Copyright ©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Sep 21, 2016; 22(35): 7951-7962
Published online Sep 21, 2016. doi: 10.3748/wjg.v22.i35.7951
Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer
Kelly Cristina da Silva Oliveira, Taíssa Maíra Thomaz Araújo, Camila Inagaki Albuquerque, Gabriela Alcantara Barata, Carolina Oliveira Gigek, Mariana Ferreira Leal, Fernanda Wisnieski, Fernando Augusto Rodrigues Mello Junior, André Salim Khayat, Paulo Pimentel de Assumpção, Rommel Mário Rodriguez Burbano, Marília Cardoso Smith, Danielle Queiroz Calcagno
Kelly Cristina da Silva Oliveira, Taíssa Maíra Thomaz Araújo, Camila Inagaki Albuquerque, Gabriela Alcantara Barata, Fernando Augusto Rodrigues Mello Junior, André Salim Khayat, Paulo Pimentel de Assumpção, Danielle Queiroz Calcagno, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, PA 66073-000, Brazil
Carolina Oliveira Gigek, Mariana Ferreira Leal, Fernanda Wisnieski, Marília Cardoso Smith, Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
Rommel Mário Rodriguez Burbano, Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66073-000, Brazil
Author contributions: da Silva Oliveira KC and Calcagno DQ performed the review design; da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI and Calcagno DQ collected the data; Thomaz Araújo TM, Albuquerque CI, Barata GA, Rodrigues Mello Junior FA and Calcagno DQ wrote the paper; Gigek CO performed corrections and suggestions; de Assumpção PP, Rodriguez Burbano RM and Smith MC revised the paper critically; all the authors contributed to this manuscript.
Supported by Fundação de Amparo à Pesquisa do Estado de São Paulo; the Conselho Nacional de Desenvolvimento Científico e Tecnológico; and the Coordenação de Aperfeiçooamento de Pessoal de Nível Superior.
Conflict-of-interest statement: Authors declare no conflict of interests for this article.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Correspondence to: Danielle Queiroz Calcagno, PhD, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, 2º Piso da UNACON, Av. Mundurucus, Belém, PA 66073-000, Brazil.
Telephone: +55-91-32016776
Received: March 12, 2016
Peer-review started: March 12, 2016
First decision: April 14, 2016
Revised: June 14, 2016
Accepted: August 1, 2016
Article in press: August 1, 2016
Published online: September 21, 2016


Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.

Key Words: Gastric cancer, Epigenetic, Diagnostic biomarkers, miRNAs, Prognostic biomarkers

Core tip: Accumulating evidence indicates that dysregulated miRNAs play important roles in gastric cancer pathogenesis. In this context, we provide an overview of the role of miRNAs, pointing to their potential to be used as diagnostic and prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.


Gastric cancer (GC) is the fifth most frequent cancer, besides being the third leading cause of cancer-related death worldwide[1]. According to Laurén, GC is classified into intestinal and diffuse types[2], which are a consequence of an accumulation of genetic and epigenetic modifications[3].

Epigenetic events refer to alterations that promote gene expression variation without changing the DNA sequence yet leading to transcriptional activation or silencing of the gene[4].

Epigenetic alterations, mainly aberrant DNA methylation, histone modifications and microRNA (miRNA) expression play a central role in many diseases, including GC[5-7].

miRNAs are a class of small non-coding RNAs (19–25 nucleotides) that act as important epigenetic players in many cellular processes, such as differentiation, proliferation and apoptosis, exerting a great influence in cancer pathogenesis[8,9].

In general, miRNA genes are located in intergenic regions, suggesting that most miRNA genes are transcribed as autonomous transcription units[10]. Moreover, these molecules are usually transcribed by RNA polymerase II, generating long primary transcripts (pri-miRNAs). The pri-miRNAs are processed to pre-miRNAs (70 nucleotides) by Drosha. Then, these pre-miRNAs are processed by Dicer and generate a double-stranded RNA, which includes the mature miRNA[8].

The mature miRNAs repress protein translation through binding to the target protein-coding mRNAs by base-pairing to partially complementary regions frequently located at the 3’-untranslated regions (3’-UTR) of the target transcript[8,11-13].

A large number of miRNAs with different biological functions have been found altered in correlation with clinico-pathological features and/or prognosis in GC[5,7]. Ribeiro-dos-Santos et al[14] and Moreira et al[15] suggested the existence of gastric tissue and organ miRNA expression signatures. Accordingly, Gomes et al[16] observed a specific expression signature of let-7b, miR-21, miR-29c, miR-31, miR-192, miR-141, miR-148c and miR-451 in GC.

In this review, we describe the role and clinical significance of miRNAs, highlighting their use as potential prognostic and/or diagnostic biomarkers in GC. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.


In cancer, miRNAs can function as oncogenes and/or tumour suppressor genes depending on the outcome of the target mRNA (oncomiRNA or tsmiRNA, respectively). Increased activity of an oncomiRNA leads to inhibition of apoptosis and cell proliferation. In contrast, decreased activity of a tsmiRNA leads to increased tumour formation[17].

Because in vitro and in vivo introduction of tsmiRNAs promotes antitumoural activity by restoring lost tumour suppressor activity[18,19] and the use of antagomirs inhibits the pro-tumourigenic activity of oncomiRNAs[20], improved understanding of miRNAs’ role in cancer could be helpful for providing novel insights into the role of miRNAs as molecular targets, whose modulation might hold therapeutic promise.

Both the overexpression of oncomiRNAs and the decreased expression of tsmiRNAs play pivotal roles in GC, and many studies in the literature have identified a large number of upregulated and downregulated miRNAs and their potential targets in this type of cancer. Therefore, aberrant expression of miRNAs has been significantly related to clinico-pathological features such as tumour stage, size, differentiation, metastasis and H. pylori status (Table 1)[21-118].

