Letter to the Editor
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Feb 21, 2022; 28(7): 766-774
Published online Feb 21, 2022. doi: 10.3748/wjg.v28.i7.766
Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit–risk approach?
Stanislav Sitkin, Leonid Lazebnik, Elena Avalueva, Svetlana Kononova, Timur Vakhitov
Stanislav Sitkin, Elena Avalueva, Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
Stanislav Sitkin, Svetlana Kononova, Timur Vakhitov, Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
Stanislav Sitkin, Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
Leonid Lazebnik, Department of Outpatient Therapy, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
Svetlana Kononova, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
Author contributions: Sitkin S contributed to the conception, review of literature, and drafting of the manuscript; All authors contributed to the writing and editing of the manuscript and approved the final version of the manuscript.
Supported by the Russian Science Foundation, No. 20-65-47026.
Conflict-of-interest statement: The authors declare no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Stanislav Sitkin, MD, PhD, Associate Professor, Senior Researcher, Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, Kirochnaya Street, 41, St. Petersburg 191015, Russia. drsitkin@gmail.com
Received: August 13, 2021
Peer-review started: August 13, 2021
First decision: September 4, 2021
Revised: September 17, 2021
Accepted: January 20, 2022
Article in press: January 20, 2022
Published online: February 21, 2022
Abstract

Helicobacter pylori (H. pylori) is generally regarded as a human pathogen and a class 1 carcinogen, etiologically related to gastric and duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. However, H. pylori can also be regarded as a commensal symbiont. Unlike other pathogenic/ opportunistic bacteria, H. pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance. Fucosylated gastric mucin glycans, which are an important part of the innate and adaptive immune system, mediate the adhesion of H. pylori to the surface of the gastric epithelium, contributing to successful colonization. H. pylori may have beneficial effects on the host by regulating gastrointestinal (GI) microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H. pylori. The inverse association between H. pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota. Eradication of H. pylori can cause various adverse effects and alter the GI microbiota, leading to short-term or long-term dysbiosis. Overall, studies have shown that gastric Actinobacteria decrease after H. pylori eradication, Proteobacteria increase during short-term follow-up and then return to baseline levels, and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up. Various gastric mucosal bacteria (Actinomyces, Granulicatella, Parvimonas, Peptostreptococcus, Prevotella, Rothia, Streptococcus, Rhodococcus, and Lactobacillus) may contribute to precancerous gastric lesions and cancer itself after H. pylori eradication. H. pylori eradication can also lead to dysbiosis of the gut microbiota, with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during and after eradication. The decrease in Actinobacteria, which are pivotal in the maintenance of gut homeostasis, can persist for > 6 mo after H. pylori eradication. Furthermore, H. pylori eradication can alter the metabolism of gastric and intestinal bacteria. Given the available data, eradication cannot be an unconditional recommendation in every case of H. pylori infection, and the decision to eradicate H. pylori should be based on an assessment of the benefit–risk ratio for the individual patient. Thus, the current guidelines based on the unconditional “test-and-treat” strategy should be revised. The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication can cause antibiotic-associated diarrhea, including severe Clostridioides difficile-associated diarrhea and colitis and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or dysbiosis of the GI microbiota, supplementation of probiotics, prebiotics, and microbial metabolites (e.g., butyrate + inulin) should be considered to decrease the negative effects of eradication.

Keywords: Helicobacter pylori, Eradication, Gastrointestinal microbiota, Dysbiosis, Fucosylated glycan, Inflammatory bowel disease

Core Tip: Helicobacter pylori (H. pylori) is generally regarded as a human pathogen, but it can act as a commensal symbiont. H. pylori colonization may have beneficial effects on the host by regulating gastrointestinal microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. H. pylori eradication can cause various adverse effects and alter the gastrointestinal microbiota, leading to dysbiosis. Therefore, eradication cannot be an unconditional recommendation in every case of H. pylori infection, and the therapeutic decision should be based on a personalized assessment of the benefit vs risk.