Topic Highlight
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Oct 7, 2014; 20(37): 13219-13233
Published online Oct 7, 2014. doi: 10.3748/wjg.v20.i37.13219
Crohn's disease and growth deficiency in children and adolescents
Marco Gasparetto, Graziella Guariso
Marco Gasparetto, Graziella Guariso, Department of Women’s and Children’s Health, Unit for Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of Children with Liver Transplants, Padova University Hospital, 35128 Padova, Italy
Author contributions: Gasparetto M and Guariso G both made substantial contributions to the article’s conception and design, data acquisition, manuscript drafting, critical revision for important intellectual content, and final approval of the version submitted for publication.
Correspondence to: Marco Gasparetto, MD, Department of Women’s and Children’s Health, Unit for Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of Children with Liver Transplants, Padova University Hospital, Via Giustiniani 3, 35128 Padova, Italy. markgasp@gmail.com
Telephone: +39-49-8213509 Fax: +39-49-8215430
Received: September 22, 2013
Revised: April 22, 2014
Accepted: June 12, 2014
Published online: October 7, 2014
Abstract

Nutritional concerns, linear growth deficiency, and delayed puberty are currently detected in up to 85% of patients with Crohn’s disease (CD) diagnosed at childhood. To provide advice on how to assess and manage nutritional concerns in these patients, a Medline search was conducted using “pediatric inflammatory bowel disease”, “pediatric Crohn’s disease”, “linear growth”, “pubertal growth”, “bone health”, and “vitamin D” as key words. Clinical trials, systematic reviews, and meta-analyses published between 2008 and 2013 were selected to produce this narrative review. Studies referring to earlier periods were also considered if the data was relevant to our review. Although current treatment strategies for CD that include anti-tumor necrosis factor-α therapy have been shown to improve patients’ growth rate, linear growth deficiencies are still common. In pediatric CD patients, prolonged diagnostic delay, high initial activity index, and stricturing/penetrating type of behavior may cause growth deficiencies (in weight and height) and delayed puberty, with several studies reporting that these patients may not reach an optimal bone mass. Glucocorticoids and inflammation inhibit bone formation, though their impact on skeletal modeling remains unclear. Long-term control of active inflammation and an adequate intake of nutrients are both fundamental in promoting normal puberty. Recent evidence suggests that recombinant growth factor therapy is effective in improving short-term linear growth in selected patients, but is of limited benefit for ameliorating mucosal disease and reducing clinical disease activity. The authors conclude that an intense initial treatment (taking a “top-down” approach, with the early introduction of immunomodulatory treatment) may be justified to induce and maintain remission so that the growth of children with CD can catch up, ideally before puberty. Exclusive enteral nutrition has a key role in inducing remission and improving patients’ nutritional status.

Keywords: Bone health, Enteral nutrition, Growth, Height, Pediatric inflammatory bowel disease, Pediatric Crohn’s disease, Linear growth, Pubertal growth, Vitamin D, Weight loss

Core tip: This review focuses on current evidence for managing growth issues in children diagnosed with Crohn’s disease. Long-term control of active inflammation and an adequate intake of nutrients are both essential in promoting puberty. Exclusive enteral nutrition has a key role, as it induces disease remission and improves nutritional status. The early introduction of immunosuppressants or biologics may be justified in children to achieve disease remission and enable their growth to catch up, ideally before puberty. Recent evidence suggests that recombinant growth factor therapy is effective in improving short-term linear growth.