Table 1 Deregulated miRNA in gastric cancer tumor.
miRNA/roleTargetsClinicopathological featuresRef.
miR-17UBE2CTumor size[21-24]
FBXO31Tumor infiltration
Clinical grade
Tumor stage
Multidrug resistance
miR-20aEGR2Overall survival[29-31]
E2F1Relapse-free survival
Self-renewal and proliferation of GC stem cells
Chemoresistance of GC cells to cisplatin and docetaxel
PDCD4Lymph node metastasis
RECKH. pylori infection
SERPINI1Tumor stage
Tumor size
Aggressive phenotype
Poor long-term survival
miR-27aPHBH. pylori infection[42-44]
HOXA10Drug resistance
FASDistant metastasis
RUNX3Lymph node metastasis
Tumor stage
Tumor size
miR-106bP21Lymph node metastasis[29,46,51-54]
E2F5Depth of infiltration
ZEB2Poor overall survival
SUZ12H. pylori infection
DNMT3BTumor size
miR-215RB1Tumor stage[59-61]
miR-222PTENShorter metastasis-free survival[38,62-65]
CDKN1Lymph node metastasis
SPHK2Cell cicle arrest
FN1Growth suppression
Overall survival
Relapse-free survival
Haematogenous metastasis
Lymph node metastasis
Tumor stage
miR-148aROCK1Clinical stage[76-80]
MMP7Lymph node metastasis
p27Poor clinical outcome
DNMT1Epithelial-mesenchymal transition
miR-200cRND3Lymph node metastasis[56,57,81,82]
DNMT3APoor overall survival
DNMT3BSensitivity of chemotherapy to cisplatin
SP1Clinical stage
miR-204SIRT1Epithelial-mesenchymal transition[83-85]
BCL-2Anoikis resistance
Colony forming ability
miR-433RAB34Tumor stage[90-92]
KRASOverall survival
CDK6Lymph node metastasis
Tumor size
Tumor stage
Overall survival
miR-146aEGFRTumor size[101-106]
IRAK1Poor differentiation
CARD1OLymph node metastasis
COPS8Venous invasion
NASF2Overall survival time
CDC73Lymph node metastasis
CYCLIN D1H. pylori infection
Cell viability
Colony formation
Multidrug resistance
miR-223EPB4IL3Poor metastasis-free survival[116-118]
HMGA2Poor clinical prognosis

In GC, studies have consistently reported that miR-106a has oncogenic activity through suppressing the expression of TIMP2, PTEN, FAS and RUNX3 genes[45-50]. Zhu et al[50] demonstrated that miR-106a is frequently upregulated in human GC and is closely associated with local tumour invasion and distant spreading by directly regulating its functional target TIMP2, a metastasis associated gene. Similarly, Xiao et al[45] stated that the level of miR-106a in GC tissues was significantly higher than that in non-tumour tissues, with an average increase of 1.625-fold and was significantly associated with tumour stage, size and differentiation, lymphatic and distant metastasis and invasion.

On the other hand, let-7a is one of the most important tsmiRNAs involved in gastric carcinogenesis, and studies in the literature have reported RAB40C, CDKN1, SPHK2 and FN1 as its targets[66-71]. Yang et al[68] demonstrated that GC tumour and cell lines with lower expression of let-7a tended to have poor differentiation. Furthermore, they demonstrated that induced overexpression of let-7a resulted in a decrease in cell proliferation, G1 arrest and significant suppression of anchorage-dependent growth in vitro and tumourigenicity of GC cells in a nude mouse xenograft model.

Several studies have reported on miRNAs with a controversial role in gastric carcinogenesis such as miR-107 and mir-181b. For example, Guo et al[114] stated that the proliferation, migration and invasion of GC cells significantly increased after miR-181b transfection, probably due to downregulation of protein levels of TIMP3. Conversely, Chen et al[115] showed that miR-181b is downregulated in human GC cell lines in comparison with gastric epithelial cells. They observed that overexpression of miR-181b suppressed the proliferation and colony formation rate of GC cells, suggesting that miR-181b may function as a tumour suppressor in gastric adenocarcinoma cells through negatively regulating the CREB1 gene.

The dual role of this and other miRNAs could be explained by the fact that a single miRNA is capable of targeting multiple genes, repressing the production of hundreds of proteins, directly or indirectly. Additionally, each gene can be regulated by multiple miRNAs, so the final effect will depend on these complex interactions[119,120].

Because miRNAs have thousands of predict targets in a complex regulatory cell signalling network, it is important to study multiple target genes simultaneously. Thus, a research group at Federal University of Pará (UFPA) developed the web tool TargetCompare ( to analyse multiple gene targets of pre-selected miRNAs. The described tool is useful for reducing arbitrariness and increasing the chances of selecting target genes having an important role in the analysis[121].


In cancer, it has been shown that primary tumour cells can release specific cancer miRNAs into the tumour microenvironment as well as into the circulation[122,123]. In recent years, studies have reported that miRNAs detectable in plasma or serum are more stable among individuals of the same species in comparison with other circulating nucleic acids[124].

This finding could be explained by the fact that circulating miRNAs exhibit resistance to endogenous ribonuclease activity by binding certain proteins such as Argonaute2 and high-density lipoproteins, besides being packaged in secretory particles including apoptotic bodies and exosomes, which allow them to be protected from existing ribonucleases[125-127]. Thus, it is plausible to use circulating miRNAs as biomarkers for early detection of various diseases, including GC.

Several studies have described circulating miRNAs as reproducible and reliable potential biomarkers as well as therapeutic targets in GC (Table 2)[128-137]. Tsujiura et al[130] suggested that miR-18a, which is a component of the miR-17-92 cluster, could be considered a novel plasma biomarker in GC patients. In addition to observing that the plasma miR-18a concentrations were significantly higher in GC patients than in healthy controls, they also stated that the plasma miR-18a levels were significantly reduced in postoperative samples compared to preoperative samples.

Table 2 Circulating miRNA as diagnostic and prognostic biomarkers.
miRNASamplesPotential biomarker typeMethodClinical implicationRef.
miR-1164 GC/127 C SerumDiagnosticSolexa sequencingGC detection[128]
miR-1640 GNCA/40 C PlasmaDiagnosticTaqman low-density arrayEarly detection of GNCA[122]
miR-17-5p79 GC/30 C PlasmaDiagnosticqRT-PCRGC detection[46]
79 pre-operative GC/30 post-operative GC/6 relapse PlasmaPrognosticqRT-PCRPrediction of prognosis and monitoring of chemotherapeutic effects[129]
miR-18a104 GC/65 C PlasmaDiagnosticqRT-PCRScreening GC and monitoring tumor dynamics[130]
miR-20a164 GC/127 C SerumDiagnosticSolexa sequencingGC detection[128]
90 GC/90 C PlasmaDiagnosticqRT-PCREarly detection of GC[131]
79 pre-operative GC/30 post-operative GC/6 relapse PlasmaPrognosticqRT-PCRPrediction of prognosis and monitoring of chemotherapeutic effects[129]
miR-2169 GC PlasmaPrognosticqRT-PCRPrognostic marker[132]
16 LN-metastasis positive/15 LN-metastasis negative/10 C SerumPrognosticqRT-PCRPredicting LN metastasis[133]
79 GC/30 C PlasmaDiagnosticqRT-PCRGC detection[46]
70 GC/70 C PlasmaDiagnosticqRT-PCRGC detection[134]
miR-2540 GNCA/40 C PlasmaDiagnosticTaqman low-density arrayEarly detection of GNCA[122]
miR-34164 GC/127 C SerumDiagnosticSolexa sequencingGC detection[128]
miR-92a40 GNCA/40 C PlasmaDiagnosticTaqman low-density arrayEarly detection of GNCA[122]
miR-106a79 GC/30 C PlasmaDiagnosticqRT-PCRGC detection[46]
miR-106b79 GC/30 C PlasmaDiagnosticqRT-PCRGC detection[46]
90 GC/90 C PlasmaDiagnosticqRT-PCREarly detection of GC[131]
miR-19157 GC/58 C SerumDiagnosticqRT-PCRGC detection[135]
miR-21870 GC/70 C PlasmaDiagnosticqRT-PCRGC detection[134]
miR-22190 GC/90 C PlasmaDiagnosticqRT-PCREarly detection of GC[131]
miR-22370GC/70C PlasmaDiagnosticqRT-PCRGC detection[134]
miR-37861GC/61C SerumDiagnosticmiRNA microarrayEarly detection of GC[136]
miR-423-5p164GC/127C SerumDiagnosticSolexa sequencingGC detection[128]
miR-45156GC/30C PlasmaDiagnosticmiRNA microarrayScreening GC[137]
40GNCA/40C PlasmaDiagnosticTaqman low-density arrayEarly detection of GNCA[122]
miR-48656GC/30C PlasmaDiagnosticmiRNA microarrayGC Screening[137]
miR-486-5p40GNCA/40C PlasmaDiagnosticTaqman low-density arrayEarly detection of GNCA[122]
let-7a79GC/30C PlasmaDiagnosticqRT-PCRGC detection[46]

