Basic Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Aug 28, 2020; 26(32): 4786-4801
Published online Aug 28, 2020. doi: 10.3748/wjg.v26.i32.4786
Dual targeting of Polo-like kinase 1 and baculoviral inhibitor of apoptosis repeat-containing 5 in TP53-mutated hepatocellular carcinoma
Yan Li, Zhen-Gang Zhao, Yin Luo, Hao Cui, Hao-Yu Wang, Yan-Fang Jia, Ying-Tang Gao
Yan Li, Zhen-Gang Zhao, Hao Cui, Hao-Yu Wang, Department of Hepatology, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
Yin Luo, Ying-Tang Gao, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
Yan-Fang Jia, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Medical University Third Center Clinical College, Tianjin 300170, China
Author contributions: Li Y, Zhao ZG, Luo Y, and Jia YF performed the majority of experiments and analyzed the data; Cui H and Wang HY were responsible for animal experiments; Li Y and Gao YT designed and coordinated the research; Li Y, Luo Y, and Gao YT wrote the paper; all authors approved the final version of the article.
Supported by National Science and Technology Major Project, No. 2018ZX10732-202-004; Tianjin Science and Technology Plan Project, No. 17JCYBJC26100 and No. 19ZXDBSY00030.
Institutional review board statement: This study/paper was reviewed and approved by the Ethics Committee of Tianjin Third Central Hospital.
Institutional animal care and use committee statement: All animal experiments and procedures were conducted under the protocol approved by the Animal Care and Use Committee of Nankai University.
Conflict-of-interest statement: All authors have nothing to disclose.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Ying-Tang Gao, PhD, Professor, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China. gaoyt816@163.com
Received: May 7, 2020
Peer-review started: May 7, 2020
First decision: May 21, 2020
Revised: June 4, 2020
Accepted: August 4, 2020
Article in press: August 4, 2020
Published online: August 28, 2020
Abstract
BACKGROUND

Hepatocellular carcinoma (HCC), often diagnosed at advanced stages without curative therapies, is the fifth most common malignant cancer and the second leading cause of cancer-related mortality. Polo-like kinase 1 (PLK1) is activated in the late G2 phase of the cell cycle and is required for entry to mitosis. Interestingly, PLK1 is overexpressed in many HCC patients and is highly associated with poor clinical outcome. Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) is also highly overexpressed in HCC and plays key roles in this malignancy.

AIM

To determine the expression patterns of PLK1 and BIRC5, as well as their correlation with p53 mutation status and patient clinical outcome.

METHODS

The expression patterns of PLK1 and BIRC5, and their correlation with p53 mutation status or patient clinical outcome were analyzed using a TCGA HCC dataset. Cell viability, cell apoptosis, and cell cycle arrest assays were conducted to investigate the efficacy of the PLK1 inhibitors volasertib and GSK461364 and the BIRC5 inhibitor YM155, alone or in combination. The in vivo efficacy of volasertib and YM155, alone or in combination, was assessed in p53-mutated Huh7-derived xenograft models in immune-deficient NSIG mice.

RESULTS

Our bioinformatics analysis using a TCGA HCC dataset revealed that PLK1 and BIRC5 were overexpressed in the same patient subset and their expression was highly correlated. The overexpression of both PLK1 and BIRC5 was more frequently detected in HCC with p53 mutations. High PLK1 or BIRC5 expression significantly correlated with poor clinical outcome. PLK1 inhibitors (volasertib and GSK461364) or a BIRC5 inhibitor (YM155) selectively targeted Huh7 cells with mutated p53, but not HepG2 cells with wild-type p53. The combination treatment of volasertib and YM155 synergistically inhibited the viability of Huh7 cells via apoptotic pathway. The efficacy of volasertib and YM155, alone or in combination, was validated in vivo in a Huh7-derived xenograft model.

CONCLUSION

PLK1 and BIRC5 are highly co-expressed in p53-mutated HCC and inhibition of both PLK1 and BIRC5 synergistically compromises the viability of p53-mutated HCC cells in vitro and in vivo.

Keywords: Polo-like kinase 1, Baculoviral inhibitor of apoptosis repeat-containing 5, p53, Co-expression, Hepatocellular carcinoma, Bioinformatics analysis

Core tip: A bioinformatics analysis using a TCGA hepatocellular carcinoma (HCC) dataset revealed that Polo-like kinase 1 (PLK1) and baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) were overexpressed in the same patient subset and their expression was highly correlated. Overexpression of both PLK1 and BIRC5 was more frequently detected in HCC with p53 mutations. High PLK1 or BIRC5 expression significantly correlated with poor clinical outcome. The PLK1 inhibitors volasertib and GSK461364 or BIRC5 inhibitor YM155 selectively targeted Huh7 cells with mutated p53, but not HepG2 cells with wild-type p53. Combination treatment with volasertib and YM155 synergistically inhibited the viability of Huh7 cells by inducing apoptosis. The efficacy of volasertib and YM155, alone or in combination, was validated in vivo in a Huh7-derived xenograft model in immuno-deficient NSIG mice.