Letter to the Editor
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jun 7, 2025; 31(21): 106808
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.106808
Table 1 Machine learning approaches for preoperative risk stratification in intrahepatic cholangiocarcinoma
ML-driven approach
Description
Radiomics-based ML modelsExtract imaging features from magnetic resonance or CT scans to predict tumor aggressiveness and microvascular invasion
Multiparametric clinical modelsIntegrate laboratory values, liver function scores, and tumor markers to assess perioperative risk
Hybrid AI modelsCombine genomic, histopathological, and radiomic data to refine survival predictions and guide personalized treatment strategies