Recently, Wang et al[138] assessed the diagnostic performance of circulating miRNAs for the detection of gastrointestinal cancer in a meta-analysis including 21 GC studies. The majority of the GC studies were of Asian ethnicity, and the most frequent miRNAs found in plasma or serum were miR-106b and miR-21. In Caucasian patients with GC, they described miR-203, miR-146b-5p, miR-192 and miR-200c as potential biomarkers in plasma. However, many of these biomarkers have been tested in very restricted parameters and are highly influenced by ethnic and environmental factors, thus making it even more difficult to find specific biomarkers for GC.


Many molecular mechanisms lead to miRNA deregulation such as genetic mutation and epigenetic aberration. Approximately half of miRNA genes are located next to CpG islands, and the expression of these miRNAs is regulated by alterations in DNA methylation and histone modification[139-143].

DNA methylation is involved in silencing expression of tumour suppressor genes by establishing and maintaining a repressive status at gene promoters[5-7,144]. The basic transcription mechanism of miRNAs is fundamentally similar to that of classical protein-coding genes, and aberrant DNA hypermethylation has been shown to silence tsmiRNAs in cancer.

Many miRNAs have been reported to be downregulated due to hypermethylation of the CpG islands in GC, such as miR-9, miR-34b/c, miR-129, miR-137, miR-181c, miR-199a, miR-212, miR-338, miR-512, miR-516, miR-941 and miR-1247[142,143,145-150].

Several studies have shown that the miRNA methylation level was positively associated with the clinico-pathological features of GC[147]. Low expression levels of miR-34b and miR-129-3p are associated with a poor clinical outcome in GC patients, and hypermethylation of miR-129-2 and miR-34b CpG islands tends to correlate with poor clinico-pathological features[148].

miRNAs can also be decontrolled as a consequence of aberrant expression of specific epigenetic regulators such as polycomb repressor complexes and histone deacetylases (HDACs). Wisnieski et al[151] demonstrated HDAC1 downregulation in gastric tumours compared with adjacent non-tumour samples. According to Scott et al[152], inhibition of HDACs results in transcriptional changes in approximately 40% of miRNAs expressed in a breast cancer cell line (SKBr3).

In 2009, Saito et al[153] analysed the miRNA expression profile in human GC cells treated with 5-aza-2′-deoxycytidine (5-Aza-CdR) and 4-phenylbutyric acid (PBA), and they suggested that chromatin remodelling at Alu repeats by DNA demethylation and HDAC inhibition can induce expression of silenced miR-512-5p. Moreover, activation of miR-512-5p can lead to suppression of Mcl-1, resulting in apoptosis of gastric cancer cells. Thus, epigenetic treatment, by using synthetic miRNAs, can serve as an “endogenous silencer” of target oncogenes in GC cells, blocking their activity as tumour enhancers.


Single-nucleotide polymorphisms (SNPs) in miRNA have also been associated with alteration of GC susceptibility and modification of target gene expression. However, the role of these genetic variants in GC susceptibility remains essentially unidentified[7]. Table 3[154-171] summarizes described SNPs in miRNA in GC.

Table 3 miRNA related to the risk of gastric cancer.
miRNASNPCountryPopulationNumber of cases/controlsRef.
rs11671784ChinaAsian892 /978[156]
South KoreaAsian461/447[160]
South KoreaAsian461/447[160]
South KoreaAsian461/447[160]
South KoreaAsian461/447[160]

One of the most described miRNA SNPs associated with elevated risk in GC is SNP rs2910164 of miR-146a. Ahn et al[160] demonstrated that the C/G polymorphism in miR-146a decreases miR-146a expression and subsequently leads to reduced regulation of the target genes TRAF6, IRAK1 and PTC1 by the C allele. Moreover, some studies reported that miR-146a rs2910164 also affects susceptibility to gastric lesions. Song et al[172] found that the G/C polymorphism in miR-146a rs2910164 may play a role in the evolution of H. pylori-associated gastric lesions. Thus, SNP rs2910164 may be used as a genetic biomarker to predict GC risk.

SNPs in pri-miRNAs and pre-miRNAs could affect the maturation process and function of the miRNA, which may affect the expression of many proteins in the interaction pathway. Recently, Xu et al[171] found that upregulation of pri-let-7a-2 expression by the rs629367 C/C genotype was associated with increased risk and low survival in GC, probably by affecting the expression of mature let-7a.

The binding capacity of a miRNA with its target can be modified by SNPs affecting the miRNA TAG sequence. Additionally, a SNP in an mRNA sequence could influence the complementarity between the miRNA and the target mRNA. This could result in alteration of susceptibility to tumorigenesis. Wang et al[167] described that a SNP in the PDL1 (rs4143815) could affect its protein expression by interfering with miR-570 negative regulation. Furthermore, this SNP was significantly related to the risk of GC and depth of tumour infiltration, differentiation grade, lymph node metastasis, tumour size and staging.

Hence, SNP data could be useful to improve our understanding of the contribution of individual susceptibility to GC pathogenesis.


Accumulating evidence indicates that the dysregulation of miRNAs plays important roles in GC pathogenesis. In this context, miRNA expression profiles have been shown to correlate with GC development, progression and response to therapy[173,174], suggesting their possible use as diagnostic, prognostic and predictive biomarkers.

Moreover, miRNA-based anticancer therapies have recently been explored, either alone or in combination with current targeted therapies[175,176]. However, a big challenge in using miRNAs in cancer therapeutics is the considerable number of genes that a single miRNA can target, leading to a pleiotropic effect that may limit their manipulation at the systemic level. Nevertheless, the increasing capability of producing synthetic interfering miRNAs with higher affinity to the desired target is minimizing this barrier.

