Copyright
©The Author(s) 2025.
World J Gastroenterol. Jun 7, 2025; 31(21): 106808
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.106808
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.106808
Table 1 Machine learning approaches for preoperative risk stratification in intrahepatic cholangiocarcinoma
ML-driven approach | Description |
Radiomics-based ML models | Extract imaging features from magnetic resonance or CT scans to predict tumor aggressiveness and microvascular invasion |
Multiparametric clinical models | Integrate laboratory values, liver function scores, and tumor markers to assess perioperative risk |
Hybrid AI models | Combine genomic, histopathological, and radiomic data to refine survival predictions and guide personalized treatment strategies |
- Citation: Morales-Galicia AE, Rincón-Sánchez MN, Ramírez-Mejía MM, Méndez-Sánchez N. Outcome prediction for cholangiocarcinoma prognosis: Embracing the machine learning era. World J Gastroenterol 2025; 31(21): 106808
- URL: https://www.wjgnet.com/1007-9327/full/v31/i21/106808.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i21.106808