Case Control Study
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Aug 7, 2022; 28(29): 3917-3933
Published online Aug 7, 2022. doi: 10.3748/wjg.v28.i29.3917
Comprehensive evaluation of microRNA as a biomarker for the diagnosis of hepatocellular carcinoma
Juliane Malik, Martin Klammer, Vinzent Rolny, Henry Lik-Yuen Chan, Teerha Piratvisuth, Tawesak Tanwandee, Satawat Thongsawat, Wattana Sukeepaisarnjaroen, Juan Ignacio Esteban, Marta Bes, Bruno Köhler, Magdalena Swiatek-de Lange
Juliane Malik, Martin Klammer, Vinzent Rolny, Magdalena Swiatek-de Lange, Roche Diagnostics GmbH, Penzberg 82377, Germany
Henry Lik-Yuen Chan, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
Teerha Piratvisuth, NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Hat Yai 90112, Thailand
Tawesak Tanwandee, Division of Gastroenterology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
Satawat Thongsawat, Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai 50200, Thailand
Wattana Sukeepaisarnjaroen, Faculty of Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen 40000, Thailand
Juan Ignacio Esteban, Liver Unit, Vall d’Hebron University Hospital, Barcelona 08035, Spain
Marta Bes, Transfusion Safety Laboratory, Banc de Sang i Teixits, Barcelona 08005, Spain
Bruno Köhler, Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg 69120, Germany
Bruno Köhler, Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg 69120, Germany
Author contributions: Swiatek-de Lange M provided study supervision; Malik J and Swiatek-de Lange M contributed to project development; Chan HL-Y, Piratvisuth T, Tanwandee T, Thongsawat S, Sukeepaisarnjaroen W, Esteban JI, Bes M and Köhler B contributed to sample collection; Malik J contributed to development of methodology and collection of data; Malik J, Klammer M and Rolny V contributed to the biostatistical analysis of the data; Malik J, Klammer M, Rolny V and Swiatek-de Lange M contributed to the interpretation of the data; Malik J, Klammer M and Swiatek-de Lange wrote the manuscript; Malik J and Swiatek-de Lange M provided critical review and editing of the manuscript; All authors have read and approved the final manuscript.
Institutional review board statement: The study was approved by the following review boards: Siriraj Institutional Review Board; Research Ethics Committee of the Faculty of Medicine, Chiang Mai University; Joint Chinese University of Hong Kong – New Territories East Cluster Clinical Research Ethics Committee; Ethikkommission Medizinische Fakultät Heidelberg; Research Ethics Committee, Faculty of Medicine, Prince of Songkla University; Clinical Research Ethics Committee of Vall d’Hebron University Hospital; and Khon Kaen University Ethics Committee for Human Research.
Informed consent statement: Written informed consent was obtained from all participants.
Conflict-of-interest statement: Malik J, Klammer M, Rolny V and Swiatek-de Lange M are employees of Roche Diagnostics GmbH and shareholders in Roche Diagnostics.
Data sharing statement: No additional data are available.
STROBE statement: The authors have read the STROBE Statement—checklist of items, and the manuscript was prepared and revised according to the STROBE Statement—checklist of items.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Juliane Malik, PhD, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany. juliane.malik@roche.com
Received: January 28, 2022
Peer-review started: January 28, 2022
First decision: April 10, 2022
Revised: May 20, 2022
Accepted: July 11, 2022
Article in press: July 11, 2022
Published online: August 7, 2022
ARTICLE HIGHLIGHTS
Research background

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and a leading cause of cancer-related mortality. Current guidelines recommend the surveillance of high-risk patients every 6 mo using ultrasonography, but early-stage HCC detection is limited.

Research motivation

Previous reports show that the expression level of human microRNAs (miRNAs) can serve as an early marker for HCC, even outperforming established biomarkers like alpha-fetoprotein (AFP) and protein induced by vitamin K absence/antagonist-II (PIVKA-II).

Research objectives

To evaluate the diagnostic role of miRNAs in HCC as single markers, signatures or in combination with known protein biomarkers AFP and PIVKA-II in a prospective, multicenter, case-control study.

Research methods

We employed two independent methods, real-time quantitative PCR and next-generation sequencing, to investigate miRNAs levels in the discovery cohort of 160 HCC and control patients. Selected miRNAs were subsequently analyzed for their univariate and multivariate performance in independent training (n = 200) and validation cohorts (n = 300).

Research results

Real-time quantitative PCR and next-generation sequencing identified 26 miRNAs differentiating between HCC and chronic liver disease controls. Three miRNAs (miR-21, miR-320a and miR-186-5p) were selected by both methods. In the training cohort, only miR-21, miR-320d and miR-423 could significantly distinguish (Q < 0.05) between the HCC and control groups. In the multivariate setting, miR-21 with PIVKA-II was selected as the best combination, resulting in an area under the curve of 0.87 for diagnosis and 0.74 for early diagnosis of HCC. miR-21 and miR-423 were confirmed as potential HCC biomarkers in the validation cohort. A combination of miRNAs did not perform better than any single miRNA. Improvement of AFP or PIVKA-II performance through combination with miRNAs was not confirmed in the validation panel.

Research conclusions

Selected miRNA candidates in standalone or signature settings or in combination with biomarkers AFP and PIVKA-II did not improve the diagnostic performance of the protein biomarkers in identification of early-stage HCC.

Research perspectives

Diagnostic superiority of microRNAs for detection of early HCC could not be confirmed, which was primarily due to the excellent and robust performance of the protein biomarkers AFP and PIVKA-II for this intended use. Therefore, miRNAs still carry diagnostic potential for application in other oncological diseases.