Thus, the strategy of using miRNAs for targeted therapy in the near future is probably over-optimistic, considering that the studies of miRNA-based therapeutics are still premature; however, the number of discoveries, increasing so fast in the past few years, is surely extremely promising.


Manuscript source: Unsolicited manuscript

Specialty type: Gastroenterology and hepatology

Country of origin: Brazil

Peer-review report classification

Grade A (Excellent): 0

Grade B (Very good): 0

Grade C (Good): C

Grade D (Fair): 0

Grade E (Poor): 0

P- Reviewer: Umemura A S- Editor: Qi Y L- Editor: A E- Editor: Wang CH

1.  Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 2014;50:1330-1344.  [PubMed]  [DOI]
2.  LAUREN P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31-49.  [PubMed]  [DOI]
3.  Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643-655.  [PubMed]  [DOI]
4.  Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27-36.  [PubMed]  [DOI]
5.  Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer. Epigenomics. 2012;4:279-294.  [PubMed]  [DOI]
6.  Calcagno DQ, Gigek CO, Chen ES, Burbano RR, Smith Mde A. DNA and histone methylation in gastric carcinogenesis. World J Gastroenterol. 2013;19:1182-1192.  [PubMed]  [DOI]
7.  Calcagno DQ, de Arruda Cardoso Smith M, Burbano RR. Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol. 2015;1238:79-101.  [PubMed]  [DOI]
8.  Malumbres M. miRNAs and cancer: an epigenetics view. Mol Aspects Med. 2013;34:863-874.  [PubMed]  [DOI]
9.  Tian SB, Yu JC, Kang WM, Ma ZQ, Ye X, Cao ZJ. [MicroRNA and gastric cancer]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2014;36:214-217.  [PubMed]  [DOI]
10.  Tong F, Cao P, Yin Y, Xia S, Lai R, Liu S. MicroRNAs in gastric cancer: from benchtop to bedside. Dig Dis Sci. 2014;59:24-30.  [PubMed]  [DOI]
11.  Ambros V. The functions of animal microRNAs. Nature. 2004;431:350-355.  [PubMed]  [DOI]
12.  Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376-385.  [PubMed]  [DOI]
13.  Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell. 2011;43:892-903.  [PubMed]  [DOI]
14.  Ribeiro-dos-Santos Â, Khayat AS, Silva A, Alencar DO, Lobato J, Luz L, Pinheiro DG, Varuzza L, Assumpção M, Assumpção P, Santos S, Zanette DL, Silva WA, Burbano R, Darnet S. Ultra-deep sequencing reveals the microRNA expression pattern of the human stomach. PLoS One. 2010;5:e13205.  [PubMed]  [DOI]
15.  Moreira FC, Assumpção M, Hamoy IG, Darnet S, Burbano R, Khayat A, Gonçalves AN, Alencar DO, Cruz A, Magalhães L. MiRNA expression profile for the human gastric antrum region using ultra-deep sequencing. PLoS One. 2014;9:e92300.  [PubMed]  [DOI]
16.  Gomes LL, Moreira FC, Hamoy IG, Santos S, Assumpção P, Santana AL, Ribeiro-Dos-Santos A. Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM). Bioinformation. 2014;10:246-250.  [PubMed]  [DOI]
17.  Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett. 2009;285:116-126.  [PubMed]  [DOI]
18.  Tong AW, Nemunaitis J. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther. 2008;15:341-355.  [PubMed]  [DOI]
19.  Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005-1017.  [PubMed]  [DOI]
20.  Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685-689.  [PubMed]  [DOI]
21.  Zhang X, Kong Y, Xu X, Xing H, Zhang Y, Han F, Li W, Yang Q, Zeng J, Jia J. F-box protein FBXO31 is down-regulated in gastric cancer and negatively regulated by miR-17 and miR-20a. Oncotarget. 2014;5:6178-6190.  [PubMed]  [DOI]
22.  Zhang Y, Han T, Wei G, Wang Y. Inhibition of microRNA-17/20a suppresses cell proliferation in gastric cancer by modulating UBE2C expression. Oncol Rep. 2015;33:2529-2536.  [PubMed]  [DOI]
23.  Park D, Lee SC, Park JW, Cho SY, Kim HK. Overexpression of miR-17 in gastric cancer is correlated with proliferation-associated oncogene amplification. Pathol Int. 2014;64:309-314.  [PubMed]  [DOI]
24.  Chen S, Zhu J, Yu F, Tian Y, Ma S, Liu X. Combination of miRNA and RNA functions as potential biomarkers for gastric cancer. Tumour Biol. 2015;36:9909-9918.  [PubMed]  [DOI]
25.  Wu Q, Yang Z, An Y, Hu H, Yin J, Zhang P, Nie Y, Wu K, Shi Y, Fan D. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis. 2014;5:e1144.  [PubMed]  [DOI]
26.  Qin S, Ai F, Ji WF, Rao W, Zhang HC, Yao WJ. miR-19a promotes cell growth and tumorigenesis through targeting SOCS1 in gastric cancer. Asian Pac J Cancer Prev. 2013;14:835-840.  [PubMed]  [DOI]
27.  Wang F, Li T, Zhang B, Li H, Wu Q, Yang L, Nie Y, Wu K, Shi Y, Fan D. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun. 2013;434:688-694.  [PubMed]  [DOI]
28.  Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652-657.  [PubMed]  [DOI]
29.  Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, Xu J, Fang JY. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One. 2013;8:e73683.  [PubMed]  [DOI]
30.  Li X, Zhang Z, Yu M, Li L, Du G, Xiao W, Yang H. Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int J Mol Sci. 2013;14:16226-16239.  [PubMed]  [DOI]
31.  Wu Q, Yang Z, Wang F, Hu S, Yang L, Shi Y, Fan D. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J Cell Sci. 2013;126:4220-4229.  [PubMed]  [DOI]
32.  Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358-1366.  [PubMed]  [DOI]
33.  Motoyama K, Inoue H, Mimori K, Tanaka F, Kojima K, Uetake H, Sugihara K, Mori M. Clinicopathological and prognostic significance of PDCD4 and microRNA-21 in human gastric cancer. Int J Oncol. 2010;36:1089-1095.  [PubMed]  [DOI]
34.  Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 2012;27:1019-1026.  [PubMed]  [DOI]
35.  Yamanaka S, Olaru AV, An F, Luvsanjav D, Jin Z, Agarwal R, Tomuleasa C, Popescu I, Alexandrescu S, Dima S. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig Liver Dis. 2012;44:589-596.  [PubMed]  [DOI]
36.  Cao Z, Yoon JH, Nam SW, Lee JY, Park WS. PDCD4 expression inversely correlated with miR-21 levels in gastric cancers. J Cancer Res Clin Oncol. 2012;138:611-619.  [PubMed]  [DOI]
