Basic Study
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Apr 14, 2021; 27(14): 1435-1450
Published online Apr 14, 2021. doi: 10.3748/wjg.v27.i14.1435
Cyanidin 3-glucoside modulated cell cycle progression in liver precancerous lesion, in vivo study
Marwa Matboli, Amany H Hasanin, Reham Hussein, Sarah El-Nakeep, Eman K Habib, Rawan Ellackany, Lobna A Saleh
Marwa Matboli, Department of Biochemistry, Ain Shams Faculty of Medicine, Cairo 11318, Egypt
Amany H Hasanin, Reham Hussein, Lobna A Saleh, Department of Clinical Pharmacology, Ain Shams Faculty of Medicine, Cairo 11381, Egypt
Sarah El-Nakeep, Department of General Internal Medicine, Ain Shams Faculty of Medicine, Cairo 11381, Egypt
Eman K Habib, Department of Anatomy & Embryology, Ain Shams Faculty of Medicine, Cairo 11318, Egypt
Rawan Ellackany, Department of Undergraduate, Faculty of Medicine, Modern University for Technology and Information, Cairo 11381, Egypt
Author contributions: Matboli M and Hasanin AH conceived the presented idea, developed the theory; Matboli M performed the statistics and the molecular assay; Hasanin AH verified the analytical methods; Hussein R and Saleh LA carried out the experimental animal work, performed the statistical analysis, writing the manuscript; El-Nakeep S developed the theory and writing the manuscript; Ellackany R has shared in the revision of the manuscript; Habib EK performed the histopathological examination and writing the comments; all authors discussed the results and contributed to the final manuscript revision.
Institutional animal care and use committee statement: All animal procedures were approved by the Institutional Animal Ethics Committee for Ain Shams University, Faculty of Medicine.
Conflict-of-interest statement: No competing interest.
Data sharing statement: Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Corresponding author: Marwa Matboli, MD, Associate Professor, Department of Biochemistry, Ain Shams Faculty of Medicine, Abassia Marg, Cairo 11318, Egypt.
Received: December 22, 2020
Peer-review started: December 22, 2020
First decision: January 17, 2021
Revised: January 22, 2021
Accepted: March 26, 2021
Article in press: March 26, 2021
Published online: April 14, 2021
Research background

Several regulatory RNA networks are important in regulation of liver cell cycle progression.

Research motivation

Cyanidin-3-glucoside (cyan) is a potential chemotherapeutic and chemo-protective agent.

Research objectives

The present study aimed to investigate the effect of cyan administration on cell cycle in hepatic precancerous lesion induced by diethylnitrosamine/2-acetylaminofluorene in Wistar rats.

Research methods

We used bioinformatic analysis followed by experimental validation.

Research results

Cyan dose dependently decreased the long non-coding RNA-MALAT1 and tubulin gamma 1 mRNA expressions and increased the hsa-miR-125b expression which participate in cell cycle and mitotic spindle assembly. Cyan administration decreased alpha-fetoprotein and improved liver function. Cyan decreased glutathione S-transferase placental foci percent area and proliferating cell nuclear antigen positively stained nuclei.

Research conclusions

Cyanidin may offer a natural molecule to unravel the mystery a cytotoxic pharmacy for the future.

Research perspectives

Further larger in vitro and in vivo studies are needed to elucidate the mechanism of cyanidin cytotoxicity in hepatocellular carcinoma.