Basic Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. May 14, 2020; 26(18): 2194-2202
Published online May 14, 2020. doi: 10.3748/wjg.v26.i18.2194
Genetic association analysis of CLEC5A and CLEC7A gene single-nucleotide polymorphisms and Crohn’s disease
Nagi Elleisy, Sarah Rohde, Astrid Huth, Nicole Gittel, Änne Glass, Steffen Möller, Georg Lamprecht, Holger Schäffler, Robert Jaster
Nagi Elleisy, Sarah Rohde, Astrid Huth, Nicole Gittel, Georg Lamprecht, Holger Schäffler, Robert Jaster, Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
Änne Glass, Steffen Möller, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock 18057, Germany
Author contributions: Schäffler H, Rohde S and Jaster R designed the study; Huth A, Schäffler H and Lamprecht G took reponsibility for patient care and follow-up; Elleisy N, Rohde S and Jaster R performed the experiments; Gittel N, Huth A and Schäffler H collected the samples and performed the clinical characterisation of the patients; Elleisy N, Glass Ä, Möller S and Jaster R performed the biostatistics; all authors analyzed the data; Schäffler H and Jaster R wrote the manuscript and contributed equally and share senior authorship.
Supported by the Damp-Foundation, No. 2016-04.
Institutional review board statement: The study was approved by the ethic board of the Medical Faculty of the University of Rostock (A 2017-0137). Written informed consent was obtained from each participant prior to enrollment.
Conflict-of-interest statement: The authors declare that there is no conflict of interest.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Robert Jaster, MD, Academic Research, Professor, Senior Postdoctoral Fellow, Senior Scientist, Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, Rostock 18057, Germany. robert.jaster@med.uni-rostock.de
Received: February 4, 2020
Peer-review started: February 4, 2020
First decision: March 21, 2020
Revised: April 13, 2020
Accepted: April 29, 2020
Article in press: April 29, 2020
Published online: May 14, 2020
ARTICLE HIGHLIGHTS
Research background

Crohn’s disease (CD) is characterized by a multifactorial etiology and a significant impact of genetic traits. While NOD2 mutations represent well established risk factors of CD, the role of other genes is incompletely understood.

Research motivation

A better knowledge of the molecular basis of CD is considered as an essential prerequisite for a further improvement of diagnostics and therapy.

Research objectives

Previous studies from our laboratory have pointed to a possible link between CD and the expression of pattern recognition receptors of the C-type lectin domain family (specifically, CLEC5A) in peripheral blood mononuclear cells (PBMC). This observation prompted us to ask if single nucleotide polymorphisms in the genes CLEC5A and CLEC7A might be associated with the disease.

Research methods

DNA samples from patients with CD and healthy donors were subjected to the analysis of single nucleotide polymorphisms in the genes CLEC5A, CLEC7A and NOD2. For studies on gene expression, PBMC from subgroups of both cohorts were employed. Molecular findings were correlated with clinical characteristics of the patients.

Research results

For genotype AA of rs1285933 in CLEC5A, a potential association with CD and an increased odds ratio were detected. As expected, risk variants of NOD2 were associated with an increased occurrence of CD as well. Polymorphisms of rs1285933 correlated with CXCL5 gene expression but had no effect on CLEC5A expression in PBMC.

Research conclusions

SNP rs1285933 in CLEC5A may represent a novel genetic association of CD. The finding, however, needs to be reproduced in multicenter studies with larger numbers of CD patients.

Research perspectives

Pattern recognition receptors of the C-type lectin domain family deserve further attention regarding their potential role in the pathogenesis of CD and their relevance as diagnostic markers and therapeutic targets.