37.  Xu Y, Sun J, Xu J, Li Q, Guo Y, Zhang Q. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol Res Pract. 2012;2012:640168.  [PubMed]  [DOI]
38.  Kim BH, Hong SW, Kim A, Choi SH, Yoon SO. Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol. 2013;107:505-510.  [PubMed]  [DOI]
39.  Zhao H, Wang Y, Yang L, Jiang R, Li W. MiR-25 promotes gastric cancer cells growth and motility by targeting RECK. Mol Cell Biochem. 2014;385:207-213.  [PubMed]  [DOI]
40.  Gong J, Cui Z, Li L, Ma Q, Wang Q, Gao Y, Sun H. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour Biol. 2015;36:7831-7840.  [PubMed]  [DOI]
41.  Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2015;34:2556-2565.  [PubMed]  [DOI]
42.  Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009;273:233-242.  [PubMed]  [DOI]
43.  Sun Q, Gu H, Zeng Y, Xia Y, Wang Y, Jing Y, Yang L, Wang B. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci. 2010;101:2241-2247.  [PubMed]  [DOI]
44.  Zhao X, Yang L, Hu J. Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res. 2011;30:55.  [PubMed]  [DOI]
45.  Xiao B, Guo J, Miao Y, Jiang Z, Huan R, Zhang Y, Li D, Zhong J. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta. 2009;400:97-102.  [PubMed]  [DOI]
46.  Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, Konishi H, Morimura R, Deguchi K, Fujiwara H. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174-1179.  [PubMed]  [DOI]
47.  Fang Y, Shen H, Li H, Cao Y, Qin R, Long L, Zhu X, Xie C, Xu W. miR-106a confers cisplatin resistance by regulating PTEN/Akt pathway in gastric cancer cells. Acta Biochim Biophys Sin (Shanghai). 2013;45:963-972.  [PubMed]  [DOI]
48.  Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, Quan L, Bai J, Xu N. miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog. 2013;52:634-646.  [PubMed]  [DOI]
49.  Zhang Y, Lu Q, Cai X. MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 2013;587:3069-3075.  [PubMed]  [DOI]
50.  Zhu M, Zhang N, He S, Lui Y, Lu G, Zhao L. MicroRNA-106a targets TIMP2 to regulate invasion and metastasis of gastric cancer. FEBS Lett. 2014;588:600-607.  [PubMed]  [DOI]
51.  Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272-286.  [PubMed]  [DOI]
52.  Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37:1672-1681.  [PubMed]  [DOI]
53.  Tchernitsa O, Kasajima A, Schäfer R, Kuban RJ, Ungethüm U, Györffy B, Neumann U, Simon E, Weichert W, Ebert MP. Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol. 2010;222:310-319.  [PubMed]  [DOI]
54.  Yao YL, Wu XY, Wu JH, Gu T, Chen L, Gu JH, Liu Y, Zhang QH. Effects of microRNA-106 on proliferation of gastric cancer cell through regulating p21 and E2F5. Asian Pac J Cancer Prev. 2013;14:2839-2843.  [PubMed]  [DOI]
55.  Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, Kinoshita K, Saito S, Baba Y, Baba H. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol. 2012;19 Suppl 3:S656-S664.  [PubMed]  [DOI]
56.  Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, Wang T, Yu J, Zhao Y, Niu R. Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res. 2014;20:878-889.  [PubMed]  [DOI]
57.  Tang H, Deng M, Tang Y, Xie X, Guo J, Kong Y, Ye F, Su Q, Xie X. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression. Clin Cancer Res. 2013;19:5602-5612.  [PubMed]  [DOI]
58.  Tang H, Kong Y, Guo J, Tang Y, Xie X, Yang L, Su Q, Xie X. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Lett. 2013;340:72-81.  [PubMed]  [DOI]
59.  Deng Y, Huang Z, Xu Y, Jin J, Zhuo W, Zhang C, Zhang X, Shen M, Yan X, Wang L. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett. 2014;342:27-35.  [PubMed]  [DOI]
60.  Li N, Zhang QY, Zou JL, Li ZW, Tian TT, Dong B, Liu XJ, Ge S, Zhu Y, Gao J. miR-215 promotes malignant progression of gastric cancer by targeting RUNX1. Oncotarget. 2016;7:4817-4828.  [PubMed]  [DOI]
61.  Xu YJ, Fan Y. MiR-215/192 participates in gastric cancer progression. Clin Transl Oncol. 2015;17:34-40.  [PubMed]  [DOI]
62.  Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z, Chun-Sheng K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367.  [PubMed]  [DOI]
63.  Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S, Lu DS, Zou QM, Xiao B, Mao XH. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012;586:722-728.  [PubMed]  [DOI]
64.  Wang M, Zhao C, Shi H, Zhang B, Zhang L, Zhang X, Wang S, Wu X, Yang T, Huang F. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer. 2014;110:1199-1210.  [PubMed]  [DOI]
65.  Liu W, Song N, Yao H, Zhao L, Liu H, Li G. miR-221 and miR-222 Simultaneously Target RECK and Regulate Growth and Invasion of Gastric Cancer Cells. Med Sci Monit. 2015;21:2718-2725.  [PubMed]  [DOI]
66.  Zhu YM, Zhong ZX, Liu ZM. Relationship between let-7a and gastric mucosa cancerization and its significance. World J Gastroenterol. 2010;16:3325-3329.  [PubMed]  [DOI]
67.  Zhu Y, Zhong Z, Liu Z. Lentiviral vector-mediated upregulation of let-7a inhibits gastric carcinoma cell growth in vitro and in vivo. Scand J Gastroenterol. 2011;46:53-59.  [PubMed]  [DOI]
68.  Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F, Jiang Y. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis. 2011;32:713-722.  [PubMed]  [DOI]
69.  Li X, Luo F, Li Q, Xu M, Feng D, Zhang G, Wu W. Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol Rep. 2011;26:1431-1439.  [PubMed]  [DOI]
70.  Zhu Y, Xiao X, Dong L, Liu Z. Investigation and identification of let-7a related functional proteins in gastric carcinoma by proteomics. Anal Cell Pathol (Amst). 2012;35:285-295.  [PubMed]  [DOI]
71.  Golestaneh AF, Atashi A, Langroudi L, Shafiee A, Ghaemi N, Soleimani M. miRNAs expressed differently in cancer stem cells and cancer cells of human gastric cancer cell line MKN-45. Cell Biochem Funct. 2012;30:411-418.  [PubMed]  [DOI]
72.  Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology. 2009;77:12-21.  [PubMed]  [DOI]
73.  Wu WY, Xue XY, Chen ZJ, Han SL, Huang YP, Zhang LF, Zhu GB, Shen X. Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World J Gastroenterol. 2011;17:3645-3651.  [PubMed]  [DOI]
