the cell surface subproteome--that would especially benefit from enhanced research efforts.
Collapse
Affiliation(s)
- Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
35
|
Papetti M, Augenlicht LH. Mybl2, downregulated during colon epithelial cell maturation, is suppressed by miR-365. Am J Physiol Gastrointest Liver Physiol 2011; 301:G508-18. [PMID: 21737779 PMCID: PMC3174536 DOI: 10.1152/ajpgi.00066.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Altered profiles of gene expression reflect the reprogramming of intestinal epithelial cells during their maturation along the crypt-luminal axis. To focus on genes important in this process, and how they in turn are regulated, we identified 14 transcripts commonly downregulated in expression during lineage-specific maturation of the immortalized cell lines Caco-2 (absorptive), HT29Cl16E (goblet), and HT29Cl19A (secretory) induced by contact inhibition of growth or the short-chain fatty acid butyrate. One such gene, Mybl2 (Myb-related protein B), has been linked to the stem cell phenotype, and we report is also markedly suppressed in maturing cells along the crypt-luminal axis in vivo. Mybl2 is not significantly downregulated transcriptionally during colon cell maturation, but we identified a potential micro-RNA (miRNA)-binding sequence in the Mybl2 3'-untranslated region that mediates reporter gene suppression in differentiating colon cells. Accordingly, miRNAs predicted to bind this functional target are upregulated in differentiating colon epithelial cells in vitro and in vivo; expression of one of these, hsa-miR-365 (but not hsa-324-5p), suppresses Mybl2 protein expression in proliferating Caco-2 cells. These data demonstrate that miRNA silencing plays an important role in regulating gene expression in maturing colon epithelial cells, and that utilizing a target-centered approach, rather than profiling global miRNA expression, can identify physiologically relevant, functional miRNAs.
Collapse
Affiliation(s)
- Michael Papetti
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, USA.
| | | |
Collapse
|
36
|
Zhu R, Iacovino M, Mahen E, Kyba M, Matin A. Transcripts that associate with the RNA binding protein, DEAD-END (DND1), in embryonic stem (ES) cells. BMC Mol Biol 2011; 12:37. [PMID: 21851623 PMCID: PMC3167746 DOI: 10.1186/1471-2199-12-37] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/18/2011] [Indexed: 12/11/2022] Open
Abstract
Background The RNA binding protein, DEAD END (DND1), is essential for maintaining viable germ cells in vertebrates. It is also a testicular germ cell tumor susceptibility factor in mice. DND1 has been shown to interact with the 3'-untranslated region (3'-UTR) of mRNAs such as P27 and LATS2. Binding of DND1 to the 3'-UTRs of these transcripts blocks the inhibitory function of microRNAs (miRNA) from these transcripts and in this way DND1 helps maintain P27 and LATS2 protein expression. We found that DND1 is also expressed in embryonic stem (ES) cells. Because ES cells share similar gene expression patterns as germ cells, we utilized ES cells to identify additional candidate mRNAs that associate with DND1. Results ES cells are readily amenable to genetic modification and easier to culture in vitro compared to germ cells. Therefore, for the purpose of our study, we made a genetically modified, stable, human embryonic stem (hES) cell line that expresses hemagluttinin (HA)-tagged DND1 in a doxycycline (dox) regulatable manner. This line expresses modest levels of HA-DND1 and serves as a good system to study DND1 function in vitro. We used this stable cell line to identify the transcripts that physically interact with DND1. By performing ribonucleoprotein immunoprecipitation (RIP) followed by RT-PCR, we identified that transcripts encoding pluripotency factors (OCT4, SOX2, NANOG, LIN28), cell cycle regulators (TP53, LATS2) and apoptotic factors (BCLX, BAX) are specifically associated with the HA-DND1 ribonucleoprotein complex. Surprisingly, in many cases, bioinformatics analysis of the pulled-down transcripts did not reveal the presence of known DND1 interacting motifs. Conclusions Our results indicate that the inducible ES cell line system serves as a suitable in vitro system to identify the mRNA targets of DND1. The RIP-RT results hint at the broad spectrum of mRNA targets that interact with DND1 in ES cells. Based on what is known about DND1 function, our results suggest that DND1 may impose another level of translational regulation to modulate expression of critical factors in ES cells.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Cox JL, Mallanna SK, Ormsbee BD, Desler M, Wiebe MS, Rizzino A. Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells. J Cell Sci 2011; 124:2654-65. [PMID: 21750191 DOI: 10.1242/jcs.083238] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Self-renewal is a complex biological process necessary for maintaining the pluripotency of embryonic stem cells (ESCs). Recent studies have used global proteomic techniques to identify proteins that associate with the master regulators Oct4, Nanog and Sox2 in ESCs or in ESCs during the early stages of differentiation. Through an unbiased proteomic screen, Banf1 was identified as a Sox2-associated protein. Banf1 has been shown to be essential for worm and fly development but, until now, its role in mammalian development and ESCs has not been explored. In this study, we examined the effect of knocking down Banf1 on ESCs. We demonstrate that the knockdown of Banf1 promotes the differentiation of mouse ESCs and decreases the survival of both mouse and human ESCs. For mouse ESCs, we demonstrate that knocking down Banf1 promotes their differentiation into cells that exhibit markers primarily associated with mesoderm and trophectoderm. Interestingly, knockdown of Banf1 disrupts the survival of human ESCs without significantly reducing the expression levels of the master regulators Sox2, Oct4 and Nanog or inducing the expression of markers of differentiation. Furthermore, we determined that the knockdown of Banf1 alters the cell cycle distribution of both human and mouse ESCs by causing an uncharacteristic increase in the proportion of cells in the G2-M phase of the cell cycle.