74.  Guo B, Li J, Liu L, Hou N, Chang D, Zhao L, Li Z, Song T, Huang C. Dysregulation of miRNAs and their potential as biomarkers for the diagnosis of gastric cancer. Biomed Rep. 2013;1:907-912.  [PubMed]  [DOI]
75.  Wu XL, Cheng B, Li PY, Huang HJ, Zhao Q, Dan ZL, Tian DA, Zhang P. MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol. 2013;19:7758-7765.  [PubMed]  [DOI]
76.  Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R, Liu L, Jia D, Tian Q, Wu J. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res. 2011;17:7574-7583.  [PubMed]  [DOI]
77.  Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N, Zarni Oo H, Yanagihara K, Aoyagi K, Sasaki H, Yasui W. MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis. Cancer Sci. 2014;105:236-243.  [PubMed]  [DOI]
78.  Wang SH, Li X, Zhou LS, Cao ZW, Shi C, Zhou CZ, Wen YG, Shen Y, Li JK. microRNA-148a suppresses human gastric cancer cell metastasis by reversing epithelial-to-mesenchymal transition. Tumour Biol. 2013;34:3705-3712.  [PubMed]  [DOI]
79.  Xia J, Guo X, Yan J, Deng K. The role of miR-148a in gastric cancer. J Cancer Res Clin Oncol. 2014;140:1451-1456.  [PubMed]  [DOI]
80.  Yan J, Guo X, Xia J, Shan T, Gu C, Liang Z, Zhao W, Jin S. MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. Med Oncol. 2014;31:879.  [PubMed]  [DOI]
81.  Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, Yang M, Qian XP, Yu LX, Jiang XQ. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials. 2013;34:7191-7203.  [PubMed]  [DOI]
82.  Chang L, Guo F, Wang Y, Lv Y, Huo B, Wang L, Liu W. MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol Oncol Res. 2014;20:93-98.  [PubMed]  [DOI]
83.  Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J, Ng EK, Yu J, Jin H. A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res. 2011;3:209-218.  [PubMed]  [DOI]
84.  Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L, Ercolani C, Di Agostino S, Cambria AM, Germoni S. miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis. 2012;3:e423.  [PubMed]  [DOI]
85.  Zhang L, Wang X, Chen P. MiR-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer. 2013;13:290.  [PubMed]  [DOI]
86.  Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010;6:e1000879.  [PubMed]  [DOI]
87.  Gao C, Zhang Z, Liu W, Xiao S, Gu W, Lu H. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer. 2010;116:41-49.  [PubMed]  [DOI]
88.  Gao CP, Zhang ZY, Cai GH, Liu WZ, Xiao SD, Lu H. [Reduced expression of miR-218 and its significance in gastric cancer]. Zhonghua Zhong Liu Za Zhi. 2010;32:249-252.  [PubMed]  [DOI]
89.  Gao C, Pang M, Zhou Z, Long S, Dong D, Yang J, Cao M, Zhang C, Han S, Li L. Epidermal growth factor receptor-coamplified and overexpressed protein (VOPP1) is a putative oncogene in gastric cancer. Clin Exp Med. 2015;15:469-475.  [PubMed]  [DOI]
90.  Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, Nie N, Liu B, Wu X. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res. 2009;28:82.  [PubMed]  [DOI]
91.  Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136-146.  [PubMed]  [DOI]
92.  Guo LH, Li H, Wang F, Yu J, He JS. The Tumor Suppressor Roles of miR-433 and miR-127 in Gastric Cancer. Int J Mol Sci. 2013;14:14171-14184.  [PubMed]  [DOI]
93.  Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 2010;9:16.  [PubMed]  [DOI]
94.  Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y. MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer. 2011;129:2611-2620.  [PubMed]  [DOI]
95.  Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One. 2013;8:e55719.  [PubMed]  [DOI]
96.  Deng J, Lei W, Xiang X, Zhang L, Lei J, Gong Y, Song M, Wang Y, Fang Z, Yu F. Cullin 4A (CUL4A), a direct target of miR-9 and miR-137, promotes gastric cancer proliferation and invasion by regulating the Hippo signaling pathway. Oncotarget. 2016;7:10037-10050.  [PubMed]  [DOI]
97.  Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y, Wang X, Zhao Q, Ding J, Wu K. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med. 2011;15:1887-1895.  [PubMed]  [DOI]
98.  Feng L, Xie Y, Zhang H, Wu Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol. 2012;29:856-863.  [PubMed]  [DOI]
99.  Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep. 2012;27:1759-1764.  [PubMed]  [DOI]
100.  Li F, Liu B, Gao Y, Liu Y, Xu Y, Tong W, Zhang A. Upregulation of microRNA-107 induces proliferation in human gastric cancer cells by targeting the transcription factor FOXO1. FEBS Lett. 2014;588:538-544.  [PubMed]  [DOI]
101.  Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17:4277-4284.  [PubMed]  [DOI]
102.  Hou Z, Xie L, Yu L, Qian X, Liu B. MicroRNA-146a is down-regulated in gastric cancer and regulates cell proliferation and apoptosis. Med Oncol. 2012;29:886-892.  [PubMed]  [DOI]
103.  Hou Z, Yin H, Chen C, Dai X, Li X, Liu B, Fang X. microRNA-146a targets the L1 cell adhesion molecule and suppresses the metastatic potential of gastric cancer. Mol Med Rep. 2012;6:501-506.  [PubMed]  [DOI]
104.  Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, Friis-Hansen L. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71.  [PubMed]  [DOI]
105.  Xiao B, Zhu ED, Li N, Lu DS, Li W, Li BS, Zhao YL, Mao XH, Guo G, Yu PW. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol Rep. 2012;27:559-566.  [PubMed]  [DOI]
106.  Yao Q, Cao Z, Tu C, Zhao Y, Liu H, Zhang S. MicroRNA-146a acts as a metastasis suppressor in gastric cancer by targeting WASF2. Cancer Lett. 2013;335:219-224.  [PubMed]  [DOI]
107.  Xiao B, Liu Z, Li BS, Tang B, Li W, Guo G, Shi Y, Wang F, Wu Y, Tong WD. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis. 2009;200:916-925.  [PubMed]  [DOI]
108.  Liu L, Chen Q, Lai R, Wu X, Wu X, Liu F, Xu G, Ji Y. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer. J Biomed Res. 2010;24:187-197.  [PubMed]  [DOI]
109.  Li CL, Nie H, Wang M, Su LP, Li JF, Yu YY, Yan M, Qu QL, Zhu ZG, Liu BY. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep. 2012;27:1960-1966.  [PubMed]  [DOI]
110.  Rather MI, Nagashri MN, Swamy SS, Gopinath KS, Kumar A. Oncogenic microRNA-155 down-regulates tumor suppressor CDC73 and promotes oral squamous cell carcinoma cell proliferation: implications for cancer therapeutics. J Biol Chem. 2013;288:608-618.  [PubMed]  [DOI]
111.  Ma Z, Ma Y, Xia Q, Li Y, Li R, Chang W, Chen J, Leng Z, Tao K. MicroRNA-155 expression inversely correlates with pathologic stage of gastric cancer and it inhibits gastric cancer cell growth by targeting cyclin D1. J Cancer Res Clin Oncol. 2016;142:1201-1212.  [PubMed]  [DOI]
112.  Zhu W, Shan X, Wang T, Shu Y, Liu P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 2010;127:2520-2529.  [PubMed]  [DOI]
113.  Jiang J, Zheng X, Xu X, Zhou Q, Yan H, Zhang X, Lu B, Wu C, Ju J. Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One. 2011;6:e23271.  [PubMed]  [DOI]
114.  Guo JX, Tao QS, Lou PR, Chen XC, Chen J, Yuan GB. miR-181b as a potential molecular target for anticancer therapy of gastric neoplasms. Asian Pac J Cancer Prev. 2012;13:2263-2267.  [PubMed]  [DOI]
115.  Chen L, Yang Q, Kong WQ, Liu T, Liu M, Li X, Tang H. MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas. IUBMB Life. 2012;64:628-635.  [PubMed]  [DOI]
116.  Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, Sun L, Ji G, Shi Y, Han Z. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011;9:824-833.  [PubMed]  [DOI]
117.  Kang W, Tong JH, Chan AW, Lung RW, Chau SL, Wong QW, Wong N, Yu J, Cheng AS, To KF. Stathmin1 plays oncogenic role and is a target of microRNA-223 in gastric cancer. PLoS One. 2012;7:e33919.  [PubMed]  [DOI]
118.  Li J, Guo Y, Liang X, Sun M, Wang G, De W, Wu W. MicroRNA-223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4. J Cancer Res Clin Oncol. 2012;138:763-774.  [PubMed]  [DOI]
119.  Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64-71.  [PubMed]  [DOI]
120.  Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58-63.  [PubMed]  [DOI]
121.  Moreira FC, Dustan B, Hamoy IG, Ribeiro-Dos-Santos AM, Dos Santos AR. TargetCompare: A web interface to compare simultaneous miRNAs targets. Bioinformation. 2014;10:602-605.  [PubMed]  [DOI]
122.  Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, Dai J, Ma H, Hu Z, Shen H. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110:2291-2299.  [PubMed]  [DOI]
123.  Schisterman EF, Vexler A. To pool or not to pool, from whether to when: applications of pooling to biospecimens subject to a limit of detection. Paediatr Perinat Epidemiol. 2008;22:486-496.  [PubMed]  [DOI]
124.  Redova M, Sana J, Slaby O. Circulating miRNAs as new blood-based biomarkers for solid cancers. Future Oncol. 2013;9:387-402.  [PubMed]  [DOI]
125.  Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003-5008.  [PubMed]  [DOI]
126.  Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423-433.  [PubMed]  [DOI]
127.  Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223-7233.  [PubMed]  [DOI]
128.  Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47:784-791.  [PubMed]  [DOI]
129.  Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L, Zhao C, Tao Y, Xu W. Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol Med Rep. 2012;5:1514-1520.  [PubMed]  [DOI]
130.  Tsujiura M, Komatsu S, Ichikawa D, Shiozaki A, Konishi H, Takeshita H, Moriumura R, Nagata H, Kawaguchi T, Hirajima S. Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer. 2015;18:271-279.  [PubMed]  [DOI]
131.  Cai H, Yuan Y, Hao YF, Guo TK, Wei X, Zhang YM. Plasma microRNAs serve as novel potential biomarkers for early detection of gastric cancer. Med Oncol. 2013;30:452.  [PubMed]  [DOI]
132.  Komatsu S, Ichikawa D, Tsujiura M, Konishi H, Takeshita H, Nagata H, Kawaguchi T, Hirajima S, Arita T, Shiozaki A. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013;33:271-276.  [PubMed]  [DOI]
133.  Kim SY, Jeon TY, Choi CI, Kim DH, Kim DH, Kim GH, Ryu DY, Lee BE, Kim HH. Validation of circulating miRNA biomarkers for predicting lymph node metastasis in gastric cancer. J Mol Diagn. 2013;15:661-669.  [PubMed]  [DOI]
134.  Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, Mao XH, Zou QM, Yu PW, Zuo QF. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 2012;7:e41629.  [PubMed]  [DOI]
135.  Peng WZ, Ma R, Wang F, Yu J, Liu ZB. Role of miR-191/425 cluster in tumorigenesis and diagnosis of gastric cancer. Int J Mol Sci. 2014;15:4031-4048.  [PubMed]  [DOI]
136.  Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, Ma Y, Xiao H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196-203.  [PubMed]  [DOI]
137.  Konishi H, Ichikawa D, Komatsu S, Shiozaki A, Tsujiura M, Takeshita H, Morimura R, Nagata H, Arita T, Kawaguchi T. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br J Cancer. 2012;106:740-747.  [PubMed]  [DOI]
138.  Wang R, Wen H, Xu Y, Chen Q, Luo Y, Lin Y, Luo Y, Xu A. Circulating microRNAs as a novel class of diagnostic biomarkers in gastrointestinal tumors detection: a meta-analysis based on 42 articles. PLoS One. 2014;9:e113401.  [PubMed]  [DOI]
139.  Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16 Spec No 1:R50-R59.  [PubMed]  [DOI]
140.  Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. 2007;6:1001-1005.  [PubMed]  [DOI]
141.  Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F, Garcia-Foncillas J. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125:2737-2743.  [PubMed]  [DOI]
142.  He DX, Gu XT, Jiang L, Jin J, Ma X. A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol Pharmacol. 2014;86:536-547.  [PubMed]  [DOI]
143.  He DX, Gu XT, Li YR, Jiang L, Jin J, Ma X. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNAc N-deacetylase/N-sulfotransferase-1 in human breast cancer. FEBS J. 2014;281:4718-4730.  [PubMed]  [DOI]
144.  do Nascimento Borges B, Burbano RM, Harada ML. Analysis of the methylation patterns of the p16 INK4A, p15 INK4B, and APC genes in gastric adenocarcinoma patients from a Brazilian population. Tumour Biol. 2013;34:2127-2133.  [PubMed]  [DOI]