Collapse
Affiliation(s)
- Jesse L Cox
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
38
|
Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011; 21:183-99. [PMID: 21640825 DOI: 10.1016/j.semcancer.2011.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
The cracks in the paradigm of oncogenic mutations and somatic evolution as driving force of tumorigenesis, lucidly exposed by the dynamic heterogeneity of "cancer stem cells" or the diffuse results of cancer genome sequencing projects, indicate the need for a more encompassing theory of cancer that reaches beyond the current proximate explanations based on individual genetic pathways. One such integrative concept, derived from first principles of the dynamics of gene regulatory networks, is that cancerous cell states are attractor states, just like normal cell types are. Here we extend the concept of cancer attractors to illuminate a more profound property of cancer initiation: its inherent inevitability in the light of metazoan evolution. Using Waddington's Epigenetic Landscape as a conceptual aid, for which we present a mathematical and evolutionary foundation, we propose that cancer is intrinsically linked to ontogenesis and phylogenesis. This explanatory rather than enumerating review uses a formal argumentation structure that is atypical in modern experimental biology but may hopefully offer a new coherent perspective to reconcile many conflicts between new findings and the old thinking in the categories of linear oncogenic pathways.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Alberta, Canada.
| |
Collapse
|
39
|
Amcheslavsky A, Ito N, Jiang J, Ip YT. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. ACTA ACUST UNITED AC 2011; 193:695-710. [PMID: 21555458 PMCID: PMC3166862 DOI: 10.1083/jcb.201103018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excessive cell growth in Drosophila intestinal stem cells lacking TSC blocks further cell division. Intestinal stem cells (ISCs) in the adult Drosophila melanogaster midgut can respond to damage and support repair. We demonstrate in this paper that the tuberous sclerosis complex (TSC) plays a critical role in balancing ISC growth and division. Previous studies have shown that imaginal disc cells that are mutant for TSC have increased rates of growth and division. However, we report in this paper that loss of TSC in the adult Drosophila midgut results in the formation of much larger ISCs that have halted cell division. These mutant ISCs expressed proper stem cell markers, did not differentiate, and had defects in multiple steps of the cell cycle. Slowing the growth by feeding rapamycin or reducing Myc was sufficient to rescue the division defect. The TSC mutant guts had a thinner epithelial structure than wild-type tissues, and the mutant flies were more susceptible to tissue damage. Therefore, we have uncovered a context-dependent phenotype of TSC mutants in adult ISCs, such that the excessive growth leads to inhibition of division.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Induced pluripotent stem cell (iPSC) technology is revolutionizing medical science, allowing the exploration of disease mechanisms and novel therapeutic molecular targets, and offering opportunities for drug discovery and proof-of-concept studies in drug development. This review focuses on the recent advancements in iPSC technology including disease modeling and control setting in its analytical paradigm. We describe how iPSC technology is integrated into existing paradigms of drug development and discuss the potential of iPSC technology in personalized medicine.
Collapse
|
41
|
Papetti M, Augenlicht LH. MYBL2, a link between proliferation and differentiation in maturing colon epithelial cells. J Cell Physiol 2011; 226:785-91. [PMID: 20857481 PMCID: PMC3012743 DOI: 10.1002/jcp.22399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple signals, controlling both proliferation and differentiation, must be integrated in the reprogramming of intestinal epithelial cells during maturation along the crypt-luminal axis. The v-myb family member Mybl2, a molecule implicated in the development and maintenance of the stem cell phenotype, has been suggested to play an important role in proliferation and differentiation of several cell types and is a gene we have found is commonly regulated in several systems of colon cell maturation both in vitro and in vivo. Here we show that siRNA silencing of Mybl2 in proliferating Caco-2 cells increases expression of the cell-cycle regulators cdk2, cyclin D2, and c-myc and decreases expression of cdc25B and cyclin B2 with a consequent 10% increase of cells in G2/M and a complementary 10% decrease in G1. Mybl2 occupies sequences upstream of transcriptional start sites of cyclin D2, c-myc, cyclin B2, and cdc25B and regulates reporter activity driven by upstream regions of cdk2, cyclin D2, and c-myc. These data suggest that Mybl2 plays a subtle but key role in linking specific aspects of cell-cycle progression with generation of signals for differentiation and may therefore be fundamental in commitment of intestinal epithelial cells to differentiation pathways during their maturation.
Collapse
Affiliation(s)
- Michael Papetti
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467, USA.
| | | |
Collapse
|
42
|
The function of e-cadherin in stem cell pluripotency and self-renewal. Genes (Basel) 2011; 2:229-59. [PMID: 24710147 PMCID: PMC3924836 DOI: 10.3390/genes2010229] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 11/25/2022] Open
Abstract
Embryonic stem (ES) and induced-pluripotent stem (iPS) cells can be grown indefinitely under appropriate conditions whilst retaining the ability to differentiate to cells representative of the three primary germ layers. Such cells have the potential to revolutionize medicine by offering treatment options for a wide range of diseases and disorders as well as providing a model system for elucidating mechanisms involved in development and disease. In recent years, evidence for the function of E-cadherin in regulating pluripotent and self-renewal signaling pathways in ES and iPS cells has emerged. In this review, we discuss the function of E-cadherin and its interacting partners in the context of development and disease. We then describe relevant literature highlighting the function of E-cadherin in establishing and maintaining pluripotent and self-renewal properties of ES and iPS cells. In addition, we present experimental data demonstrating that exposure of human ES cells to the E-cadherin neutralizing antibody SHE78.7 allows culture of these cells in the absence of FGF2-supplemented medium.
Collapse
|
43
|
Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
44
|
Genome-wide interrogation of Mammalian stem cell fate determinants by nested chromosome deletions. PLoS Genet 2010; 6:e1001241. [PMID: 21170304 PMCID: PMC3000362 DOI: 10.1371/journal.pgen.1001241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 11/05/2010] [Indexed: 01/26/2023] Open
Abstract
Understanding the function of important DNA elements in mammalian stem cell genomes would be enhanced by the availability of deletion collections in which segmental haploidies are precisely characterized. Using a modified Cre-loxP–based system, we now report the creation and characterization of a collection of ∼1,300 independent embryonic stem cell (ESC) clones enriched for nested chromosomal deletions. Mapping experiments indicate that this collection spans over 25% of the mouse genome with good representative coverage of protein-coding genes, regulatory RNAs, and other non-coding sequences. This collection of clones was screened for in vitro defects in differentiation of ESC into embryoid bodies (EB). Several putative novel haploinsufficient regions, critical for EB development, were identified. Functional characterization of one of these regions, through BAC complementation, identified the ribosomal gene Rps14 as a novel haploinsufficient determinant of embryoid body formation. This new library of chromosomal deletions in ESC (DelES: http://bioinfo.iric.ca/deles) will serve as a unique resource for elucidation of novel protein-coding and non-coding regulators of ESC activity. Stem cells have received considerable public attention in part because of their potential application in regenerative therapies. Stem cells can be operationally defined as cells that have the unique property to self-renew, as well as to generate more differentiated progeny (differentiation). However, much remains to be learned about the genes regulating stem cell differentiation and renewal, their relationship to each other, and the signaling pathways that control their expression and/or activity. In this paper, we present a new resource developed in our laboratory, called DelES, for chromosomal deletion in ES cells. By reinserting deleted DNA fragments in a set of ESC clones harboring nested chromosomal deletions, we identified the Rps14 gene as being haploinsufficient for embryoid body formation. We think that our library of more than 1,300 clones represents a new resource that should allow the identification of genes and other elements that are essential for stem cell activity.