145.  Kim JG, Kim TO, Bae JH, Shim JW, Kang MJ, Yang K, Ting AH, Yi JM. Epigenetically regulated MIR941 and MIR1247 target gastric cancer cell growth and migration. Epigenetics. 2014;9:1018-1030.  [PubMed]  [DOI]
146.  Shen R, Pan S, Qi S, Lin X, Cheng S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun. 2010;394:1047-1052.  [PubMed]  [DOI]
147.  Ma J, Hong L, Chen Z, Nie Y, Fan D. Epigenetic regulation of microRNAs in gastric cancer. Dig Dis Sci. 2014;59:716-723.  [PubMed]  [DOI]
148.  Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, Kao HW, Fang WL, Huang KH, Chan WC. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 2011;129:2600-2610.  [PubMed]  [DOI]
149.  Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, Ho MR, Lai CH, Kao HW, Fang WL. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics. 2011;6:1189-1197.  [PubMed]  [DOI]
150.  Steponaitiene R, Kupcinskas J, Langner C, Balaguer F, Venclauskas L, Pauzas H, Tamelis A, Skieceviciene J, Kupcinskas L, Malfertheiner P. Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. Mol Carcinog. 2016;55:376-386.  [PubMed]  [DOI]
151.  Wisnieski F, Calcagno DQ, Leal MF, Chen ES, Gigek CO, Santos LC, Pontes TB, Rasmussen LT, Payão SL, Assumpção PP. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol. 2014;35:6373-6381.  [PubMed]  [DOI]
152.  Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277-1281.  [PubMed]  [DOI]
153.  Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y, Hibi T. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene. 2009;28:2738-2744.  [PubMed]  [DOI]
154.  Zhou Y, Du WD, Chen G, Ruan J, Xu S, Zhou FS, Zuo XB, Lv ZJ, Zhang XJ. Association analysis of genetic variants in microRNA networks and gastric cancer risk in a Chinese Han population. J Cancer Res Clin Oncol. 2012;138:939-945.  [PubMed]  [DOI]
155.  Song B, Yan G, Hao H, Yang B. rs11671784 G/A and rs895819 A/G polymorphisms inversely affect gastric cancer susceptibility and miR-27a expression in a Chinese population. Med Sci Monit. 2014;20:2318-2326.  [PubMed]  [DOI]
156.  Yang Q, Jie Z, Ye S, Li Z, Han Z, Wu J, Yang C, Jiang Y. Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene. 2014;33:193-202.  [PubMed]  [DOI]
157.  Zeng Y, Sun QM, Liu NN, Dong GH, Chen J, Yang L, Wang B. Correlation between pre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World J Gastroenterol. 2010;16:3578-3583.  [PubMed]  [DOI]
158.  Hishida A, Matsuo K, Goto Y, Naito M, Wakai K, Tajima K, Hamajima N. Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. Dig Dis Sci. 2011;56:1131-1137.  [PubMed]  [DOI]
159.  Zhou F, Zhu H, Luo D, Wang M, Dong X, Hong Y, Lu B, Zhou Y, Zhou J, Zhang Z. A functional polymorphism in Pre-miR-146a is associated with susceptibility to gastric cancer in a Chinese population. DNA Cell Biol. 2012;31:1290-1295.  [PubMed]  [DOI]
160.  Ahn DH, Rah H, Choi YK, Jeon YJ, Min KT, Kwack K, Hong SP, Hwang SG, Kim NK. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog. 2013;52 Suppl 1:E39-E51.  [PubMed]  [DOI]
161.  Okubo M, Tahara T, Shibata T, Yamashita H, Nakamura M, Yoshioka D, Yonemura J, Ishizuka T, Arisawa T, Hirata I. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter. 2010;15:524-531.  [PubMed]  [DOI]
162.  Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci. 2010;55:2288-2293.  [PubMed]  [DOI]
163.  Dikeakos P, Theodoropoulos G, Rizos S, Tzanakis N, Zografos G, Gazouli M. Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. Mol Biol Rep. 2014;41:1075-1080.  [PubMed]  [DOI]
164.  Cai M, Zhang Y, Ma Y, Li W, Min P, Qiu J, Xu W, Zhang M, Li M, Li L. Association between microRNA-499 polymorphism and gastric cancer risk in Chinese population. Bull Cancer. 2015;102:973-978.  [PubMed]  [DOI]
165.  Zhang MW, Jin MJ, Yu YX, Zhang SC, Liu B, Jiang X, Pan YF, Li QI, Ma SY, Chen K. Associations of lifestyle-related factors, hsa-miR-149 and hsa-miR-605 gene polymorphisms with gastrointestinal cancer risk. Mol Carcinog. 2012;51 Suppl 1:E21-E31.  [PubMed]  [DOI]
166.  Yang P, Tang R, Zhu J, Zou L, Wu R, Zhou H, Mao Y, Li R, Hua D, Wang W. A functional variant at miR-24 binding site in B7-H2 alters susceptibility to gastric cancer in a Chinese Han population. Mol Immunol. 2013;56:98-103.  [PubMed]  [DOI]
167.  Wang W, Li F, Mao Y, Zhou H, Sun J, Li R, Liu C, Chen W, Hua D, Zhang X. A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet. 2013;132:641-648.  [PubMed]  [DOI]
168.  Li Y, Nie Y, Cao J, Tu S, Lin Y, Du Y, Li Y. G-A variant in miR-200c binding site of EFNA1 alters susceptibility to gastric cancer. Mol Carcinog. 2014;53:219-229.  [PubMed]  [DOI]
169.  Liu Y, Xu J, Jiang M, Ni L, Chen Y, Ling Y. Association between functional PSMD10 Rs111638916 variant regulated by MiR-505 and gastric cancer risk in a Chinese population. Cell Physiol Biochem. 2015;37:1010-1017.  [PubMed]  [DOI]
170.  Mu YP, Su XL. Polymorphism in pre-miR-30c contributes to gastric cancer risk in a Chinese population. Med Oncol. 2012;29:1723-1732.  [PubMed]  [DOI]
171.  Xu Q, Dong Q, He C, Liu W, Sun L, Liu J, Xing C, Li X, Wang B, Yuan Y. A new polymorphism biomarker rs629367 associated with increased risk and poor survival of gastric cancer in chinese by up-regulated miRNA-let-7a expression. PLoS One. 2014;9:e95249.  [PubMed]  [DOI]
172.  Song MY, Su HJ, Zhang L, Ma JL, Li JY, Pan KF, You WC. Genetic polymorphisms of miR-146a and miR-27a, H. pylori infection, and risk of gastric lesions in a Chinese population. PLoS One. 2013;8:e61250.  [PubMed]  [DOI]
173.  Tang GH, Tang M, Xie YJ. The Role of miRNAs in Gastric Cancer. J Gastroint Dig Syst. 2013;3:129.  [PubMed]  [DOI]
174.  Xu X, Yang X, Xing C, Zhang S, Cao J. miRNA: The nemesis of gastric cancer (Review). Oncol Lett. 2013;6:631-641.  [PubMed]  [DOI]
175.  Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O, Choi IJ, Munroe DJ, Green JE. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics. 2011;4:79.  [PubMed]  [DOI]
176.  Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143-159.  [PubMed]  [DOI]