Collapse
|
45
|
Abstract
Murine embryonic stem (ES) cells are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing is expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). Both isoforms can form homodimers and a heterodimer with each other, and each can interact with Nanog. By genomewide location analysis, we determined that Sall4a and Sall4b have overlapping, but not identical binding sites within the ES cell genome. In addition, Sall4b, but not Sall4a, binds preferentially to highly expressed loci in ES cells. Sall4a and Sall4b binding sites are distinguished by both epigenetic marks at target loci and their clustering with binding sites of other pluripotency factors. When ES cells expressing a single isoform of Sall4 are generated, Sall4b alone could maintain the pluripotent state, although it could not completely suppress all differentiation markers. Sall4a and Sall4b collaborate in maintenance of the pluripotent state but play distinct roles. Our work is novel in establishing such isoform-specific differences in ES cells.
Collapse
|
46
|
Lee S, Jung JW, Park SB, Roh K, Lee SY, Kim JH, Kang SK, Kang KS. Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 2010; 68:325-36. [PMID: 20652617 PMCID: PMC3016490 DOI: 10.1007/s00018-010-0457-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/01/2010] [Accepted: 07/05/2010] [Indexed: 12/31/2022]
Abstract
Cellular senescence involves a reduction in adult stem cell self-renewal, and epigenetic regulation of gene expression is one of the main underlying mechanisms. Here, we observed that the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) caused by inhibition of histone deacetylase (HDAC) activity leads to down-regulation of high mobility group A2 (HMGA2) and, on the contrary, to up-regulation of p16INK4A, p21CIP1/WAF1 and p27KIP1. We found that let-7a1, let-7d, let-7f1, miR-23a, miR-26a and miR-30a were increased during replicative and HDAC inhibitor-mediated senescence of hUCB-MSCs by microRNA microarray and real-time quantitative PCR. Furthermore, the configurations of chromatins beading on these miRNAs were prone to transcriptional activation during HDAC inhibitor-mediated senescence. We confirmed that miR-23a, miR-26a and miR-30a inhibit HMGA2 to accelerate the progress of senescence. These findings suggest that HDACs may play important roles in cellular senescence by regulating the expression of miRNAs that target HMGA2 through histone modification.
Collapse
Affiliation(s)
- Seunghee Lee
- Adult Stem Cell Research Center, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Boheler KR. Pluripotency of human embryonic and induced pluripotent stem cells for cardiac and vascular regeneration. Thromb Haemost 2010; 104:23-9. [PMID: 20458433 PMCID: PMC5918288 DOI: 10.1160/th09-07-0507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/31/2009] [Indexed: 01/11/2023]
Abstract
Cardiac and vascular abnormalities and disease syndromes are major causes of death both during human development and with aging. To identify the cause of congenital defects and to combat this epidemic in the aging population, new models must be created for scientific investigation and new therapies must be developed. Recent advances in pluripotent stem cell biology offer renewed hope for tackling these problems. Of particular importance has been the creation of induced pluripotent (iPS) cells from adult tissues and organs through the forced expression of two to four transcription factors. Moreover, iPS cells, which are phenotypically indistinguishable from embryonic stem (ES) cells, can be generated from any patient. This unique capacity when coupled with samples from patients who have congenital and genetic defects of unknown aetiology should permit the creation of new model systems that foment scientific investigation. Moreover, creation of patient-specific cells should overcome many of the immunological limitations that currently impede therapeutic applications associated with other pluripotent stem cells and their derivatives.The aims of this paper will be to discuss cardiac and vascular diseases and show how iPS cells may be employed to overcome some of the most significant scientific and clinical hurdles facing this field.
Collapse
Affiliation(s)
- Kenneth R Boheler
- Laboratory of Cardiovascular Sciences, Gerontology Research Center, National Institute on Aging/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
48
|
Abstract
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
Collapse
|
49
|
Massé J, Laurent A, Nicol B, Guerrier D, Pellerin I, Deschamps S. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells. Exp Cell Res 2010; 316:1190-201. [DOI: 10.1016/j.yexcr.2010.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/27/2023]
|
50
|
Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol 2010; 22:334-41. [PMID: 20226651 DOI: 10.1016/j.ceb.2010.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 12/23/2022]
Abstract
In search of the mechanisms that govern pluripotency and embryonic stem cell (ESC) self-renewal, a growing list of evidence highlights chromatin as a leading factor, controlling ESC maintenance and differentiation. In-depth investigation of chromatin in ESCs revealed distinct features, including DNA methylation, histone modifications, chromatin protein composition and nuclear architecture. Here we review recent literature describing different aspects of chromatin and genome organization in ESCs. The emerging theme seems to support a mechanism maintaining chromatin plasticity in ESCs but without any dramatic changes in the organization and nuclear positioning of chromosomes and gene loci themselves. Plasticity thus seems to be supported more by different mechanisms maintaining an open chromatin state and less by regulating the location of genomic regions.
Collapse
|